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1. INTRODUCTION

We consider a flow-level model of Internet congestion control in-
troduced by Massoulié and Roberts [2]. We assume that bandwidth
is shared amongst elastic documents according to a weighted pro-
portional fair bandwidth sharing policy. With Poisson arrivals and
exponentially distributed document sizes, we focus on the heavy
traffic regime in which the average load placed on each resource is
approximately equal to its capacity. In [1], under a mild local traffic
condition, we establish a diffusion approximation for the workload
process (and hence for the flow count process) in this model. We
first recall that result in this paper. We then state results showing
that when all of the weights are equal (proportional fair sharing) the
diffusion has a product form invariant distribution with a strikingly
simple interpretation in terms of dual random variables, one for
each of the resources of the network. This result can be extended to
the case where document sizes are distributed as finite mixtures of
exponentials, and to models that include multi-path routing (these
extensions are not described here, but can be found in [1]).

2. STOCHASTIC FLOW-LEVEL MODEL

Consider a network with finitely many resources labeled by j €
# and finitely many routes labeled by i € .#. A route is a non-
empty subset of the resources (interpreted as the set of resources
used simultaneously by a flow on that route). Let J =|_# /|, the total
number of resources, and | = |.#|, the total number of routes. Set
Aji = L if resource j is used by route i, and set Ajj = 0 otherwise.
This defines a J x | matrix A that is assumed to have full row rank.
It is assumed that resource capacities (Cj: j € _#) are given and
that these are all strictly positive and finite.

A flow on route i corresponds to the continuous transmission of
a document through the resources used by route i. Transmission is
assumed to occur simultaneously through all resources on a given
route. The flow count process is assumed to be a Markov process
with state space N', where N denotes the set of non-negative in-
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tegers. In particular, it is assumed that a new document arrives to
route i at each jump time of a Poisson process that has rate pa-
rameter V; > 0 and that each such document has an exponentially
distributed size with mean 1/ where L € (0,0). These docu-
ment sizes are assumed to be independent of one another and to
be independent of all arrival times of documents. Bandwidth ca-
pacity is allocated dynamically to the documents according to the
following bandwidth sharing policy which is called weighted pro-
portional fair sharing. Given strictly positive weights (kj : i € .%),
if Nj(t) denotes the (random) number of flows on route i at time t
foreachie ., and N(t) = (Nj(t) : i € .#), then the bandwidth allo-
cated to route i at time t is given by Aj(N(t)) and this bandwidth is
shared equally amongst all of the flows on route i, where the func-
tion A(-) = (Ai(+):1 € .#) is defined as follows. Let A: R!, — R/,
be defined such that for each n € R!,, A(n) is the unique value of A
that solves the optimization problem:

maximize S KinjlogA\;
i€ (n)
subject to ANLC M
over Ne 0.(n),

where 7, (n)={i €. :n >0} and 4(n) = {A R, : A =
0 for all i such that nj = 0}. When the weights (ki,i € .#) are all
equal, the bandwidth sharing policy is simply called proportional
fair sharing.

We define an (average) workload process by W (t) = AM~IN(t)
for all t > 0, where M = diag() is the | x | diagonal matrix with
the entries of [ on its diagonal.

3. HEAVY TRAFFIC AND SCALING

Consider a sequence of flow-level models indexed by r (tending
to infinity through a sequence) where the network structure with
parameters A and C and bandwidth sharing policy with parameters
(ki, i € .#) do not vary with r. Each member of the sequence is a
stochastic system as described in the previous section. We append
a superscript of I to any process, sequence of random variables or
parameter associated with the rth system that depends on r. Let



pl = v/l for each i € .#. We shall assume henceforth that the
following heavy traffic condition holds.

ASSUMPTION 3.1. (Heavy Traffic) There are v, u € RL and
6 € RJ such that v; > 0 and W >0forallie 7,

Vi—sv and pf —pu as r— oo, )

r(Ap"—C)— 6 as r— . 3)

Let M = diag(u) and pj = & for all i € .#. We note that (2)—(3)
imply that p" — p asr — o and Ap =C.
We define diffusion scaled processes N',W" as follows. For each
randt > 0, let
N"(r?t)

N"(t) = Ea— “

W) = Wr(rrzt) — AMMN) IR (1), 5)

4, DIFFUSION APPROXIMATION
Define

A = diag(p)diag(k) 'A'(ABA') !, (©)

where A’ denotes the transpose of A and B is an | x | diagonal

matrix with the it diagonal entry being “ZL'K > 0. (The inverse of
[ Ki

ABA' exists because A was assumed to have full row rank.)
Let

W = {ABNq:qeRL}. (7)

Thus, # is a polyhedral cone; we call it the workload cone. For
each je 7, let

Wi = {ABA’q:qeRi and g :0}. @)
Let " be the J x J matrix given by
I =2AM~!diag(v)M A", )

For each j € 7, let yi denote the unit vector that is parallel to
the positive jth coordinate direction in Ri. Let n be a probability
distribution on %, endowed with the Borel o-algebra.

Our diffusion approximation will be a Semimartingale Reflect-
ing Brownian Motion as defined below.

DEFINITION 4.1. A Semimartingale Reflecting Brownian Mo-
tion (SRBM) that lives in the cone %, has direction of reflection y!
on the boundary face %! for each j € _#, has drift 8 and covari-
ance matrix I', and has initial distribution n on 7, is an adapted,
J-dimensional process W defined on some filtered probability space
(Q,7,{%#},P) such that

(i) P-as., W(t) =W (0)+X(t)+U(t) for all t >0,

(i) P-a.s., W has continuous paths, W (t) € # for all t > 0, and
W (0) has distribution n,

(i) under P,

(@) X is a J-dimensional Brownian motion starting from the
origin with drift 6 and covariance matrix I,
(b) {X(t)-6t, F#, t >0} is a martingale,

(v) for each j € ¢, Uj is an adapted, one-dimensional process
such that P-a.s.,

(@ Uj(0) =0,
(b) Uj is continuous and non-decreasing,
© Uj(t) = fo 1 iygg)en1ydU;j (s) for all t > 0.

Remark: Here adapted means adapted to the filtration {.%}. We
call a process satisfying the above properties an SRBM associated
with the data (#,0,T,{y! : j€ _#},n). For more on SRBMs, see
[3].

The following can be interpreted as a local traffic assumption
under which each resource has at least one route that only uses that
resource.

ASSUMPTION 4.1. (Local Traffic) Foreach je ¢, thereisie
# such that Ajj = 1 and Ay = 0 for all k # j.

THEOREM 4.1. [1] Assume that the local traffic Assumption
4.1 holds. Suppose that W' (0) converges in distribution to a ran-
dom variable with distribution n concentrated on %', and

INT(0) —AW" (0)] — 0 (10)

in probability as r — co. Then (W', R") converges in distribution
as r — oo to a continuous process (W,N), where N = AW and W is
an SRBM with data (#,0,,{y!: je _#Z}.n).

5. PRODUCT FORM INVARIANT
DISTRIBUTION FOR
PROPORTIONAL FAIR SHARING

Massoulié and Roberts [2] showed that for a linear network with
unit capacity resources satisfying Ap < C, the flow count process
for the original stochastic model has a product form stationary dis-
tribution under the proportional fair sharing discipline. The follow-
ing result yields a diffusion analogue of that result, but for more
general network structures.

THEOREM 5.1. [1] Suppose that ki =1 forall i e .#. Let T
be the measure on # that is absolutely continuous with respect to
Lebesgue measure with density given by

p(w) =exp(U-w), We, (11)
where
v=2r—le. (12)

The product form measure 17 is an invariant distribution for the
SRBM having state space %, drift 8, covariance matrix I" and di-
rections of reflection {y! : j € _#}. This measure is integrable over
w ifand only if 8; < Oforall j € #, and then after normalization
it defines the unique stationary distribution for the SRBM.

The product form of the density (11) does not imply that, when
Bj <O forall j€ ¢, the components of the SRBM W are inde-
pendent under the stationary distribution for the SRBM, since in
general the cone 7 is not an orthant. Independence can, however,
be deduced for the components of the stationary distribution for the
SRBM Q defined below. These components can be interpreted as
dual variables associated with the optimization problem (1).

COROLLARY 5.1. [1] Suppose that the assumptions of Theo-
rem 4.1 hold, that kj =1 forallic .#,and 6; <Oforall jc ¢.
Let (W,N) be the process identified in Theorem 4.1, and let

O=2r"'w. (13)



Then @ is an SRBM with state space Ri. It has a unique stationary
distribution, and this distribution has a density relative to Lebesgue
measure that is proportional to exp(6-q), q € Ri. Under this
stationary distribution the components of Q are independent and
Q,— is exponentially distributed with parameter —8; for each j €

.

It follows that the stationary distribution of N = diag(p)A’Q can
be expressed as a linear combination of independent exponential
random variables. Thus resource j has associated with it a dual
random variable Q3, for j € 7 ; these dual variables are indepen-
dent and exponentially distributed with parameters —8j,j € _#;
and under its stationary distribution the jth component of N is pro-
portional (at any time) to the sum of the dual variables associated
with the resources used by route i. This suggests the following sim-
ple approximation for the stationary distribution of the unscaled
network, that is the flow-level model of Section 2. The stationary
approximation is

N*~p Sy QfAji (14)
ies
where Qf, j € #, are independent and QS is exponentially dis-
tributed with parameter Cj — ¥ ic »~ Ajipi. This formal approxima-
tion accords well with the exact results of Massoulié and Roberts
[2] for a linear network.
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