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FLUID LIMITS FOR NETWORKS WITH BANDWIDTH SHARING
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We consider a stochastic model of Internet congestion control, intro-
duced by Massoulié and Roberts [Telecommunication Systems 15 (2000)
185–201], that represents the randomly varying number of flows in a network
where bandwidth is shared among document transfers. In contrast to an ear-
lier work by Kelly and Williams [Ann. Appl. Probab. 14 (2004) 1055–1083],
the present paper allows interarrival times and document sizes to be gener-
ally distributed, rather than exponentially distributed. Furthermore, we allow
a fairly general class of bandwidth sharing policies that includes the weighted
α-fair policies of Mo and Walrand [IEEE/ACM Transactions on Networking
8 (2000) 556–567], as well as certain other utility based scheduling policies.
To describe the evolution of the system, measure valued processes are used
to keep track of the residual document sizes of all flows through the network.
We propose a fluid model (or formal functional law of large numbers approx-
imation) associated with the stochastic flow level model. Under mild con-
ditions, we show that the appropriately rescaled measure valued processes
corresponding to a sequence of such models (with fixed network structure)
are tight, and that any weak limit point of the sequence is almost surely a
fluid model solution. For the special case of weighted α-fair policies, we also
characterize the invariant states of the fluid model.

1. Introduction. Massoulié and Roberts [18] have introduced and studied
a model of Internet congestion control that represents the randomly varying num-
ber of flows in a network where bandwidth is shared dynamically among flows.
The flows correspond to continuous transfers of individual elastic documents. This
connection level model assumes a “separation of time scales” such that the time
scale of the flow dynamics (of document arrivals and departures) is much longer
than the time scale of the packet level dynamics on which rate control schemes
such as TCP converge to equilibrium.

Subsequent to the work of Massoulié and Roberts [18], assuming exponen-
tially distributed document sizes, de Veciana, Lee and Konstantopoulos [5] and
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Bonald and Massoulié [1] studied the stability of the flow level model operating
under various bandwidth sharing policies. A bandwidth sharing policy generalizes
the notion of a processor sharing discipline from a single resource to a network
with several shared resources. Lyapunov functions constructed in [5] for weighted
max-min fair and proportionally fair policies, and in [1] for weighted α-fair poli-
cies (α ∈ (0,∞)) [19], imply positive recurrence of the Markov chain associated
with the model when the average load on each resource is less than its capacity.
Several authors [9, 13, 15, 16, 21–23] have considered variants of the Massoulié
and Roberts model [18] and more general bandwidth sharing policies. In partic-
ular, Lin, Shroff and Srikant [15, 16, 21] have given sufficient conditions for sta-
bility where the assumption of time scale separation is relaxed. Ye [22], Ye, Ou
and Yuan [23] and Hansen, Reynolds and Zachary [9] have given conditions for
stability and instability with more general bandwidth sharing policies. Key and
Massoulié [13] have considered a model with file transfers and streaming flows,
certain utility based policies and relaxed capacity constraints. However, all of these
works maintain a critical exponential distributional assumption on document sizes
or holding times to enable the use of a relatively simple Markovian model. A major
aim of our work is to relax this exponential assumption.

Here, we consider the model of Massoulié and Roberts, with generally distrib-
uted document sizes and interarrival times, operating under a fairly general band-
width sharing policy. Important examples of this policy include the weighted α-fair
policies introduced by Mo and Walrand [19], and more generally certain utility
based policies (see, e.g., [3, 13, 22, 23]) in the context of flow level models. We are
interested in the stability and heavy traffic behavior of this flow level model. (De-
spite the claim in [1], the proof of sufficient conditions for stability under weighted
α-fair policies given there does not apply when document sizes are other than ex-
ponentially distributed. The reason for this is that the method of Dai [4] quoted
there implicitly assumes (through the form of the model equations) that the service
discipline is a head-of-the-line discipline. Consequently, the method does not ap-
ply in general to processor sharing type disciplines, such as the bandwidth sharing
policies considered here. In the case of exponentially distributed document sizes,
one can equate the distribution of the queue length process for a bandwidth sharing
model with the queue length process of a stochastic processing network (cf. [10])
operating under a head-of-the-line policy. Even then, to conclude the stability re-
sult using an analogue of Dai’s result, one has to generalize the results of [4] to
stochastic processing networks from multiclass queueing networks. However, in
the case of exponential interarrival times and document sizes, the Lyapunov func-
tion given in [1] can be used directly on the original Markov chain stochastic model
to establish stability under the nominal condition that the average load placed on
each resource is less than its capacity.)

There are a few results on sufficient conditions for stability of the flow level
model with general document size distributions. With Poisson arrivals and doc-
ument sizes having a phase-type distribution, for a weighted α-fair policy with
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α = 1, Lakshmikantha, Beck and Srikant [14] have established stability of some
two resource linear networks and a 2 × 2 grid network when the average load on
each resource is less than its capacity. For generally distributed interarrival and
document sizes, Bramson [2] has shown sufficiency of such a condition for sta-
bility under a max-min fair policy (corresponding to an α-fair policy as α → ∞).
Under proportional fair sharing, Massoulié [17] has recently established stability
of a fluid model for the flow level model with exponential interarrival and docu-
ment sizes, and additional routing. From this, he infers stability of the stochastic
flow level model when documents have phase-type distributions. In general, how-
ever, it remains an open question whether, with renewal arrivals and arbitrarily
(rather than exponentially) distributed document sizes, the flow level model is sta-
ble under a weighted α-fair (or more general) bandwidth sharing policy when the
nominal load placed on each resource is less than its capacity. In contemporaneous
work, Chiang, Shah and Tang [3] have developed a fluid approximation for the flow
level model when the arrival rate and capacity are allowed to grow proportionally
but the bandwidth per flow stays uniformly bounded. Using their fluid model, they
derive some conclusions concerning rate stability for general (bounded) document
size distributions when α ∈ (0,∞) is sufficiently small.

This paper is a first step in our study of the flow level model with general in-
terarrival and document size distributions, and a general bandwidth sharing policy.
Here, we define measure valued processes that keep track of the residual sizes of
all documents in the system at any given time. We propose a fluid model (or formal
functional law of large numbers approximation) associated with the stochastic flow
level model. Under mild conditions, we show that the measure valued processes
corresponding to a fluid scaled sequence of such models (with fixed network struc-
ture) are tight and that any weak limit point of the sequence is almost surely a fluid
model solution. For weighted α-fair policies, we also characterize the invariant
states for the fluid model. In future work, we plan to study the asymptotic behavior
of fluid model solutions and to use that to study the stability and heavy traffic be-
havior of the associated flow level models. A summary of the results of this paper
as they pertain to weighted α-fair policies appears in [8], along with two examples
showing stability of the fluid model under a natural condition for linear networks
and simple tree networks.

The paper is organized as follows. In Section 2, we define the network structure,
the bandwidth sharing policy, the stochastic flow level model and we introduce the
measure valued processes used to describe the evolution of the system. The no-
tion of a fluid model solution is defined in Section 3. In Section 4, we introduce a
sequence of flow level models and state our main result concerning the tightness
of this sequence and that weak limit points are fluid model solutions (see The-
orem 4.1). The proof of the main result is given in Section 5. In Section 6, we
characterize the invariant states of the fluid model for weighted α-fair policies.
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1.1. Notation. Let N = {1,2, . . .}, let R = (−∞,∞), and let R
d denote

d-dimensional Euclidean space. For x, y ∈ R, x ∨ y is the maximum of x and y,
x ∧ y is the minimum of x and y, x+ is the positive part and �x� is the integer part
of x. For x, y ∈ R

d , let ‖x‖ = maxd
i=1 |xi |, and interpret vector inequalities com-

ponentwise: x ≤ y means xi ≤ yi for all i = 1, . . . , d . The positive d-dimensional
orthant is denoted R

d+ = {x ∈ R
d :x ≥ 0}. To ease notation throughout the paper,

all vectors are considered to be column vectors when used in mathematical expres-
sions, but will be written out as row vectors within paragraphs. Also, define c/0 to
be zero for any real constant c, and define a sum over an empty set of indices or of
the form

∑l
k=j with j > l to be zero.

For two functions f and g with the same domain, f ≡ g means f (x) = g(x)

for all x in the domain. For a bounded function f : R+ → R, let ‖f ‖∞ =
supx∈R+ |f (x)|. Let Cb(R+) be the set of continuous bounded functions f : R+ →
R, let C1(R+) be the set of once continuously differentiable functions f : R+ → R,
and let C1

b(R+) be the set of functions f in C1(R+) that together with the first
derivative f ′, are bounded on R+. If w ∈ C1

b(R+) is a function of time, its deriv-
ative will be denoted by ẇ. For a Polish (complete separable metric) space S, let
D([0,∞),S) be the space of right continuous functions from [0,∞) into S that
have left limits in S. Endow this space with the Skorohod J1-topology. For a fi-
nite nonnegative Borel measure ξ on R+ and a ξ -integrable function f : R+ → R,
define

〈f, ξ〉 =
∫

R+
f dξ.

If ξ = (ξ1, . . . , ξd) is a vector of such measures, then 〈f, ξ〉 is the vector
(〈f, ξ1〉, . . . , 〈f, ξd〉). All functions f : R+ → R are extended to be identically zero
on (−∞,0) so that f (·− x) is well defined on R+ for all x > 0. Let χ : R+ → R+
denote the identity function χ(x) = x for x ∈ R+.

Let M be the set of finite nonnegative Borel measures on R+, endowed with the
weak topology: ξk w−→ ξ in M if and only if 〈f, ξk〉 → 〈f, ξ〉 for all f ∈ Cb(R+).
This topology is induced by the following generalization of the Prohorov metric:
for ξ, ζ ∈ M define

d[ξ, ζ ] = inf{ε > 0 : ξ(B) ≤ ζ(Bε) + ε and
(1.1)

ζ(B) ≤ ξ(Bε) + ε for all nonempty closed B ⊂ R+},
where Bε = {x ∈ R+ : infy∈B |x − y| < ε}. It will be convenient to extend the
notion of uniform integrability for random variables (and their associated distri-
butions) to elements of M. Call a sequence {ξk} ⊂ M uniformly integrable, if
〈χ, ξk〉 < ∞ for all k and

lim
x→∞ sup

k

〈
χ1[x,∞), ξ

k 〉 = 0.
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It is easy to show that if {ξk} ⊂ M is uniformly integrable and ξk w−→ ξ , then
〈χ, ξ〉 < ∞ and 〈χ, ξk〉 → 〈χ, ξ〉.

For I ∈ N, let

MI = {(ξ1, . . . , ξI) : ξi ∈ M for all i ≤ I}
and for ξ, ζ ∈ MI, define

dI[ξ, ζ ] = max
i≤I

d[ξi, ζi].(1.2)

Equipped with the metric dI[·, ·], the space MI is Polish. Convergence of a se-
quence {ξk} to ξ in MI is also denoted ξk w−→ ξ . The zero measure in M is denoted
by 0.

The notation X ∼ Y means X and Y are equal in distribution, and Xn ⇒ X

means the sequence {Xn} converges in distribution to X. All continuous time sto-
chastic processes used in this work are assumed to have sample paths that are right
continuous with left limits.

2. Flow level model. This section defines the network structure, the band-
width sharing policy and the stochastic flow level model.

2.1. Network structure. Consider a network with finitely many resources la-
belled by j = 1, . . . ,J, and a finite set of routes labeled by i = 1, . . . , I. A route i

is a nonempty subset of {1, . . . ,J}, interpreted as the set of resources used by the
route. Let A be the J × I incidence matrix satisfying Aji = 1 if resource j is
used by route i, and Aji = 0 otherwise. Since each route is a nonempty subset of
{1, . . . ,J}, no column of A is identically zero.

A flow on route i is the continuous transfer of a document through the resources
used by the route. Assume that while being transferred, a flow takes simultaneous
possession of all resources on its route. The processing rate allocated to a flow is
the rate at which the associated document is being transferred. There may be mul-
tiple flows on a route, and the bandwidth �i allocated to route i is the sum of the
processing rates allocated to flows on route i. The bandwidth allocated through re-
source j is the sum of the bandwidths allocated to routes using resource j . Assume
that each resource j ≤ J has finite capacity Cj > 0, interpreted as the maximum
bandwidth that can be allocated through it. Let C = (C1, . . . ,CJ) be the vector
of capacities in R

J+. Then any vector � = (�1, . . . ,�I) of bandwidth allocations
must satisfy

A� ≤ C.
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2.2. Bandwidth sharing policy. We consider the network operating under
a policy that dynamically allocates bandwidth to routes as a function of the num-
ber of flows on all routes. The resulting allocation to each route is shared equally
among individual flows on that route.

Let Zi(t) denote the number of flows on route i ≤ I at time t , and let
Z(t) = (Z1(t), . . . ,ZI(t)) be the corresponding vector in R

I+. The bandwidth
allocated to route i at time t is a function of the vector Z(t) and is denoted
by �i(Z(t)). The corresponding vector of bandwidth allocations at time t is
�(Z(t)) = (�1(Z(t)), . . . ,�I(Z(t))). Although the coordinates of Z(·) are non-
negative and integer valued, we assume that the function � is defined on the entire
orthant R

I+ to accommodate fluid analogues of Z(·) later.

DEFINITION 2.1. A bandwidth sharing policy for the network (A,C) is a
function � : RI+ → R

I+ such that for each z ∈ R
I+:

(i) �i(z) > 0 for each i such that zi > 0,
(ii) �i(z) = 0 for each i such that zi = 0,

(iii) A�(z) ≤ C,
(iv) �(rz) = �(z) for each r > 0, and such that for each i ≤ I,
(v) �i(·) is continuous on {z ∈ R

I+ : zi > 0}.
Properties (i) and (ii) imply that routes with active flows may not idle, and that

no bandwidth is allocated to routes with no flows. Property (iii) is the basic feasi-
bility constraint, and property (iv) requires that bandwidth allocations are invari-
ant under scaling. Note that by property (iii), since each route uses at least one
resource, we have

sup
z∈R

I+
‖�(z)‖ ≤ ‖C‖.(2.1)

We assume further that the bandwidth �i(Z(t)) allocated to route i at time t is
shared equally by all flows on the route. That is, if there are Zi(t) > 0 flows on
route i at time t , then each flow is allocated a processing rate of �i(Z(t))/Zi(t) at
time t .

The following property of �(·) will be used later in this paper.

LEMMA 2.2. Let �(·) be a bandwidth sharing policy for the network (A,C).
For each ε,M ∈ (0,∞), there exists c > 0 such that for each i ≤ I,

�i(z) ≥ c on {z ∈ R
I+ : zi ≥ ε,‖z‖ ≤ M}.

PROOF. For each i ≤ I, the function �i(·) is continuous and strictly positive
on {z ∈ R

I+ : zi > 0} by Definition 2.1. So �(·) is bounded away from zero on the
compact subset {z ∈ R

I+ : zi ≥ ε,‖z‖ ≤ M}. �

An important class of bandwidth sharing policies satisfying Definition 2.1 is
described below.
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EXAMPLE. The following family of policies was introduced by Mo and Wal-
rand [19]. Fix a parameter α ∈ (0,∞) and a vector of strictly positive weights
κ = (κ1, . . . , κI). For z ∈ R

I+, let I0(z) = {i ≤ I : zi = 0} and I+(z) = {i ≤ I : zi >

0}. Let O(z) = {λ ∈ R
I+ :λi = 0 for all i ∈ I0(z)}. Define a function Gz : RI+ →

[−∞,∞) by

Gz(λ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑
i∈I+(z)

κiz
α
i

λ1−α
i

1 − α
, α ∈ (0,∞) \ {1},

∑
i∈I+(z)

κizi logλi, α = 1,
(2.2)

where the value of Gz(λ) is taken to be −∞ if α ∈ [1,∞) and λi = 0 for some
i ∈ I+(z), and Gz(λ) = 0 if I+(z) = ∅. For each z ∈ R

I+, define �(z) as the
unique vector λ ∈ R

I+ that solves the optimization problem:

maximize Gz(λ),(2.3)

subject to Aλ ≤ C,(2.4)

over O(z).(2.5)

The resulting allocation is called a weighted α-fair allocation, and the func-
tion � : RI+ → R

I+ is called a weighted α-fair bandwidth sharing policy. Note that
by (2.4) and (2.5), � satisfies properties (ii) and (iii) of Definition 2.1. Proper-
ties (i), (iv), and (v) hold for � by the proofs of Lemmas A.1–A.3 of [12]. (Al-
though it is assumed at the beginning of [12] that A has full row rank, scrutiny
of the proofs of Lemmas A.1–A.3 in [12] reveals that this assumption is not used
in verifying these properties.) When κi = 1 for all i ≤ I, the case α = 1 and the
limiting cases α → 0 and α → ∞ correspond, respectively, to a bandwidth alloca-
tion that is proportionally fair, achieves maximum throughput, or is max-min fair
[1, 19].

Some authors (see, e.g., Ye [22], Ye, Ou and Yuan [23], Key and Massoulié [13]
and Chiang, Shah and Tang [3]) have proposed more general objective functions
than Gz(·) for determining bandwidth allocations in the context of flow level mod-
els. Indeed, the optimization problem (2.3)–(2.5) can be replaced by an equivalent
one for the per flow bandwidth allocations xi = λi/zi for i ∈ I+(z), where Gz(λ)

given by (2.2) is replaced by ∑
i∈I+(z)

κiziU(xi)

and the utility function U is given by

U(x) =
⎧⎨
⎩

x1−α

1 − α
, α ∈ (0,∞) \ {1},

log(x), α = 1.
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When a more general strictly concave utility function U is used, properties
(ii) and (iii) are immediate from the form of the optimization problem, proper-
ties (i) and (v) will hold under suitable regularity conditions on U, and (as pointed
out by Chiang, Shah and Tang [3]), the critical scaling property (iv) will be sat-
isfied if U has the scaling property that U(rx) = g(r)U(x) for all r > 0, x > 0,
and some function g : (0,∞) → (0,∞). As Chiang, Shah and Tang [3] also indi-
cate, by seeking a scaling limit involving large capacities, one can relax this last
assumption. However, this involves allowing the network capacity C to grow with
the scaling limit and is a different limiting regime than the one considered here; the
present analysis is oriented toward a system with fixed network parameters A,C.

2.3. Stochastic model. Henceforth, we fix a network structure (A,C) and
a bandwidth sharing policy �. Our stochastic model of document flows con-
sists of the following: a collection of stochastic primitives E1, . . . ,EI and
{v1k}∞k=1, . . . , {vIk}∞k=1 describing the arrivals of document flows (including their
sizes) to the network, a random initial condition Z(0) ∈ MI specifying the state of
the system at time zero and a collection of performance processes describing the
time evolution of the system state. The performance processes are defined in terms
of the primitives and initial condition through a set of descriptive equations. The
random objects involved are defined on a common probability space (
,F ,P),
with expectation operator E.

The stochastic primitives consist of an exogenous arrival process Ei and a se-
quence of document sizes {vik}∞k=1 for each route i ≤ I. The arrival process Ei is
a counting process, that is, a nondecreasing, nonnegative integer valued process
starting from zero. For t ≥ 0, Ei(t) represents the number of flows that have ar-
rived to route i during the time interval (0, t]. The kth such arrival is called flow k

on route i and arrives at time Uik = inf{t ≥ 0 :Ei(t) ≥ k} (note that simultaneous
arrivals are allowed). Flows already on route i at time zero are called initial flows.

For each i ≤ I and k ≥ 1, the random variable vik represents the initial size of
the document associated with flow k on route i. This is the cumulative amount of
processing that must be allocated to the flow to complete its transfer through the
network. Assume that for each i ≤ I, the random variables {vik}∞k=1 are strictly pos-
itive and form a sequence of independent and identically distributed random vari-
ables with common distribution ϑi on R+. Assume that the mean 〈χ,ϑi〉 ∈ (0,∞)

and let μi = 〈χ,ϑi〉−1. We make no further assumptions about the relationship
between μi and Ei . The fluid approximation result stated in Section 4.3 below is
valid for both underloaded and overloaded systems.

It will be convenient to combine the collection of stochastic primitives into a
single, measure valued load process. For each x ∈ R+, let δx ∈ M denote the Dirac
point measure at x.
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DEFINITION 2.3. For i ≤ I, define the load process for route i by

Li (t) =
Ei(t)∑
k=1

δvik
, t ≥ 0.(2.6)

For t ≥ s ≥ 0, define the increment Li (s, t) = Li (t) − Li (s).

The process L = (L1, . . . ,LI) is a random element of the Skorohod space
D([0,∞),MI). Note that L(s, t) ∈ MI for all t ≥ s ≥ 0.

The initial condition specifies Z(0) = (Z1(0), . . . ,ZI(0)), the number of initial
flows on each route at time zero, as well as the initial sizes of the documents
associated to these flows. Assume that the components of Z(0) are nonnegative,
integer valued random variables. The initial document sizes of the initial flows on
route i ≤ I are the first Zi(0) elements of a sequence {ṽil}∞l=1 of strictly positive
random variables. A convenient way to express the initial condition is to define an
initial random vector of measures Z(0) ∈ MI with components

Zi (0) =
Zi(0)∑
l=1

δṽil
, i ≤ I.

Henceforth, Z(0) will be used as the initial condition for the network.
The performance processes consist of a measure valued process Z, taking val-

ues in D([0,∞),MI), and a collection of auxiliary processes (Z,T ,U,W). The
process Z = (Z1, . . . ,ZI) takes values in D([0,∞),R

I+). For i ≤ I and t ≥ 0,
Zi(t) is the number of (active) flows on route i at time t . Recall that at time t ,
the bandwidth allocated to route i is �i(Z(t)), and this bandwidth is shared
equally by all Zi(t) flows on route i; each such flow receives a processing rate
of �i(Z(t))/Zi(t), which equals zero by convention if Zi(t) = 0. Thus, a flow
that is active on route i during a time interval [s, t] ⊂ [0,∞) receives cumulative
service during [s, t] equal to

Si(s, t) =
∫ t

s

�i(Z(u))

Zi(u)
du.(2.7)

Consider flow k on route i. This flow arrives at time Uik and has initial docu-
ment size vik . At time t ≥ Uik , the cumulative service received by this flow dur-
ing [Uik, t] equals Si(Uik, t) ∧ vik . The amount of service still required therefore
equals (vik − Si(Uik, t))

+. (Once this latter quantity becomes zero, the flow be-
comes inactive, i.e., it departs from the system.) A similar description applies for
the initial flows on route i. For t ≥ 0, k ≤ Ei(t), and l ≤ Zi(0), define the residual
document size at time t of flow k on route i and initial flow l on route i, by

vik(t) = (
vik − Si(Uik, t)

)+ and ṽil(t) = (
ṽil − Si(0, t)

)+
,(2.8)

respectively.
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The measure valued process Z = (Z1, . . . ,ZI) is called the state descriptor; it
tracks the residual document sizes of flows on all routes at any given time. Let
δ+
x ∈ M denote the Dirac measure at x if x ∈ (0,∞), with δ+

0 = 0. For t ≥ 0 and
i ≤ I, define the finite Borel measure

Zi (t) =
Zi(0)∑
l=1

δ+
ṽil (t)

+
Ei(t)∑
k=1

δ+
vik(t)

.(2.9)

Note that at t = 0, this definition coincides with the definition of the initial con-
dition Z(0). Note also that by definition of the residual document sizes, the mea-
sure Zi(t) has a unit of mass only for flows on route i that have not yet completed
transfer. Thus, for all t ≥ 0 and i ≤ I,

Zi(t) = 〈1,Zi (t)〉.(2.10)

For t ≥ 0 and i ≤ I, define

Ti(t) =
∫ t

0
�i(Z(s)) ds.(2.11)

The process T takes values in D([0,∞),R
I+) and tracks the cumulative bandwidth

allocated to each route. For t ≥ 0, define

U(t) = Ct − AT (t).(2.12)

The process U takes values in D([0,∞),R
J+) and tracks the cumulative un-

used bandwidth capacity of each resource. Since A�(z) ≤ C for all z ∈ R
I+, the

process U is nondecreasing. For t ≥ 0, define

W(t) = 〈χ,Z(t)〉.(2.13)

Recall that χ(x) = x and that integration against the vector of measures Z(t)

is interpreted componentwise. The process W takes values in the path space
D([0,∞),R

I+). By (2.9), Wi(t) is the sum of all residual document sizes on route i

at time t . Thus, Wi(t) represents the immediate amount of work still to be trans-
ferred on route i at time t . It can be shown that

Wi(t) = Wi(0) + 〈χ,Li (t)〉 − Ti(t), i ≤ I, t ≥ 0.(2.14)

This equation describes the workload on route i at time t in terms of the cumulative
amount of work that arrives to and is processed on the route during [0, t].

3. Fluid model. In this section, we define a fluid analogue of the stochastic
model introduced in Section 2.3. The main goal of the paper is to establish, un-
der mild assumptions, that a sequence of fluid scaled stochastic state descriptors is
tight and that weak limit points are fluid model solutions (see Theorem 4.1 below).
Fix a vector of strictly positive constants ν = (ν1, . . . , νI) and a vector of proba-
bility measures ϑ = (ϑ1, . . . , ϑI) in MI, satisfying 〈χ,ϑi〉 < ∞ and 〈1{0}, ϑi〉 = 0
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for all i ≤ I. The constant νi , i ≤ I, will be the fluid analogue of mean arrival
rate to route i in the stochastic model (when that exists). Let μi = 〈χ,ϑi〉−1 and
ρi = νi/μi for each i ≤ I. We do not impose criticality assumptions on the con-
stants ρi ; they may take any value in (0,∞). The fluid model consists of a de-
terministic measure valued function of time, called the fluid model solution, and
a collection of auxiliary functions of time defined below.

DEFINITION 3.1. Given a continuous function ζ : [0,∞) → MI, define the
auxiliary functions (z, τ, u,w) of ζ , with respect to the data (A,C,�,ν,ϑ), by

z(t) = 〈1, ζ(t)〉,
τi(t) =

∫ t

0

(
�i(z(s))1(0,∞)(zi(s)) + ρi1{0}(zi(s))

)
ds, i ≤ I,

u(t) = Ct − Aτ(t),

w(t) = 〈χ, ζ(t)〉
for all t ≥ 0.

Here z(t) and τ(t) take values in R
I+ and u(t) will take values in R

J+. On the
other hand, w(t) takes values in [0,∞]I, as ζ(t) need not have a finite first moment
[see (ii) below].

A fluid model solution is now defined via projections against test functions in
the class

C = {f ∈ C1
b(R+) :f (0) = f ′(0) = 0}.

DEFINITION 3.2. A fluid model solution for the data (A,C,�,ν,ϑ) is
a continuous function ζ : [0,∞) → MI that, together with its auxiliary functions
(z, τ, u), satisfies:

(i) ‖〈1{0}, ζ(t)〉‖ = 0 for all t ≥ 0,
(ii) uj is nondecreasing for all j ≤ J,

(iii) for each f ∈ C, i ≤ I, and t ≥ 0,

〈f, ζi(t)〉 = 〈f, ζi(0)〉 −
∫ t

0
〈f ′, ζi(s)〉�i(z(s))

zi(s)
ds

(3.1)

+ νi〈f,ϑi〉
∫ t

0
1(0,∞)(zi(s)) ds.

Recall that in (3.1), the integrand in the first integral term is defined to be zero
when its denominator is zero.

In Definition 3.2, it is possible to extend property (iii) to the class of functions
{f ∈ C1

b(R+) :f (0) = 0}, yielding an equivalent definition. The more restrictive
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class C is used here to facilitate parts of the proof of Theorem 4.1 below. In partic-
ular, since f (0) = f ′(0) = 0 on C, a function in C can be extended to a function
in C1

b(R) by defining it to be identically zero on (−∞,0).
When the initial fluid workload is finite, we have the following result.

LEMMA 3.3. Suppose ζ is a fluid model solution with finite initial workload,
that is, wi(0) = 〈χ, ζi(0)〉 < ∞ for all i ≤ I. Then the fluid workload function w

associated with ζ satisfies the following for each i ≤ I and t ≥ 0:

wi(t) = wi(0) +
∫ t

0

(
ρi − �i(z(s))

)
1(0,∞)(zi(s)) ds

(3.2)
= wi(0) + ρit − τi(t).

In particular, the fluid workload wi(t) is finite for all t ≥ 0 and i ≤ I.

PROOF. To obtain the first equality in (3.2), approximate χ by a sequence of
functions {fn} ⊂ C such that 0 ≤ fn ↑ χ and 0 ≤ f ′

n ↑ 1(0,∞) as n → ∞, and
then use monotone convergence in (3.1), noting property (i) of Definition 3.2. The
second equality follows immediately from the definition of τi . �

REMARK. In fact, (3.2) holds also if 〈χ, ζi(0)〉 = ∞, but then 〈χ, ζi(t)〉 = ∞
for all t ≥ 0.

4. Sequence of systems and fluid limit theorem. Let R be a sequence of
positive real numbers increasing to infinity. Consider an R-indexed sequence of
stochastic models, each defined as in Section 2.3 for the same underlying network
structure (A,C) and bandwidth sharing policy �. For each r ∈ R, there are ar-
rival processes Er

1, . . . ,E
r
I with arrival times {Ur

ik}∞k=1, i ≤ I; there are document
sizes {vr

1k}∞k=1, . . . , {vr
Ik}∞k=1, with parameters ϑr and μr ; there is the correspond-

ing measure valued load process Lr ; there is an initial condition Zr (0); there is
a state descriptor Zr with auxiliary processes (Zr, T r ,Ur,Wr) and cumulative
service process Sr(·, ·). The stochastic elements of each model are defined on a
probability space (
r,F r ,Pr ) with expectation operator Er .

4.1. Scaling. A fluid scaling (or law of large numbers scaling) is applied to
each model in the R-indexed sequence. For each r ∈ R and t ≥ s ≥ 0, let

Ēr (t) = 1

r
Er(rt), S̄r (s, t) = Sr(rs, rt),

L̄r (t) = 1

r
Lr (rt), L̄r (s, t) = 1

r
Lr (rs, rt),

Z̄r (t) = 1

r
Zr (rt), Z̄r (t) = 1

r
Zr(rt),(4.1)
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T̄ r (t) = 1

r
T r(rt), Ū r (t) = 1

r
Ur(rt),

W̄ r(t) = 1

r
Wr(rt).

With these definitions, (2.10)–(2.14), and the scaling property of Definition 2.1(iv),
we have that for r ∈ R and t ≥ 0,

Z̄r (t) = 〈1, Z̄r (t)〉,(4.2)

T̄ r
i (t) =

∫ t

0
�i(Z̄

r(s)) ds, i ≤ I,(4.3)

Ū r (t) = Ct − AT̄ r(t),(4.4)

W̄ r(t) = 〈χ, Z̄r (t)〉,(4.5)

W̄ r(t) = W̄ r(0) + 〈χ, L̄r (t)〉 − T̄ r (t).(4.6)

Also, (2.7) and Definition 2.1(iv) imply that for r ∈ R and [s, t] ⊂ [0,∞),

S̄r
i (s, t) =

∫ t

s

�i(Z̄
r(u))

Z̄r
i (u)

du, i ≤ I.(4.7)

4.2. Asymptotic assumptions. In this section, we impose asymptotic assump-
tions on the R-indexed sequence of models. This is the setting in which our fluid
limit result, Theorem 4.1 below, is proved.

Let ν = (ν1, . . . , νI) be a vector of strictly positive constants and let ν(t) =
νt for all t ≥ 0. Let ϑ = (ϑ1, . . . , ϑI) be a vector of probability measures in MI

satisfying ∥∥〈
1{0}, ϑ

〉∥∥ = 0,(4.8)

‖〈χ,ϑ〉‖ < ∞.(4.9)

For i ≤ I, let μi = 〈χ,ϑi〉−1 and ρi = νi/μi . Define ρ(t) = ρt for all t ≥ 0. For
the sequence of arrival processes, assume that as r → ∞,

Ēr (·) ⇒ ν(·).(4.10)

Conditions under which the functional law of large numbers result (4.10) holds are
well known. For the sequence of document size distributions, assume that

ϑr w−→ ϑ as r → ∞,(4.11)

{ϑr
i : r ∈ R} is uniformly integrable for each i ≤ I.(4.12)

Note that (4.11) and (4.12) imply that

μr → μ as r → ∞.(4.13)
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For the sequence of fluid scaled initial conditions {Z̄r (0) : r ∈ R}, assume that
as r → ∞,

(Z̄r (0), 〈χ, Z̄r (0)〉) ⇒ (Z0, 〈χ,Z0〉),(4.14)

where Z0 is a random vector of measures (taking values in MI) satisfying

‖〈χ,Z0〉‖ < ∞ a.s.,(4.15)

lim
δ→0

P
(

sup
x∈R+

∥∥〈
1[x,x+δ],Z0〉∥∥ < ε

)
= 1 for all ε > 0.(4.16)

Assumption (4.15) means that the limiting initial workload on each route is finite
almost surely; (4.16) is equivalent to the assumption that almost surely, Z0

i has no
atoms for all i ≤ I (see [7], Lemma A.1).

4.3. Fluid limit theorem. The assumptions made so far are now summarized
for ease of reference.

There is a fixed network structure (A,C) and a bandwidth sharing policy �.
There is a sequence of stochastic models, each defined as in Section 2.3;
there exist a vector of strictly positive constants ν, a vector of probability
measures ϑ ∈ MI, and a random vector of measures Z0 taking values in MI

such that (4.8)–(4.16) hold.

(A)

The following is the main result of the paper.

THEOREM 4.1. Assume (A). The sequence {(Z̄r , Z̄r , T̄ r , Ū r , W̄ r)} is C-tight,
and each weak limit point (Z,Z,T ,U,W) is such that almost surely, Z is a fluid
model solution with auxiliary functions (Z,T ,U,W) for the data (A,C,�,ν,ϑ),
where W(t) is finite for all t ≥ 0.

5. Proof of Theorem 4.1. The proof has several stages. Section 5.1 contains a
functional law of large numbers result for the measure valued load processes {Lr}.
This result follows from the assumptions imposed on the stochastic primitives.
Section 5.2 derives two dynamic equations satisfied by the fluid scaled state de-
scriptors {Z̄r}, as well as several related bounds. Section 5.3 establishes a compact
containment property, and Sections 5.4 and 5.5 establish control of oscillations for
the state descriptors. These properties are combined in Section 5.6 to prove the
tightness claim of Theorem 4.1, and properties of weak limit points are derived in
Section 5.7. We assume (A) throughout this entire section.

The general strategy outlined above is similar to that in [7]. However, the model
studied here presents the additional complication of multiple routes that interact
with each other via the bandwidth sharing policy �. In particular, the numerator
in the first integral term of (3.1) is a function of the current state of the whole
system, as opposed to a constant as is the case in the analogous equation in [7].
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This requires additional care to carry out the analysis. A key difference in the
present proof is in verifying (at various stages along the way), that the assumptions
imposed by Definition 2.1 on the more general function � are sufficient to allow
the above strategy to go through. Furthermore, [7] focused only on a heavily loaded
single server queue and its critical fluid limit. Here, we have a network of resources
and there is no a priori assumption on the system load, that is, the traffic intensity
parameters ρi are unrestricted in (0,∞). This results in a more subtle fluid model
and limit proof (see Section 5.7) related to the treatment of times when fluid queue
lengths become zero.

5.1. Limit of the primitive load processes. Recall that ν(t) = νt , and ρ(t) = ρt

for all t ≥ 0.

THEOREM 5.1. As r → ∞,

(L̄r (·), 〈χ, L̄r (·)〉) ⇒ (ν(·)ϑ,ρ(·)).(5.1)

The proof of this theorem is a straightforward application of a functional law of
large numbers. For completeness, a proof is given in the Appendix.

5.2. Dynamic equations. Fix r ∈ R. For each route i ≤ I, a dynamic equation
satisfied by the component Z̄r

i (·) of the fluid scaled state descriptor is the start-
ing point for much of our subsequent analysis. The equation results, after some
simplification, from substituting the definition of the residual document sizes (2.8)
into (2.9). Almost surely, for all Borel measurable f : R+ → R, all i ≤ I, and all
t ≥ s ≥ 0,

〈f,Zr
i (t)〉 = 〈

f
(· − Sr

i (s, t)
)
,Zr

i (s)
〉 + Er

i (t)∑
k=Er

i (s)+1

f
(
vr
ik − Sr

i (U
r
ik, t)

)
.

Recall that f is always extended to be zero on (−∞,0) so that f (· − x) is well
defined on R+ for all x ≥ 0. Applying the fluid scaling (4.1) produces

〈f, Z̄r
i (t)〉 = 〈

f
(· − S̄r

i (s, t)
)
, Z̄r

i (s)
〉

(5.2)

+ 1

r

rĒr
i (t)∑

k=rĒr
i (s)+1

f
(
vr
ik − S̄r

i (U
r
ikr

−1, t)
)
.

This equation yields several estimates that will be used frequently. If f is nonneg-
ative and nondecreasing, then using the bound supx∈R+ f (· − x) ≤ f (·) in (5.2)
yields

〈f, Z̄r
i (t)〉 ≤ 〈

f
(· − S̄r

i (s, t)
)
, Z̄r

i (s)
〉 + 〈f, L̄r

i (s, t)〉
(5.3)

≤ 〈f, Z̄r
i (s)〉 + 〈f, L̄r

i (s, t)〉.
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If f is bounded, then (5.2) implies that

〈f, Z̄r
i (t)〉 ≤ 〈

f
(· − S̄r

i (s, t)
)
, Z̄r

i (s)
〉 + ‖f ‖∞〈1, L̄r

i (s, t)〉
(5.4)

≤ ‖f ‖∞〈1, Z̄r
i (s)〉 + ‖f ‖∞〈1, L̄r

i (s, t)〉.
By ignoring the sum in (5.2), we obtain for any nonnegative f that〈

f
(· − S̄r

i (s, t)
)
, Z̄r

i (s)
〉 ≤ 〈f, Z̄r

i (t)〉.(5.5)

An alternative dynamic equation to (5.2), that is satisfied by Z̄r
i (·) on certain

time intervals, will be used when passing to the limit as r → ∞. This equation
is a prelimit analogue of the (3.1) satisfied by fluid model solutions. It is derived
from (5.2) and is written in terms of projections against functions f in the more
restrictive class

Cc = {f ∈ C : f has compact support in R+}.(5.6)

Note that for f ∈ Cc, the derivative f ′ has compact support and ‖f ′‖∞ < ∞. The
proof of the following result appears in the Appendix.

LEMMA 5.2. Fix r ∈ R. Almost surely, for all i ≤ I, all f ∈ Cc, and all finite
time intervals [s, t] ⊂ [0,∞) satisfying infu∈[s,t] Z̄r

i (u) > 0, we have

〈f, Z̄r
i (t)〉 = 〈f, Z̄r

i (s)〉 −
∫ t

s
〈f ′, Z̄r

i (u)〉�i(Z̄
r(u))

Z̄r
i (u)

du

(5.7)
+ 〈f, L̄r

i (t)〉 − 〈f, L̄r
i (s)〉.

5.3. Compact containment. In this section, we establish the first of the two
main conditions used in proving tightness.

LEMMA 5.3. Let T > 0 and η > 0. There exists a compact set K ⊂ MI such
that

lim inf
r→∞ Pr(Z̄r (t) ∈ K for all t ∈ [0, T ]) ≥ 1 − η.

PROOF. By (4.15) and since ‖〈1,Z0〉‖ < ∞ almost surely, there exists an
M > 0 such that

P(‖〈1,Z0〉‖ ∨ ‖〈χ,Z0〉‖ ≥ M) ≤ η.(5.8)

Since ξ �→ 〈1, ξ〉 is a continuous R
I+-valued function on MI, assumption (4.14)

and the continuous mapping theorem imply that

(〈1, Z̄r (0)〉, 〈χ, Z̄r (0)) ⇒ (〈1,Z0〉, 〈χ,Z0〉) as r → ∞.(5.9)
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The set {(z,w) ∈ R
I+ × R

I+ :‖z‖ ∨ ‖w‖ < M} is open, so by (5.8), (5.9) and the
Portmanteau theorem,

lim inf
r→∞ Pr(‖〈1, Z̄r (0)〉‖ ∨ ‖〈χ, Z̄r (0)〉‖ < M

)
(5.10)

≥ P(‖〈1,Z0〉‖ ∨ ‖〈χ,Z0〉‖ < M) ≥ 1 − η.

For each r ∈ R, let 
r
1 be the event in the left-hand side of (5.10) and define


r
2 = {‖〈1, L̄r (T )〉‖ ∨ ‖〈χ, L̄r (T )〉‖ < K},

where K = (‖νT ‖ ∨ ‖ρT ‖) + 1. By Theorem 5.1,

(〈1, L̄r (T )〉, 〈χ, L̄r (T )) ⇒ (νT ,ρT ) as r → ∞.

So lim infr→∞ Pr (
r
2) = 1 by the choice of K . For each r ∈ R, let 
r

3 be a full
probability event on which the dynamic equation (5.2) holds. Then

lim inf
r→∞ Pr (
r

1 ∩ 
r
2 ∩ 
r

3) ≥ 1 − η.(5.11)

Let K be the closure in MI of the set {ξ ∈ MI :‖〈1, ξ〉‖ ∨ ‖〈χ, ξ〉‖ ≤ M + K}.
The set K is compact by [11], Theorem 15.7.5. Fix r ∈ R and an outcome ω ∈

r

1 ∩
r
2 ∩
r

3; assume for the rest of the proof that all random objects are evaluated
at this ω. Fix t ∈ [0, T ]; by (5.11), it suffices to show that Z̄r (t) ∈ K. The dynamic
equation bound (5.4) and the definition of 
r

1 ∩ 
r
2 ∩ 
r

3 imply that

max
i≤I

〈1, Z̄r
i (t)〉 ≤ max

i≤I
{〈1, Z̄r

i (0)〉 + 〈1, L̄r
i (t)〉}

≤ max
i≤I

{〈1, Z̄r
i (0)〉 + 〈1, L̄r

i (T )〉}(5.12)

≤ M + K.

Similarly, the dynamic equation bound (5.3) implies that

max
i≤I

〈χ, Z̄r
i (t)〉 ≤ max

i≤I
{〈χ, Z̄r

i (0)〉 + 〈χ, L̄r
i (t)〉}

≤ max
i≤I

{〈χ, Z̄r
i (0)〉 + 〈χ, L̄r

i (T )〉}(5.13)

≤ M + K.

Combining (5.12) and (5.13) with (5.11) completes the proof. �

5.4. Asymptotic regularity near zero. Over any finite time interval, with ar-
bitrarily high probability as r → ∞, the fluid scaled state descriptor Z̄r

i (·) for
route i puts arbitrarily small mass on a sufficiently small neighborhood of zero.
This is proved in the following lemma, and is a key ingredient for establishing an
oscillation property in the next section.
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LEMMA 5.4. Let T > 0. For each ε, η ∈ (0,1), there exists an a > 0 such that

lim inf
r→∞ Pr

(
sup

t∈[0,T ]
∥∥〈

1[0,a], Z̄r (t)
〉∥∥ ≤ ε

)
≥ 1 − η.(5.14)

PROOF. Fix ε, η ∈ (0,1). The proof consists of several steps. The first three
steps are concerned with defining four high probability events 
r

1,

r
2,


r
3,


r
4.

Steps four and five supply the desired bound (in two parts) on the intersection of
these events.

Step 1. By (4.16), there exists b > 0 such that

P
(

sup
n∈N

∥∥〈
1[(n−1)b,nb],Z0〉∥∥ <

ε

4

)
≥ 1 − η

2
.(5.15)

Let B = {ξ ∈ MI : supn∈N ‖〈1[(n−1)b,nb], ξ〉‖ < ε/4} and suppose that ξ ∈ B and

{ξk} ⊂ MI satisfy ξk w−→ ξ . Choose L ∈ N large enough so that ‖〈1[Lb,∞), ξ〉‖ <

ε/4. Since ξk
i

w−→ ξi for each i ≤ I, the Portmanteau theorem implies that

lim sup
k→∞

sup
n∈N

∥∥〈
1[(n−1)b,nb], ξk 〉∥∥

≤ lim sup
k→∞

(
max
n≤L

∥∥〈
1[(n−1)b,nb], ξk 〉∥∥ ∨ ∥∥〈

1[Lb,∞), ξ
k 〉∥∥)

≤ max
n≤L

∥∥〈
1[(n−1)b,nb], ξ

〉∥∥ ∨ ∥∥〈
1[Lb,∞), ξ

〉∥∥ <
ε

4
.

So ξk ∈ B for sufficiently large k, which implies that B ⊂ MI is open. We deduce
from (4.14) and the Portmanteau theorem that

lim inf
r→∞ Pr

(
sup

x∈R+

∥∥〈
1[x,x+b], Z̄r (0)

〉∥∥ <
ε

2

)

≥ lim inf
r→∞ Pr

(
sup
n∈N

∥∥〈
1[(n−1)b,nb], Z̄r (0)

〉∥∥ <
ε

4

)
(5.16)

≥ P
(

sup
n∈N

∥∥〈
1[(n−1)b,nb],Z0〉∥∥ <

ε

4

)
.

Combining (5.16) with (5.15) yields

lim inf
r→∞ Pr

(
sup

x∈R+

∥∥〈
1[x,x+b], Z̄r (0)

〉∥∥ <
ε

2

)
≥ 1 − η

2
.(5.17)

Let 
r
1 be the event in the left-hand side of (5.17).

Step 2. By Lemma 5.3, there exists a compact set K ⊂ MI such that

lim inf
r→∞ Pr(Z̄r (t) ∈ K for all t ∈ [0, T ]) ≥ 1 − η

2
.(5.18)
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Since K is compact, there exists M < ∞ such that

sup
ξ∈K

‖〈1, ξ〉‖ ≤ M.(5.19)

Let 
r
2 be the event in the left-hand side of (5.18).

Step 3. By Lemma 2.2, there exists c > 0 such that for each i ≤ I,

�i(z) ≥ c on {z ∈ R
I+ : zi ≥ ε/8,‖z‖ ≤ M}.(5.20)

Let δ = ε(12‖ν‖)−1 ∧ T and let a = δc(2M)−1 ∧ b. Choose N ∈ N large enough
so that

Na > a + T ‖C‖8

ε
.(5.21)

Let I0 = ∅ and, for each n ∈ N, define In = [(n − 1)a, na) and choose gn ∈
Cb(R+) satisfying 1In ≤ gn ≤ 1In−1∪In∪In+1 . Then since ϑ is a vector of proba-
bility measures,

max
i≤I

∞∑
n=1

〈gn,ϑi〉 ≤ max
i≤I

∞∑
n=1

〈1In−1∪In∪In+1, ϑi〉 ≤ 3.(5.22)

For notational convenience, let g0 ≡ 1. For each n ∈ N ∪ {0}, the R
I+-valued map

ξ �→ 〈gn, ξ〉 is continuous on MI. So for each such n, Theorem 5.1 and the contin-
uous mapping theorem yield

〈gn, L̄
r (·)〉 ⇒ ν(·)〈gn,ϑ〉 as r → ∞.(5.23)

The limit in (5.23) is a deterministic and continuous function taking values in R
I+.

So, the convergence is uniform on compact time intervals in probability, and occurs
jointly for all n = 0, . . . ,N . Therefore,

lim inf
r→∞ Pr

(
max

n=0,...,N
sup

t∈[0,T ]
‖〈gn, L̄

r (t)〉 − νt〈gn,ϑ〉‖ ≤ ε

8N

)
= 1.(5.24)

Let 
r
3 be the event in (5.24) and let 
r

4 be a full probability event on which (5.2)
holds. Define 
r

0 = 
r
1 ∩ 
r

2 ∩ 
r
3 ∩ 
r

4. By (5.17), (5.18) and (5.24),

lim inf
r→∞ Pr (
r

0) ≥ 1 − η.

Thus, setting 
r∗ equal to the event in (5.14), it suffices to show that 
r
0 ⊂ 
r∗ for

each r ∈ R. To this end, fix r ∈ R, ω ∈ 
r
0, t ∈ [0, T ], and i ≤ I; assume for the

rest of the proof that all random objects are evaluated at this ω. It suffices to show
that 〈

1[0,a], Z̄r
i (t)

〉 ≤ ε.(5.25)

Step 4. Define the random time

τ = sup
{
s ≤ t : Z̄r

i (s) ≤ ε

8

}
,(5.26)
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where sup ∅ = 0. We first show that

sup
x∈R+

〈
1[0,a](· − x), Z̄r

i (τ )
〉 ≤ ε

2
.(5.27)

If τ = 0, this follows from the definition of 
r
1, since a ≤ b. If τ > 0, then the

definition of τ implies the existence of τ̃ ∈ [(τ − δ)+, τ ] such that 〈1, Z̄r
i (τ̃ )〉 =

Z̄r
i (τ̃ ) ≤ ε/8. By the dynamic equation bound (5.4) and the definition of τ̃ ,

sup
x∈R+

〈
1[0,a](· − x), Z̄r

i (τ )
〉 ≤ 〈1, Z̄r

i (τ̃ )〉 + 〈1, L̄r
i (τ̃ , τ )〉

≤ ε

8
+ 〈1, L̄r

i (τ )〉 − 〈1, L̄r
i (τ̃ )〉.

Applying the definition of 
r
3 and noting that g0 ≡ 1, we obtain

sup
x∈R+

〈
1[0,a](· − x), Z̄r

i (τ )
〉 ≤ ε

8
+ νi(τ − τ̃ )〈1, ϑi〉 + ε

4N
≤ ε

8
+ δ‖ν‖ + ε

4
,

which implies (5.27) by the choice of δ.
Step 5. Note that if τ = t , then (5.25) follows directly from (5.27); so assume

that t > τ . For all s ∈ (τ, t], Z̄r
i (s) > ε/8 and ‖Z̄r (s)‖ ≤ M by (5.19) and the

definition of 
r
2. So, (5.20) implies that

inf
s∈(τ,t]�i(Z̄

r(s)) ≥ c.(5.28)

Using (5.2) and (5.27),〈
1[0,a], Z̄r

i (t)
〉 = 〈

1[0,a]
(· − S̄r

i (τ, t)
)
, Z̄r

i (τ )
〉

+ 1

r

rĒr
i (t)∑

k=rĒr
i (τ )+1

1[0,a]
(
vr
ik − S̄r

i (U
r
ikr

−1, t)
)

(5.29)

≤ ε

2
+

∞∑
n=1

1

r

rĒr
i (t)∑

k=rĒr
i (τ )+1

1In(v
r
ik)1[0,a]

(
vr
ik − S̄r

i (U
r
ikr

−1, t)
)
.

Consider a flow k such that Ur
ikr

−1 ∈ (τ, t] and vr
ik ∈ In for n > N . Then vr

ik ≥
Na > a + T ‖C‖8ε−1. Since Z̄r

i (s) > ε/8 for s ∈ (τ, t],

S̄r
i (U

r
ikr

−1, t) =
∫ t

Ur
ikr

−1

�i(Z̄
r(s))

Z̄r
i (s)

ds ≤ T ‖C‖8

ε
.

Thus, (vr
ik − S̄r

i (U
r
ikr

−1, t)) > a and so 1[0,a](vr
ik − S̄r

i (U
r
ikr

−1, t)) = 0. We deduce
from (5.29) that

〈
1[0,a], Z̄r

i (t)
〉 ≤ ε

2
+

N∑
n=1

1

r

rĒr
i (t)∑

k=rĒr
i (τ )+1

1In(v
r
ik)1[0,a]

(
vr
ik − S̄r

i (U
r
ikr

−1, t)
)
.(5.30)
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Consider two flows k < l satisfying Ur
ikr

−1,Ur
ilr

−1 ∈ (τ, t] and vr
ik, v

r
il ∈ In for

some n = 1, . . . ,N . If Ur
ilr

−1 − Ur
ikr

−1 ≥ δ, then by the definition of 
r
2, (5.19),

(5.28) and the definition of a,

S̄r
i (U

r
ikr

−1, t) − S̄r
i (U

r
ilr

−1, t) =
∫ Ur

ilr
−1

Ur
ikr

−1

�i(Z̄
r(s))

Z̄r
i (s)

ds

≥ (Ur
ilr

−1 − Ur
ikr

−1)
c

M

≥ δc

M
≥ 2a.

Consequently,(
vr
il − S̄r

i (U
r
ilr

−1, t)
) − (

vr
ik − S̄r

i (U
r
ikr

−1, t)
) ≥ 2a + vr

il − vr
ik > 2a − a = a

and so at most one of

1[0,a]
(
vr
ik − S̄r

i (U
r
ikr

−1, t)
)

and 1[0,a]
(
vr
il − S̄r

i (U
r
ilr

−1, t)
)

is nonzero. This implies that flows arriving to route i during (τ, t] with document
sizes in In and residual document sizes at time t in [0, a] must all arrive during
some time interval of length less than δ. That is, for each n = 1, . . . ,N , there exists
an interval (sn, sn + δn] ⊂ (τ, t], with δn < δ, such that Ur

ikr
−1 ∈ (τ, t], vr

ik ∈ In,
and vr

ik − S̄r
i (U

r
ikr

−1, t) ∈ [0, a], implies Ur
ikr

−1 ∈ (sn, sn + δn]. Combining this
fact with (5.30) yields

〈
1[0,a], Z̄r

i (t)
〉 ≤ ε

2
+

N∑
n=1

sup
s∈[0,T −δ]

1

r

rĒr
i (s+δ)∑

k=rĒr
i (s)+1

1In(v
r
ik).

Bound 1In by gn and rewrite the above to obtain

〈
1[0,a], Z̄r

i (t)
〉 ≤ ε

2
+

N∑
n=1

sup
s∈[0,T −δ]

(〈gn, L̄
r
i (s + δ)〉 − 〈gn, L̄

r
i (s)〉

)
.

Applying the definition of 
r
3 and (5.22), we obtain

〈
1[0,a], Z̄r

i (t)
〉 ≤ ε

2
+

N∑
n=1

(
νiδ〈gn,ϑi〉 + ε

4N

)
≤ 3ε

4
+ δ3‖ν‖.

By the choice of δ, the right-hand side is bounded above by ε. �

5.5. Oscillations. This section contains an oscillation bound used in proving
tightness.
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DEFINITION 5.5. Let T > 0 and δ ∈ [0, T ]. For each ζ(·) ∈ D([0,∞),MI),
define a modulus of continuity on [0, T ] by

wT (ζ(·), δ) = sup
s,t∈[0,T ]
|t−s|<δ

dI[ζ(s), ζ(t)].(5.31)

LEMMA 5.6. Let T > 0. For all ε, η ∈ (0,1), there exists δ > 0 such that

lim inf
r→∞ Pr(wT (Z̄r (·), δ) ≤ ε

) ≥ 1 − η.(5.32)

PROOF. Fix ε, η ∈ (0,1). By Lemma 5.4, with ε/2 in place of ε, there exists
a > 0 such that

lim inf
r→∞ Pr

(
sup

t∈[0,T ]
∥∥〈

1[0,a], Z̄r (t)
〉∥∥ ≤ ε

2

)
≥ 1 − η.(5.33)

Let 
r
1 be the event in (5.33) and let δ = min{ε(ε ∧ a)(4‖C‖)−1, ε(4‖ν‖)−1}.

Since ξ �→ 〈1, ξ〉 is continuous on MI, Theorem 5.1 implies that 〈1, L̄r (·)〉 ⇒ ν(·)
as r → ∞. Thus,

lim inf
r→∞ Pr

(
sup

t∈[0,T ]
‖〈1, L̄r (t)〉 − νt‖ ≤ ε

8

)
= 1.(5.34)

Let 
r
2 be the event in (5.34) and let 
r

3 be a full probability event on which (5.2)
holds. By (5.33) and (5.34),

lim inf
r→∞ Pr (
r

1 ∩ 
r
2 ∩ 
r

3) ≥ 1 − η.(5.35)

Fix r ∈ R and an outcome ω ∈ 
r
1 ∩
r

2 ∩
r
3; assume for the rest of the proof that

all random objects are evaluated at this ω. Fix i ≤ I and s, t ∈ [0, T ] with s ≤ t and
t − s < δ. By (5.35), Definition 5.5 and (1.2) it suffices to show that

d[Z̄r
i (s), Z̄

r
i (t)] ≤ ε.

Let B ⊂ R+ be closed. By (1.1), it suffices to show the two inequalities,

〈1B, Z̄r
i (s)〉 ≤ 〈1Bε , Z̄r

i (t)〉 + ε,(5.36)

〈1B, Z̄r
i (t)〉 ≤ 〈1Bε , Z̄r

i (s)〉 + ε.(5.37)

To show (5.36), use the definition of 
r
1 to write

〈1B, Z̄r
i (s)〉 ≤ 〈

1[0,a], Z̄r
i (s)

〉 + 〈
1B∩(a,∞), Z̄

r
i (s)

〉
(5.38)

≤ ε

2
+ 〈

1B∩(a,∞), Z̄
r
i (s)

〉
.

Let I = {u ∈ [s, t] : Z̄r
i (u) < ε/2}. Suppose that I = ∅. Then Z̄r

i (u) ≥ ε/2 for all
u ∈ [s, t]. So, by (2.1) and the definition of δ,

S̄r
i (s, t) =

∫ t

s

�i(Z̄
r (u))

Z̄r
i (u)

du ≤ δ
2‖C‖

ε
≤ ε ∧ a

2
< ε ∧ a.(5.39)
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Consequently, x ∈ B ∩ (a,∞) implies x − S̄r
i (s, t) ∈ Bε , and so

B ∩ (a,∞) ⊂ Bε + S̄r
i (s, t).

We deduce from (5.38) that

〈1B, Z̄r
i (s)〉 ≤ ε

2
+ 〈

1Bε+S̄r
i (s,t), Z̄

r
i (s)

〉 = ε

2
+ 〈

1Bε

(· − S̄r
i (s, t)

)
, Z̄r

i (s)
〉
.

Apply the dynamic equation bound (5.5) to obtain

〈1B, Z̄r
i (s)〉 ≤ ε

2
+ 〈1Bε , Z̄r

i (t)〉.(5.40)

Now, suppose I �= ∅ and let τ = inf I . Then by right continuity of Z̄r
i (·),

Z̄r
i (τ ) ≤ ε

2
.(5.41)

Since Z̄r
i (u) ≥ ε/2 for all u ∈ [s, τ ),

S̄r
i (s, τ ) =

∫ τ

s

�i(Z̄
r(u))

Z̄r
i (u)

du ≤ δ
2‖C‖

ε
≤ a.(5.42)

By (5.38) and (5.42),

〈1B, Z̄r
i (s)〉 ≤ ε

2
+ 〈

1(a,∞), Z̄
r
i (s)

〉
≤ ε

2
+ 〈

1[S̄r
i (s,τ ),∞), Z̄

r
i (s)

〉
= ε

2
+ 〈

1[0,∞)

(· − S̄r
i (s, τ )

)
, Z̄r

i (s)
〉
.

Apply the dynamic equation bound (5.5) to obtain

〈1B, Z̄r
i (s)〉 ≤ ε

2
+ 〈1, Z̄r

i (τ )〉 ≤ ε.(5.43)

So (5.36) follows because either (5.40) or (5.43) holds.
To show (5.37), note that by definition of 
r

2 and δ,

〈1, L̄r
i (s, t)〉 = 〈1, L̄r

i (t)〉 − 〈1, L̄r
i (s)〉 ≤ νi(t − s) + ε

4
≤ ‖ν‖δ + ε

4
≤ ε

2
.(5.44)

By the first inequality in (5.4) and (5.44),

〈1B, Z̄r
i (t)〉 ≤ 〈

1B

(· − S̄r
i (s, t)

)
, Z̄r

i (s)
〉 + 〈1, L̄r

i (s, t)〉
(5.45)

≤ 〈
1B+S̄r

i (s,t), Z̄
r
i (s)

〉 + ε

2
.

If I = ∅, then (5.39) implies that B + S̄r
i (s, t) ⊂ Bε . So, (5.45) yields

〈1B, Z̄r
i (t)〉 ≤ 〈1Bε , Z̄r

i (s)〉 + ε

2
.

If I �= ∅, then by (5.4), (5.41) and (5.44),

〈1B, Z̄r
i (t)〉 ≤ 〈1, Z̄r

i (τ )〉 + 〈1, L̄r
i (τ, t)〉 ≤ 〈1, Z̄r

i (τ )〉 + 〈1, L̄r
i (s, t)〉 ≤ ε.

In both cases, (5.37) holds. �
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5.6. Tightness. This section combines the work of Sections 5.1–5.5 to prove
the tightness claim of Theorem 4.1.

THEOREM 5.7. The sequence {(Z̄r , Z̄r , T̄ r , Ū r , W̄ r )} is C-tight.

PROOF. For each T > 0 and δ ∈ [0, T ], let w′
T (·, δ) be the modulus of conti-

nuity on D([0,∞),MI) used in Corollary 3.7.4 of [6]. By Definition 5.5,

w′
T (ζ(·), δ) ≤ wT +δ(ζ(·),2δ)

for all ζ(·) ∈ D([0,∞),MI). So by Lemmas 5.3 and 5.6, the measure valued state
descriptors {Z̄r} satisfy the compact containment and oscillation conditions of
Corollary 3.7.4 in [6]. Thus, {Z̄r} is tight. Moreover, Definition 5.5 and Lemma 5.6
also imply that any weak limit point Z (obtained as a limit in distribution along
a subsequence of {Z̄r}) is continuous almost surely. Since Z̄r (·) = 〈1, Z̄r (·)〉 and
ξ �→ 〈1, ξ〉 is continuous on MI, it follows that {(Z̄r , Z̄r )} is C-tight.

By (4.3) and (2.1), T̄ r (·) is almost surely Lipschitz continuous with Lipschitz
constant ‖C‖. Since this holds uniformly in r , the sequence {T̄ r} is tight and any
weak limit point T is almost surely Lipschitz continuous with Lipschitz constant
‖C‖. By (4.4), C-tightness of {T̄ r} implies C-tightness of {Ū r}.

As r → ∞, W̄ r(0) ⇒ 〈χ,Z0〉 by (4.14), and 〈χ, L̄r (·)〉 ⇒ ρ(·) by Theo-
rem 5.1. So (4.6) and C-tightness of {T̄ r} imply C-tightness of {W̄ r}. It follows
that {(Z̄r , Z̄r , T̄ r , Ū r , W̄ r )} is C-tight. �

5.7. Weak limits as fluid model solutions. Let (Z,Z,T ,U,W) be a weak limit
of the sequence {(Z̄r , Z̄r , T̄ r , Ū r , W̄ r)}, and let {q} ⊂ R be a subsequence such
that

(Z̄q, Z̄q, T̄ q, Ū q, W̄ q) ⇒ (Z,Z,T ,U,W) as q → ∞.

Note that since W̄ q(0) = 〈χ, Z̄q(0)〉 for all q , assumption (4.14) implies that
(Z(0),W(0)) ∼ (Z0, 〈χ,Z0〉) and so W(0) ∼ 〈χ,Z(0)〉. By Theorem 5.1,
(L̄q(·), 〈χ, L̄q(·)〉 ⇒ (ν(·)ϑ,ρ(·)) as q → ∞. Using the Skorohod representation
theorem, we may assume without loss of generality for the rest of this subsection
that (Z,Z,T ,U,W) and {(Z̄q, Z̄q, T̄ q, Ū q, W̄ q, L̄q, 〈χ, L̄q〉)} are defined on a
common probability space (
,F ,P) such that, almost surely, W(0) = 〈χ,Z(0)〉,
and as q → ∞,

(Z̄q, Z̄q, T̄ q, Ū q, W̄ q, L̄q, 〈χ, L̄q(·)〉) → (Z,Z,T ,U,W,ν(·)ϑ,ρ(·)),(5.46)

uniformly on compact time intervals. Let 
1 be the event of probability one on
which W(0) = 〈χ,Z(0)〉 and (5.46) holds. For each q , let 


q
2 be an event of

probability one [cf. (5.2) and Lemma 5.2] on which (5.2) holds, and on which
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for all i ≤ I, all f ∈ Cc, and all finite time intervals [s, t] ⊂ [0,∞) satisfying
infu∈[s,t] Z̄q

i (u) > 0,

〈f, Z̄
q
i (t)〉 = 〈f, Z̄

q
i (s)〉 −

∫ t

s
〈f ′, Z̄q

i (u)〉�i(Z̄
q(u))

Z̄
q
i (u)

du

(5.47)
+ 〈f, L̄

q
i (t)〉 − 〈f, L̄

q
i (s)〉.

Then 
2 = ⋂
q 


q
2 also has probability one. Define 
0 = 
1 ∩ 
2.

Lemma 5.8 and Theorem 5.9 below establish that almost surely, Z is a fluid
model solution with auxiliary functions (Z,T ,U,W) for the data (A,C,�,ν,ϑ),
where W(t) is finite for all t ≥ 0.

First, recall that for a function x : [0,∞) → R, a regular point for x is a value of
t ∈ (0,∞) at which x is differentiable. If x is absolutely continuous, then almost
every t ∈ (0,∞) is a regular point for x, and

x(t) = x(0) +
∫ t

0
ẋ(s) ds, t ≥ 0,

where ẋ is equal to the derivative of x whenever x is differentiable, and ẋ is equal
to zero otherwise. A uniformly Lipschitz continuous function x : [0,∞) → R is
absolutely continuous.

LEMMA 5.8. Almost surely, for all t ≥ 0, the limit (Z,Z,T ,U,W) satisfies:

(i) ‖〈1{0},Z(t)〉‖ = 0,
(ii) Z(t) = 〈1,Z(t)〉,

(iii) U(t) = Ct − AT (t),
(iv) W(t) = W(0) + ρt − T (t),
(v) W(t) = 〈χ,Z(t)〉,

(vi) W is uniformly Lipschitz continuous with Lipschitz constant ‖ρ‖ + ‖C‖,
(vii) for all i ≤ I,

Ti(t) =
∫ t

0

(
�i(Z(s))1(0,∞)(Zi(s)) + ρi1{0}(Zi(s))

)
ds,

(viii) Uj is nondecreasing for all j ≤ J.

PROOF. Let T > 0. It suffices to show (i) for all t ∈ [0, T ). By Lemma 5.4,
there exists a sequence {an :n ∈ N} of positive real numbers such that, for each
fixed n,

lim inf
q→∞ P

(
sup

t∈[0,T )

∥∥〈
1[0,an), Z̄

q(t)
〉∥∥ ≤ 1

n

)
≥ 1 − 1

n2 .(5.48)

For each n ∈ N, let An = {ξ ∈ MI :‖〈1[0,an), ξ〉‖ ≤ 1/n}, and suppose that {ξk} ⊂
An satisfies ξk w−→ ξ as k → ∞. By the Portmanteau theorem,∥∥〈

1[0,an), ξ
〉∥∥ ≤ lim sup

k→∞
∥∥〈

1[0,an), ξ
k 〉∥∥ ≤ 1

n
.
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So ξ ∈ An, which implies that An ⊂ MI is closed for each n. By definition of the
Skorohod topology, the set

Bn = {ζ(·) ∈ D([0,∞),MI) : ζ(t) ∈ An for all t ∈ [0, T )}
is closed in D([0,∞),MI) for each n. Thus, since Z̄q ⇒ Z, (5.48) and the Port-
manteau theorem imply that

P(Z ∈ Bn) ≥ lim inf
q→∞ P(Z̄q ∈ Bn) ≥ 1 − 1

n2 .(5.49)

We deduce from (5.49) and the Borel–Cantelli lemma that

P
(

sup
t∈[0,T )

∥∥〈
1{0},Z(t)

〉∥∥ = 0
)

≥ P

( ∞⋃
k=1

∞⋂
n=k

{Z ∈ Bn}
)

= 1,

which proves (i).
Fix an outcome ω ∈ 
0 and assume for the rest of the proof that all ran-

dom objects are evaluated at this ω. Property (ii) follows from (4.2) and (5.46).
Property (iii) follows from (4.4) and (5.46), and property (iv) follows from (4.6)
and (5.46).

To prove (v), fix t ≥ 0 and i ≤ I. Since W̄
q
i (t) = 〈χ, Z̄

q
i (t)〉 for all q , and

since W̄
q
i (t) → Wi(t) as q → ∞ by (5.46), it suffices to show that 〈χ, Z̄

q
i (t)〉 →

〈χ,Zi(t)〉 as q → ∞. Since Z̄
q
i (t)

w−→ Zi (t) as q → ∞, it suffices to show that
the q-indexed sequence of measures {Z̄q

i (t)} is uniformly integrable. To this end,

note that if a sequence {ξq} ⊂ M satisfies ξq w−→ ξ and 〈χ, ξq〉 → 〈χ, ξ〉 < ∞,
then {ξq} is uniformly integrable. Thus, {Z̄q

i (0)} is uniformly integrable by the
definition of 
1 and (5.46), and {L̄q

i (t)} is uniformly integrable by (5.46). We
conclude from the dynamic equation bound (5.3) that, for each x > 0,

sup
q

〈
χ1[x,∞), Z̄

q
i (t)

〉 ≤ sup
q

(〈
χ1[x,∞), Z̄

q
i (0)

〉 + 〈
χ1[x,∞), L̄

q
i (t)

〉)
.

So uniform integrability of {Z̄q
i (t)} follows from uniform integrability of {Z̄q

i (0)}
and {L̄q

i (t)}.
To prove (vi), recall from the proof of Theorem 5.7 that T is uniformly Lipschitz

continuous with Lipschitz constant ‖C‖. So, (vi) follows from (iv).
To prove (vii), fix i ≤ I. Since Wi and Ti are uniformly Lipschitz continuous,

they are both absolutely continuous. Let t > 0 be a regular point for both Wi and Ti .
Then Ẇi(t) = ρi − Ṫi(t) by (iv). If Zi(t) = 0, then Wi(t) = 0 by (v). Since Wi is
a nonnegative function, this implies that Ẇi(t) = 0 and so Ṫi(t) = ρi . Alterna-
tively, suppose that Zi(t) > 0. By (ii), continuity of Zi implies continuity of Zi .
So Zi(s) > 0 for all s ∈ [t, t + h] and all sufficiently small h > 0. In this case,
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(5.46), (4.3), continuity of �i on {z ∈ R
I+ : zi > 0}, (2.1), and the bounded conver-

gence theorem, imply that

Ti(t + h) − Ti(t) = lim
q→∞

(
T̄

q
i (t + h) − T̄

q
i (t)

)

= lim
q→∞

∫ t+h

t
�i(Z̄

q(s)) ds(5.50)

=
∫ t+h

t
�i(Z(s)) ds.

Since �i(Z(·)) is continuous at t for Zi(t) > 0, it follows that

Ṫi(t) =
{

�i(Z(t)), if Zi(t) > 0,
ρi, if Zi(t) = 0.

(5.51)

Since almost every t > 0 is a regular point for Wi and Ti , (5.51) implies (vii).
Property (viii) follows because Ū

q
j is nondecreasing for each q and j ≤ J, and

because Ūq → U uniformly on compact time intervals by (5.46). �

The next result establishes the family of dynamic equations satisfied by the limit
in (5.46).

THEOREM 5.9. Almost surely, for all i ≤ I, f ∈ C, and t ≥ 0,

〈f,Zi (t)〉 = 〈f,Zi (0)〉 −
∫ t

0
〈f ′,Zi(s)〉�i(Z(s))

Zi(s)
ds

(5.52)

+ νi〈f,ϑi〉
∫ t

0
1(0,∞)(Zi(s)) ds.

Recall that the first integrand above is defined to be zero when Zi(s) = 0.

PROOF OF THEOREM 5.9. All random objects in this proof are evaluated at
a fixed outcome ω ∈ 
0 such that (5.2), (5.46), (5.47) and the properties listed in
Lemma 5.8 hold. The theorem will be proved first for f ∈ Cc, and an extension to
C is made at the end. Recall that for f ∈ Cc, the derivative f ′ has compact support
and ‖f ′‖∞ < ∞. Note also that since f (0) = f ′(0) = 0, there exists a constant
Cf < ∞ such that |f (x)| ≤ Cf x for all x ∈ R+. Therefore,

|〈f,Zi (t)〉| ≤ Cf 〈χ,Zi(t)〉 = Cf Wi(t) for all t ≥ 0.(5.53)

The following preliminary result is used several times in this proof.
For each fixed f ∈ Cc, each i ≤ I and each interval [s, t] ⊂ R+ satisfying

infu∈[s,t] Zi(u) > 0, we have

〈f,Zi (t)〉 = 〈f,Zi (s)〉 −
∫ t

s
〈f ′,Zi(u)〉�i(Z(u))

Zi(u)
du + νi(t − s)〈f,ϑi〉.(5.54)
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To see this, fix an f , i and interval [s, t] satisfying the assumption. By (5.46) and
Lemma 5.8 (ii), Z̄

q
i (·) → Zi(·) as q → ∞, uniformly on compact time intervals.

Thus,

lim inf
q→∞ inf

u∈[s,t] Z̄
q
i (u) > 0.(5.55)

By definition of 
2, this implies that (5.47) holds for all sufficiently large q . Let
q → ∞ in (5.47). Note that f and f ′ are elements of Cb(R+), and that �i is
continuous on {z ∈ R

I+ : zi > 0} (see Definition 2.1). Thus, (5.46) and (5.55) im-
ply that for all q sufficiently large, the integrands in the second right-hand term
of (5.47) are uniformly bounded on [s, t] and converge pointwise on [s, t] to
〈f ′,Zi(·)〉�i(Z(·))

Zi(·) . Apply bounded convergence to this term and apply (5.46) to
the remaining terms in (5.47) to obtain (5.54).

We now proceed with the proof of the theorem. Fix f ∈ Cc, i ≤ I, and an interval
[s, t] ⊂ R+ with t > s. Define

τ0 = inf{u ∈ [s, t] :Zi(u) = 0},(5.56)

where the infimum of the empty set is defined to be t . If τ0 > s, then
infu∈[s,τ ] Zi(u) > 0 for all intervals [s, τ ] ⊂ [s, τ0). So, for each such τ , (5.54)
with τ in place of t implies that

|〈f,Zi (τ )〉 − 〈f,Zi (s)〉| ≤ (τ − s)‖f ′‖∞‖C‖ + (τ − s)νi‖f ‖∞.(5.57)

Since both sides of (5.57) are continuous in τ , letting τ ↑ τ0 yields

|〈f,Zi (τ0)〉 − 〈f,Zi (s)〉| ≤ (τ0 − s)‖f ′‖∞‖C‖ + (τ0 − s)νi‖f ‖∞.(5.58)

Note that if τ0 = s, then (5.58) holds trivially. If τ0 < t , then Zi(τ0) = 0 by conti-
nuity of Zi , and so 〈f,Zi(τ0)〉 = Wi(τ0) = 0. Then by (5.53) and property (vi) of
Lemma 5.8,

|〈f,Zi (t)〉 − 〈f,Zi(τ0)〉| = |〈f,Zi (t)〉| ≤ Cf Wi(t)

= Cf |Wi(t) − Wi(τ0)|(5.59)

≤ Cf (‖ρ‖ + ‖C‖)(t − τ0).

If τ0 = t , then (5.59) holds trivially. Combining (5.58) and (5.59) yields

|〈f,Zi (t)〉 − 〈f,Zi (s)〉| ≤ |〈f,Zi (t)〉 − 〈f,Zi (τ0)〉|
+ |〈f,Zi (τ0)〉 − 〈f,Zi (s)〉|

≤ Cf (‖ρ‖ + ‖C‖)(t − τ0)

+ (‖f ′‖∞‖C‖ + νi‖f ‖∞)(τ0 − s)

≤ Kf (t − s),
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where

Kf = Cf (‖ρ‖ + ‖C‖) + ‖f ′‖∞‖C‖ + νi‖f ‖∞.

Since s ≤ t were arbitrary, it follows that 〈f,Zi (·)〉 is uniformly Lipschitz con-
tinuous and is therefore absolutely continuous on R+. Suppose t > 0 is a regular
point for both 〈f,Zi (·)〉 and Wi(·). If Zi(t) > 0, then by (5.54) (with [t, t + h] in
place of [s, t]), and continuity of �i on {z ∈ R

I+ : zi > 0} (see Definition 2.1),

lim
h→0

〈f,Zi (t + h)〉 − 〈f,Zi (t)〉
h

= −〈f ′,Zi(t)〉�i(Z(t))

Zi(t)
+ νi〈f,ϑi〉.(5.60)

If Zi(t) = 0, then 〈f,Zi (t)〉 = Wi(t) = 0, and so Ẇi(0) = 0 because Wi is a non-
negative function. Combining this with (5.53), we obtain

lim sup
h→0

∣∣∣∣〈f,Zi (t + h)〉 − 〈f,Zi (t)〉
h

∣∣∣∣ = lim sup
h→0

∣∣∣∣〈f,Zi (t + h)〉
h

∣∣∣∣
≤ lim sup

h→0
Cf

∣∣∣∣Wi(t + h)

h

∣∣∣∣
(5.61)

= lim sup
h→0

Cf

∣∣∣∣Wi(t + h) − Wi(t)

h

∣∣∣∣
= Cf |Ẇi(t)| = 0.

Combining (5.60) and (5.61), we obtain

d

dt
〈f,Zi(t)〉 =

⎧⎨
⎩−〈f ′,Zi(t)〉�i(Z(t))

Zi(t)
+ νi〈f,ϑi〉, Zi(t) > 0,

0, Zi(t) = 0.
(5.62)

The set of all t ∈ (0,∞) that are regular points for both 〈f,Zi (·)〉 and Wi(·) has
full Lebesgue measure, so (5.52) follows from (5.62).

This proves the theorem for f ∈ Cc. To extend to C, choose functions {gn :n ∈
N} ⊂ C1

b(R+) such that 1[0,n] ≤ gn ≤ 1[0,n+1] and ‖g′
n‖∞ ≤ 2 for all n. For f ∈ C,

define fn = fgn so that fn ∈ Cc for all n. Then for all n ∈ N and t ≥ 0,

〈fn,Zi(t)〉 = 〈fn,Zi(0)〉 −
∫ t

0
〈f ′

n,Zi(s)〉�i(Z(s))

Zi(s)
ds

(5.63)

+ νi〈fn,ϑi〉
∫ t

0
1(0,∞)(Zi(s)) ds.

Since fn → f pointwise and boundedly as n → ∞, the bounded convergence
theorem implies that the left-hand side, as well as the first and third terms on the
right-hand side of (5.63), converge to the corresponding terms of (5.52) as n → ∞.
Similarly, f ′

n → f ′ pointwise and boundedly as n → ∞. So, the integrand in the
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second right-hand term of (5.63) converges pointwise on [0, t] to 〈f ′,Zi(·)〉�i(Z(·)
Zi(·)

as n → ∞. For each n ∈ N,

sup
s∈[0,t]

∣∣∣∣〈f ′
n,Zi(s)〉�i(Z(s))

Zi(s)

∣∣∣∣ ≤ ‖f ′
n‖∞‖C‖ ≤ (‖f ′‖∞ + 2‖f ‖∞)‖C‖.

So, the bounded convergence theorem implies that the second right-hand term
in (5.63) converges to the corresponding term in (5.52) as n → ∞. �

PROOF OF THEOREM 4.1. The sequence {(Z̄r , Z̄r , T̄ r , Ū r , W̄ r)} is C-tight
by Theorem 5.7. Let (Z,Z,T ,U,W) be a weak limit point of this sequence. Then
by Theorem 5.9 and properties (i)–(v), (vii) and (viii) of Lemma 5.8, Z is almost
surely a fluid model solution with auxiliary functions (Z,T ,U,W) for the data
(A,C,�,ν,ϑ) (see Definitions 3.1 and 3.2), and W(t) is finite for all t ≥ 0. �

6. Invariant states for fluid model under weighted α-fair policies. In this
section, we consider the special case of weighted α-fair policies. Fix fluid model
data (A,C,�,ν,ϑ), where � is a weighted α-fair bandwidth sharing policy with
parameters (α, κ) as described in the example of Section 2.2. Under a natural con-
dition on the network parameters A, C, ν and ϑ , there exist fluid model solutions
that are time invariant. This section identifies the condition and characterizes the
set of these invariant states.

The following representation of the weighted α-fair policy � follows from
Lemma A.4 of [12]. (Although it is assumed at the beginning of [12] that A has
full row rank, this property is not used in the proof of Lemma A.4 in [12], and
hence the result holds without restriction on the row rank of A.)

PROPOSITION 6.1. For each z ∈ R
I+, there exists at least one p ∈ R

J+, de-
pending on z, such that

�i(z) = zi

(
κi∑

j≤J pjAji

)1/α

for all i ∈ I+(z),(6.1)

where

pj

(
Cj − ∑

i≤I

Aji�i(z)

)
= 0 for all j ≤ J.(6.2)

The (pj : j ≤ J) are Lagrange multipliers for the optimization problem (2.3)–
(2.5), one for each of the capacity constraints in (2.4). Note that for each i ∈ I+(z),
the bandwidth �i(z) > 0 by Definition 2.1(i), and zi > 0 by definition. Thus, (6.1)
implies that the denominator on the right-hand side of (6.1) does not vanish.

DEFINITION 6.2. A vector of measures ξ ∈ MI is an invariant state for the
fluid model if there is a fluid model solution ζ(·) satisfying ζ(t) = ξ for all t ≥ 0.
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The following notation helps describe invariant states. Recall that μi =
〈χ,ϑi〉−1 and ρi = νi/μi for i ≤ I. Also recall that I+(z) = {i ≤ I : zi > 0} and
I0(z) = {i ≤ I : zi = 0} for z ∈ R

I+. Let

P = {z ∈ R
I+ :�i(z) = ρi for all i ∈ I+(z)}.

For each i ≤ I, let ϑe
i denote the excess lifetime distribution associated with ϑi .

The probability measure ϑe
i is absolutely continuous with density

pe
i (x) = μi

〈
1(x,∞), ϑi

〉
, x ∈ R+.

THEOREM 6.3. There exist invariant states for the fluid model if and only if

Aρ ≤ C.(6.3)

When (6.3) holds, the set of invariant states is given by

M = {ξ ∈ MI : ξi = ziϑ
e
i for all i ≤ I and some z ∈ P }.(6.4)

PROOF. Suppose that ξ is an invariant state and let ζ(·) ≡ ξ be the correspond-
ing fluid model solution with auxiliary functions (z, τ, u) given by Definition 3.1
(we omit w here). Then z is a constant vector, denoted z = 〈1, ξ〉. For each f ∈ C,
i ∈ I+(z) and t ≥ 0, property (iii) of Definition 3.2 yields

〈f, ξi〉 = 〈f, ξi〉 − t〈f ′, ξi〉�i(z)

zi

+ tνi〈f,ϑi〉.(6.5)

Since (cf. Proposition 3.1 in [20]),

〈f,ϑi〉 = 1

μi

〈f ′, ϑe
i 〉 for all f ∈ C,(6.6)

canceling like terms in (6.5) yields

〈f ′, ξi〉�i(z)

zi

= ρi〈f ′, ϑe
i 〉.(6.7)

Replacing f by a suitable sequence of functions {fn} ⊂ C satisfying f ′
n ≥ 0 and

f ′
n ↑ 1(0,∞), the monotone convergence theorem implies that (6.7) holds with f ′ ≡

1(0,∞). So by property (i) of Definition 3.2, and since ϑe
i does not charge {0},

�i(z) = ρi for all i ∈ I+(z).(6.8)

Since zi = 0 for i ∈ I0(z), this implies by Definition 3.1 that for all t ≥ 0,

τi(t) =
∫ t

0

(
�i(z)1(0,∞)(zi) + ρi1{0}(zi)

)
ds = ρit for all i ≤ I.(6.9)

Thus, u(t) = Ct − Aρt = (C − Aρ)t for all t ≥ 0. Since u is nondecreasing by
property (ii) of Definition 3.2, (6.3) holds. Moreover, substituting (6.8) into (6.7)
and canceling ρi yields

〈f ′, ξi〉
zi

= 〈f ′, ϑe
i 〉 for all f ∈ C and i ∈ I+(z).
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This implies (in the same manner as in the proof of Theorem 1.1 in [20]) that

ξi = ziϑ
e
i for all i ∈ I+(z).(6.10)

Since ξi = 0 for all i ∈ I0(z), combining (6.10) with (6.8) implies that ξ ∈ M.
To prove the converse, suppose that (6.3) holds and let ξ ∈ M. Define ζ(t) = ξ

for all t ≥ 0, and let (z, τ, u) be the auxiliary functions of ζ given by Definition 3.1.
Since ϑe

i does not charge {0} ⊂ R+ for each i ≤ I, ζ(·) satisfies property (i) of
Definition 3.2. Note that z = 〈1, ξ〉 is a constant vector, and that z ∈ P because
ξ ∈ M. Thus, τ satisfies (6.9) and so u(t) = Ct − Aρt = (C − Aρ)t for all t ≥ 0.
By (6.3), uj is nondecreasing for all j ≤ J, and so property (ii) of Definition 3.2
holds. Let f ∈ C and i ∈ I+(z). Since ξ ∈ M and z ∈ P , (6.6) implies that for all
t ≥ 0,

t〈f ′, ξi〉�i(z)

zi

= tρi〈f ′, ϑe
i 〉 = tνi〈f,ϑi〉.

Thus, (6.5) holds and so ζ satisfies property (iii) of Definition 3.2 for i ∈ I+(z).
This property holds for i /∈ I+(z) since then all terms are zero. Thus, ζ is a fluid
model solution. Note that M is nonempty because ξ = 0 is in M. �

Under condition (6.3), the set P can be characterized using results in Kelly and
Williams [12]. (Although it was assumed in [12] that A has full row rank, as we
explain below, the results that we cite below from [12] hold without that additional
restriction.) Let

J∗ =
{
j ≤ J :

∑
i≤I

Ajiρi = Cj

}

and let J∗ = |J∗|. For z ∈ R
I+, define

F(z) = 1

α + 1

∑
i≤I

νiκiμ
α−1
i

(
zi

νi

)α+1

.

When J∗ �= ∅, define � : RJ∗+ → R
I+ by

�(w) = arg min

{
F(z) : z ∈ R

I+ and
∑
i≤I

Aji

zi

μi

≥ wj for all j ∈ J∗
}
.

For each j ∈ J∗, Aji > 0 for some i ≤ I. It follows that the feasible set for the
above optimization problem is nonempty. Then since F is nonnegative, continu-
ous, strictly convex and satisfies F(z) → ∞ as ‖z‖ → ∞, �(w) is well defined as
the unique minimum of the optimization problem.

LEMMA 6.4. Assume that (6.3) holds. If J∗ = ∅, then P = {0} and the only
invariant state is ξ = 0. If J∗ �= ∅, then the following three conditions are equiva-
lent:
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(i) z ∈ P ,
(ii) for some q ∈ R

J∗+ , zi = ρi(
1
κi

∑
j∈J∗ qjAji)

1/α for all i ≤ I,
(iii) z = �(w(z)), where wj(z) = ∑

i≤I Aji
zi

μi
for all j ∈ J∗.

PROOF. If J∗ = ∅, then Aρ < C. In this case, there is no z �= 0 such that
�i(z) = ρi for all i ∈ I+(z). This follows because for z �= 0, the optimal solu-
tion �(z) of the concave optimization problem (2.3)–(2.5) must have one of the
constraints binding, that is, (A�(z))j = Cj for some j ≤ J. (For this, we use the
fact that there is at least one route i, which necessarily uses at least one resource j ,
and hence there is at least one i and j such that Aji > 0.) It follows that P = {0}
when J∗ = ∅.

If J∗ �= ∅, then the three equivalent characterizations of P follow from
Lemma 5.1 and Theorems 5.1 and 5.3 in [12]. (At the beginning of [12], it is
assumed that A has full row rank. However, scrutiny of the proofs of Lemma 5.1
and Theorems 5.1 and 5.3 of that paper reveals that the above equivalence still
holds without this additional assumption. Indeed, one only needs the weaker prop-
erty that for each j ∈ J∗, the j th row of A has at least one nonzero entry. This
property holds here by the definition of J∗.) �

APPENDIX

PROOF OF THEOREM 5.1. For each r ∈ R, define a simplified fluid scaled
load process

V̄r
i (t) = 1

r

�rt�∑
k=1

δvr
ik
, t ≥ 0, i ≤ I(A.1)

and let ϑ(t) = tϑ for all t ≥ 0. We first show that

(V̄r (·), 〈χ, V̄r (·)〉) ⇒ (ϑ(·), 〈χ,ϑ(·)〉) as r → ∞.(A.2)

Since for each r ∈ R, t ≥ 0, and i ≤ I, 〈χ,ϑi〉 = 1/μi and

〈χ, V̄r
i (t)〉 = �rt�

r

1

�rt�
�rt�∑
k=1

(
vr
ik − 1

μr
i

)
+ �rt�

rμr
i

,

the second component of (A.2) follows from assumptions (4.12), (4.13) and a
functional weak law of large numbers. Note that for each K > 0, the set {ξ ∈
MI :‖〈1 ∨ χ, ξ〉‖ ≤ K} is relatively compact in MI (see [11], Theorem 15.7.5).
For each T > 0, supt∈[0,T ] ‖〈1 ∨ χ, V̄r (t)〉‖ ≤ T ∨ ‖〈χ, V̄r (T )〉‖, and so the sec-
ond component of (A.2) implies the compact containment condition

lim
K→∞ lim inf

r→∞ Pr

(
sup

t∈[0,T ]
‖〈1 ∨ χ, V̄r (t)〉‖ ≤ K

)
= 1.(A.3)
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Moreover, for all r ∈ R, i ≤ I, t ≥ s ≥ 0, and all nonempty closed B ⊂ R+, (A.1)
implies the two inequalities

〈1B, V̄r
i (s)〉 ≤ 〈1B, V̄r

i (t)〉 ≤ 〈1Bt−s , V̄r
i (t)〉 + t − s,

〈1B, V̄r
i (t)〉 = 〈1B, V̄r

i (s)〉 + 1

r

�rt�∑
k=�rs�+1

1B(vr
ik) ≤ 〈1Bt−s , V̄r

i (s)〉 + t − s.

So by (1.1) and (1.2),

dI[V̄r (s), V̄r (t)] ≤ t − s for all r ∈ R and t ≥ s ≥ 0.

On combining this with (A.3), we see that {V̄r (·)} is C-tight. Let {V̄q(·)} ⊂ {V̄r (·)}
be a weakly convergent subsequence with almost surely continuous limit V(·).
Then by the continuous mapping theorem, for all f ∈ Cb(R+),

〈f, V̄q(·)〉 ⇒ 〈f,V(·)〉 as q → ∞.(A.4)

On the other hand, for each q , f ∈ Cb(R+), t ≥ 0, and i ≤ I,

〈f, V̄
q
i (t)〉 = �qt�

q

1

�qt�
�qt�∑
k=1

(
f (v

q
ik) − 〈f,ϑ

q
i 〉) + �qt�

q
〈f,ϑ

q
i 〉.

Assumptions (4.11)–(4.13), and a functional weak law of large numbers imply that
〈f, V̄q(·)〉 ⇒ 〈f,ϑ(·)〉 as q → ∞ for each f ∈ Cb(R+). Combining with (A.4),
we see that V(·) ≡ ϑ(·) almost surely, and so V̄r (·) ⇒ ϑ(·) as r → ∞. Since the
limits are deterministic, the convergence in (A.2) is indeed joint.

By assumption (4.10), Ēr (·) ⇒ ν(·) as r → ∞. Since L̄r (·) = V̄r (Ēr (·)) and
〈χ,ϑ(ν(·))〉 = ρ(·), (A.2) and the random time change theorem imply (5.1). �

PROOF OF LEMMA 5.2. Let 
r
1 be an event of probability one on which (5.2)

holds and fix ω ∈ 
r
1. For the rest of the proof, all random objects are evalu-

ated at this particular ω. Fix i ≤ I, f ∈ Cc, and let [s, t] be an interval satisfying
infu∈[s,t] Z̄r

i (u) > 0. It suffices to show (5.7). Since Z̄r
i (·) is right continuous with

finite left limits, there exist ε,M ∈ (0,∞) such that

ε ≤ inf
u∈[s,t] Z̄

r
i (u) ≤ sup

u∈[s,t]
Z̄r

i (u) ≤ M.(A.5)

Let l = t − s and, for n, j ∈ N, let tj = s + j l/n and tj = tj+1. For each n,

〈f, Z̄r
i (t)〉 − 〈f, Z̄r

i (s)〉 =
n−1∑
j=0

(〈f, Z̄r
i (t

j )〉 − 〈f, Z̄r
i (tj )〉

)
.
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Add and subtract a term in each summand to get

〈f, Z̄r
i (t)〉 − 〈f, Z̄r

i (s)〉 =
n−1∑
j=0

(〈f, Z̄r
i (t

j )〉 − 〈
f

(· − S̄r
i (tj , t

j )
)
, Z̄r

i (tj )
〉)

+
n−1∑
j=0

(〈
f

(· − S̄r
i (tj , t

j )
)
, Z̄r

i (tj )〉 − 〈f, Z̄r
i (tj )

〉)
.

Use the dynamic equation (5.2) in the first term and rewrite the second term on the
right to obtain

〈f, Z̄r
i (t)〉 − 〈f, Z̄r

i (s)〉 =
n−1∑
j=0

1

r

rĒr
i (tj )∑

k=rĒr
i (tj )+1

f
(
vr
ik − S̄r

i (U
r
ikr

−1, tj )
)

(A.6)

+
n−1∑
j=0

〈
f

(· − S̄r
i (tj , t

j )
) − f (·), Z̄r

i (tj )
〉
.

Denote the first and second right-hand terms in (A.6) by ar
n and br

n, respectively,
and consider first ar

n. Since f ∈ Cc, a first-order Taylor expansion of each sum-
mand yields

f
(
vr
ik − S̄r

i (U
r
ikr

−1, tj )
) = f (vr

ik) + f ′(wk
j )h

k
j ,(A.7)

where for each j and k, hk
j = −S̄r

i (U
r
ikr

−1, tj ) and wk
j ∈ R is in the interval [vr

ik +
hk

j , v
r
ik]. Since Ur

ikr
−1 ∈ (tj , t

j ] for each pair j, k in (A.7), (2.1) and (A.5) imply
that

max
j,k

|hk
j | ≤ max

j

∫ tj

tj

�i(Z̄
r(u))

Z̄r
i (u)

du ≤ l‖C‖
nε

.(A.8)

Using (A.7) and (A.8), deduce that for each n,

∣∣ar
n − (〈f, L̄r

i (t)〉 − 〈f, L̄r
i (s)〉

)∣∣ =
∣∣∣∣∣ar

n − 1

r

rĒr
i (t)∑

k=rĒr
i (s)+1

f (vr
ik)

∣∣∣∣∣

=
∣∣∣∣∣
n−1∑
j=0

1

r

rĒr
i (t

j )∑
k=rĒr

i (tj )+1

f ′(wk
j )h

k
j

∣∣∣∣∣
≤ (

Ēr
i (t) − Ēr

i (s)
)‖f ′‖∞

l‖C‖
nε

.

So as n → ∞,

ar
n → (〈f, L̄r

i (t)〉 − 〈f, L̄r
i (s)〉

)
.(A.9)
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Next, consider br
n. Another first-order Taylor expansion for each x ∈ R+ and

j ∈ {0, . . . , n − 1} yields

f
(
x − S̄r

i (tj , t
j )

) − f (x) = f ′(wx
j )hj ,(A.10)

where hj = −S̄r
i (tj , t

j ) and wx
j ∈ R is in the interval [x + hj , x]. Define

zj = sup
u∈[tj ,tj )

�i(Z̄
r (u))

Z̄r
i (u)

(A.11)

and let h̃j = −zj l/n. Combine terms and bound the integrand to obtain∣∣∣∣∣br
n −

n−1∑
j=0

〈f ′h̃j , Z̄
r
i (tj )〉

∣∣∣∣∣
=

∣∣∣∣∣
n−1∑
j=0

〈
f

(· − S̄r
i (tj , t

j )
) − f (·) − f ′(·)h̃j , Z̄

r
i (tj )

〉∣∣∣∣∣
≤

n−1∑
j=0

sup
x∈R

∣∣f (
x − S̄r

i (tj , t
j )

) − f (x) − f ′(x)h̃j

∣∣〈1, Z̄r
i (tj )〉.

Apply (A.5) and (A.10) to get∣∣∣∣∣br
n −

n−1∑
j=0

〈f ′h̃j , Z̄
r
i (tj )〉

∣∣∣∣∣
≤

n−1∑
j=0

sup
x∈R

|f ′(wx
j )hj − f ′(x)h̃j |〈1, Z̄r

i (tj )〉(A.12)

≤ M

n−1∑
j=0

sup
x∈R

(|f ′(wx
j ) − f ′(x)‖hj | + |f ′(x)‖hj − h̃j |).

Since wx
j ∈ [x + hj , x] for each j ∈ {0, . . . , n − 1} and x ∈ R, deduce from the

definition of hj , S̄r
i (tj , t

j ), and from (2.1) and (A.5), that

|wx
j − x| ≤ |hj | =

∫ tj

tj

�i(Z̄
r (u))

Z̄r
i (u)

du ≤ l‖C‖
nε

.(A.13)

Since f ′ has compact support, it is uniformly continuous. Hence, there exists a
continuous nondecreasing function ψf : R+ → R+ such that ψf (0) = 0 and for
all h ∈ R+,

sup
x∈R

|f ′(x + h) − f ′(x)| ≤ ψf (|h|).(A.14)
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We deduce from (A.12)–(A.14) that∣∣∣∣∣br
n −

n−1∑
j=0

〈f ′h̃j , Z̄
r
i (tj )〉

∣∣∣∣∣
(A.15)

≤ M

(
nψf

(
l‖C‖
nε

)
l‖C‖
nε

+ ‖f ′‖∞
n−1∑
j=0

(
zj

l

n
− S̄r

i (tj , t
j )

))
.

Let φn(u) = ∑n−1
j=0 zj 1[tj ,tj )(u) for each n ∈ N and u ∈ [tj , tj ]. Then

n−1∑
j=0

(
zj

l

n
− S̄r

i (tj , t
j )

)
=

∫ t

s
φn(u) du −

∫ t

s

�i(Z̄
r (u))

Z̄r
i (u)

du.(A.16)

Observe that φn(u) → �i(Z̄
r(u))Z̄r

i (u)−1 as n → ∞, for all u ∈ [s, t) at which
the latter function is continuous, which is at almost every u. So, by the bounded
convergence theorem, (A.16) converges to zero as n → ∞. This implies, by defin-
ition of ψf , that (A.15) converges to zero as n → ∞. Note that

n−1∑
j=0

〈f ′h̃j , Z̄
r
i (tj )〉 = −

n−1∑
j=0

〈f ′, Z̄r
i (tj )〉zj

l

n
,

and that, as n → ∞,

−
n−1∑
j=0

〈f ′, Z̄r
i (tj )〉zj

l

n
→ −

∫ t

s
〈f ′, Z̄r

i (u)〉�i(Z̄
r(u))

Z̄r
i (u)

du,

by (A.11) and bounded convergence, since the integrand on the right is also con-
tinuous at almost every u. Conclude that, as n → ∞,

br
n → −

∫ t

s
〈f ′, Z̄r

i (u)〉�i(Z̄
r(u))

Z̄r
i (u)

du.(A.17)

Combining (A.6), (A.9) and (A.17) yields (5.7). �
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