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Introduction
When Ruth Williams enrolled at the University of Mel-
bourne, Australia, as an undergraduate pursuing an hon-
ors BSc in mathematics, she launched a stellar mathemat-
ical career that spans five decades and is still going strong.
After completing a second (research masters) degree in
mathematics from Melbourne, she crossed the Pacific to
begin her PhD studies at Stanford University. There were
three women in her PhD cohort; by a twist of fate, all three
took an early reading course from SamKarlin, and all three
pursued dissertations related to probability theory.
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Figure 1. Some members of the Bendigo Computer Club,
circa 1970. Photo provided by Ruth Williams (center).

Williams took a number of probability courses from
Kai Lai Chung at Stanford. He posed an open problem
about stopped Feynman–Kac functionals and the reduced
Schrödinger equation which he had solved in one dimen-
sion; she realized that, using methods from PDE, she
could solve the higher-dimensional open question, which
led to her first single-authored publication as a PhD stu-
dent. Chung became her advisor. While she did not pur-
sue further research in the direction of Schrödinger equa-
tions, she found stochastic processes particularly appeal-
ing: their study involves rigorous analysis, and they arise
naturally in a wide range of applications. While taking a
course from a young professor in the Stanford Business
School, Michael Harrison, she learned about reflecting
Brownian motion (RBM): a diffusion process constrained
to stay inside a region by “reflecting” at the boundary, with
many associated challenging open problems (at the time).
During the remainder of her time at Stanford, and the fol-
lowing year (1983–84) as a Postdoctoral Visiting Member
at the Courant Institute working with S. R. Srinivasa Varad-
han, she worked on foundational theory for Brownianmo-
tion with oblique reflection in a wedge. This set the stage
for the nature of much of her future work—development
of rigorous theory motivated by applications.

She was recruited to UC San Diego by its historically
very strong group in stochastic processes, anchored by Ron
Getoor and Michael Sharpe.1 She began her University of
California career in a lively fashion: on her first campus

1UC San Diego seems to have made some excellent hires in 1983: Jim Agler
and S. T. Yau also joined the faculty that year.

visit, she was serendipitously “interviewed” by Paul Erdős
(who spent a substantial amount of time in San Diego dur-
ing this period).

Nearly four decades later, Ruth Williams is still at UC
San Diego, where she is now a Distinguished Professor
and holds the Charles Lee Powell Chair in Mathematics
I. She is one of the most celebrated active probabilists in
the world. Early recognition of her work came in the form
of an Alfred P. Sloan Fellowship (1988–1992) and an NSF
Presidential Young Investigator award (1987–1994), fol-
lowed by an NSF Faculty Award for Women (1991–1997).
Her fundamental contributions to 20th century probabil-
ity theory—in particular stochastic processes—were hon-
ored with an invited talk at the 1998 International Con-
gress ofMathematicians in Berlin, and with the prestigious
Guggenheim Fellowship (2001–2002). She has had con-
tinuous NSF support since 1984.

Her accomplishments are so widely recognized that she
has received highest honors from five professional associ-
ations: in addition to being an Inaugural Fellow of the
AMS (2012), she is a Fellow of the Institute of Mathe-
matical Statistics (1992), the American Association for the
Advancement of Science (1995), the Institute for Opera-
tions Research and Management Sciences (2008), and the
Society for Industrial and Applied Mathematics (2020).
In 2016 she was awarded, jointly with Martin Reiman,2

the highly prestigious John von Neumann Theory Prize
from INFORMS, for seminal research contributions to the
theory and applications of stochastic networks and their
heavy traffic approximations.

Williams was elected to the American Academy of Arts
and Sciences (2009), the National Academy of Sciences
(2012), and was elected to be a Corresponding Member of
the Australian Academy of Science (2018). She has been
awarded honorary doctorates by the University of Mel-
bourne and by La Trobe University, both in Melbourne,
Australia.

Her research is interdisciplinary, involving the develop-
ment of fundamental mathematical theory in order to pro-
vide insight into real-world phenomena from a variety of
fields, ranging from communication networks to (more
recently) systems biology. She has published more than
eighty papers and two cornerstone books. Her 2006 text-
book Introduction to the Mathematics of Finance, published
by the AMS, is widely used in graduate courses in mathe-
matical finance. Her 1983 book Stochastic Integration with
Kai Lai Chung was, when it first appeared, the most com-
prehensive and comprehensible treatment of the subject,
and it remains a highly regarded and widely used source
today (the second author used the 2nd edition, published
in 1990, as recently as 2019 as a primary source to teach a

2Reiman was also a Stanford PhD student, supervised by Michael Harrison sev-
eral years before Williams.

364 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY VOLUME 69, NUMBER 3



popular advanced graduate course on stochastic differen-
tial equations). In addition to her transformative research,
Ruth Williams is also widely known for the outstanding
quality of her expository work: she has written several
survey papers [Wil95, Wil16] that serve as introductions
to the field and describe important open problems, and
which have stimulated further research, including some
early works by the third author. Williams is also a dynamic
and highly skilled public speaker. In addition to her in-
vited ICMaddress, she has given a long series of prestigious
invited lectures such as a Plenary AMS Invited Address
in 1994, the Markov Lecture of the Applied Probability
Society in 2007, the Doob Lecture at the 2011 meeting
on Stochastic Processes and their Applications, and the Le
Cam Lecture at the IMS annual meeting in Vilnius, Lithua-
nia in 2018.

Given the breadth and depth of Ruth Williams’ work,
along with the fact that she continues to be very active,
it would be impossible to provide an exhaustive overview
in this (or indeed any) article. Here, we will present the
main themes of her prodigious career and highlight some
of her most influential contributions. In the broadest pos-
sible terms, Ruth Williams has made foundational contri-
butions to the understanding of reflecting diffusions and, us-
ing these as tools, has dramatically advanced the scientific
understanding of a wide array of stochastic networks experi-
encing heavy traffic, by approximating them using rigorous
probabilistic scaling limits.
Scaling limits. Probability theory has enjoyed over a cen-
tury of remarkable success in analyzing and predicting the
behavior of very complex systems. One reason is the cen-
tral idea of scaling limits: encoding main parameters of
a random system and scaling them together (in different
proportions) to identify more tractable limit objects that
can be analyzedmore directly, and which then serve as use-
ful approximations of the original system. This paradigm
shows up in the first major theorems that are the capstone
of any introductory probability course at the graduate or
undergraduate level: the Strong Law of Large Numbers
and the Central Limit Theorem. In their simplest form,
these state that the empirical average of 𝑛 independent iden-
tically distributed (i.i.d.) random variables {𝑋𝑖}𝑖∈ℕ con-
verges, with probability one, to their common determinis-
tic mean𝑚 (whenever the latter is well-defined) as 𝑛 → ∞,
while in the case when 𝑋𝑖 has finite variance, the centered
and rescaled sum (divided by √𝑛 instead of 𝑛) converges to
an object that is still random: a normal random variable.
In other words, taken together, these classical limit theo-
rems show that empirical averages concentrate about their
deterministic common mean, and have Gaussian fluctua-
tions on the scale 𝑛−1/2.

There are two versions of these core theorems that give
different perspectives, which are relevant to the present

story. Instead of averaging random variables 𝑋𝑖 directly,
consider their empirical distribution 𝜈𝑛 =

1
𝑛
∑𝑛

𝑖=1 𝛿𝑋𝑖 , which
is a (random) probability measure-valued statistic that
places equal mass at each point 𝑋𝑖. If the common law of
the random variables is 𝜇, then the Strong Law of Large
Numbers tells us that 𝜈𝑛 converges weakly in distribution
to 𝜇 almost surely, meaning that for each real-valued test
function 𝑓∶ ℝ → ℝ, ∫𝑓 𝑑𝜈𝑛 converges to ∫𝑓 𝑑𝜇 with
probability one. The Central Limit Theorem then states
that the fluctuations ∫𝑓 𝑑𝜈𝑛 − ∫𝑓 𝑑𝜇 are of order 𝑛−1/2,
and 𝑛1/2[∫ 𝑓 𝑑𝜈𝑛 −∫𝑓 𝑑𝜇] converges to a centered normal
random variable (with variance ∫𝑓2 𝑑𝜇− (∫𝑓 𝑑𝜇)2). (The
original statements of these limit theorems mentioned
above correspond to the special case 𝑓(𝑥) = 𝑥.)

The above limit theorems concern real- or measure-
valued random variables; we can consider analogous scal-
ing limits for random elements of more exotic state spaces,
such as paths (with some regularity, like continuity or at
least right continuity with finite left limits) in some metric
space. Such continuous-time stochastic processes model
the evolution of dynamical systems that can have random
influences. In this context, there are functional laws of large
numbers and central limit theorems, with the latter also
being referred to as invariance principles.

Let {𝑋𝑖}𝑖∈ℕ be i.i.d. standardized random variables (hav-
ing mean zero and variance one), and denote 𝑆(𝑛) =
𝑋1 + ⋯ + 𝑋𝑛. We can connect the dots (linear interpo-
lation from 𝑆(𝑛 − 1) to 𝑆(𝑛)) to create a piecewise affine
random path (𝑆(𝑡))𝑡≥0. In this formulation, the two func-
tional limit theorems can be phrased in terms of rescaling
space and time in different proportions. For the Strong Law
of Large Numbers, the statement is simply that, for any
𝑡 > 0, lim𝑟→∞ 𝑆(𝑟𝑡)/𝑟 = 0 with probability one. (Had we
not centered the random variables, the limit here would be
the deterministic drift process 𝑡⋅𝑚where𝑚 is the common
mean of the random variables 𝑋𝑖.) The Central Limit The-
orem in this context, known as Donsker’s invariance prin-
ciple, uses the different scaling 𝑆(𝑟)(𝑡) = 𝑆(𝑟𝑡)/√𝑟; here, the
stochastic processes 𝑆(𝑟) converge (weakly in distribution)
as 𝑟 → ∞, to Brownian motion 𝐵 = (𝐵(𝑡))𝑡≥0, the central
Gaussian object in stochastic processes.

Brownian motion has quadratic scaling: for any 𝑟 > 0,
the new process 𝐵(𝑟)(𝑡) = 𝐵(𝑟𝑡)/√𝑟 is also a Brownian mo-
tion (it has the same law on path space). For this reason,
one could just as well do the scaling 𝑆(𝑟2𝑡)/𝑟 in Donsker’s
theorem, going further out in time. There is a subtle but
important difference when taken in concert with the law of
large numbers, however: the pair (𝑆(𝑟𝑡)/𝑟, 𝑆(𝑟𝑡)/√𝑟) scales
differently from the pair (𝑆(𝑟𝑡)/𝑟, 𝑆(𝑟2𝑡)/𝑟). In this example,
it doesn’t matter. In more complex examples the choice of
whether to contract the space scaling or accelerate the time
scaling can, in some circumstances, yield different results;
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moreover, the latter can sometimes be more useful. This
was a key insight, originally due to Michael Harrison, that
played an important role in some of RuthWilliams’ scaling
limit theorems described below.

For more general stochastic processes (not arising from
i.i.d. data), the law of large numbers kind of limit where
space and time are scaled at the same rate is called a fluid
or hydrodynamic limit, while scaling time with the square
of the spatial rate is often referred to as a diffusion limit. A
major theme of Ruth Williams’ research program through-
out her illustrious career has revolved around fluid and
diffusion limits of a class of stochastic processes (discrete,
continuous, or evenmeasure-valued) that modelmulticlass
queueing networks and more general stochastic processing
networks. In order to provide some context for her work,
we start by describingmulticlass queueing networks, heavy
traffic limits, and reflecting Brownian motions (RBMs).
Multiclass queueing networks. Queueing systems arise
as models in a variety of applications, including computer
systems, communication networks, transportation, service
systems, and complex manufacturing systems. More re-
cently, they have also been used by Ruth Williams in sys-
tems biology, for example as models of enzymatic pro-
cessing. A multiclass queueing network consists of a fixed
set of nodes (or stations), at which there are entities or
jobs, which could represent customers or packets of data
to be processed, and a server (or a pool of statistically ho-
mogeneous servers) capable of processing those jobs. The
jobs at each node may belong to one of a finite number
of types or classes depending on their arrival characteris-
tics, service requirements, and routing needs, all of which
may be random. A node is sometimes also referred to as a
queue, which comprises the server(s), the jobs being pro-
cessed, and the jobs awaiting processing at that node. If
there is more than one class of job at a node, the node is
called a multiclass queue; otherwise, it is called a single-
class queue. Similarly, if there are multiple servers at a
node, then it is referred to as a many-server queue; if not, it
is said to be a single-server queue. When a job has finished
service at a node, it either departs the system or changes
class via a routing mechanism, which may be probabilis-
tic. Networks in which jobs eventually leave the system
are referred to as open networks. Networks can also differ
in terms of the “service discipline” or protocol used by a
server to process entities at its node. For example, under
a head-of-the-line (or HL) protocol, entities of the same
class that are awaiting service at a node are processed in
the order in which they arrived to that node.

Quantities of interest in such systems include condi-
tions for stability of the network dynamics, statistics of
queue lengths of different classes of jobs at different nodes,
the workload at each node (which is the amount of server
effort required to serve all of the jobs at that node),

Figure 2. An example of a multiclass queueing network.

probabilities of critical rare events, and steady state or equi-
librium distributions of these quantities. Starting with the
Danish engineer A. K. Erlang in 1917, early work in queue-
ing theory focused on exact closed form expressions for var-
ious statistics related to single-class queues. The first gen-
eral results for networks were obtained by Jackson for open
networks of single-server single-class HL queues with Mar-
kovian routing, where exogenous arrivals to each node are
described by independent Poisson processes, jobs have in-
dependent exponentially distributed service times, and the
service rate at each node is a function of the queue size. In
particular, in 1963, Jackson showed that the equilibrium
distribution of such networks has an explicit product form,
which implies that in equilibrium, the numbers of jobs in
distinct queues are independent. This was later general-
ized by several authors including Baskett et al. (1975) and
Kelly (1979), who identified special classes of multiclass
queueing networks that also have product form stationary
distributions.
Heavy traffic limits and RBMs. However, beyond these
special cases, typically it is not possible to compute per-
formance measures of even HL multiclass queueing net-
works with general arrival processes and service distribu-
tions exactly. A particular regime of interest from an op-
erations point of view is the so-called heavy traffic regime,
where networks are congested or near capacity in the sense
that the rate at which work is input to the system is ap-
proximately balanced by the capacity of the system to pro-
cess that work. At such near-equilibrium regimes, perfor-
mance can be strongly influenced by stochastic variability.
Although early work of Kingman, Borovkov, and Prohorov
in the early 1960s established approximations for steady-
state distributions or finite-dimensional distributions of
single-class queues, Iglehart and Whitt (1970) were the
first to consider a functional heavy traffic approximation
for a HL single-class (multi-server) queue, showing that a
suitably rescaled job count process converges in distribu-
tion to a diffusion limit that is a so-called reflecting Brown-
ian motion (RBM).

Standard Brownianmotion takes both positive and neg-
ative values almost surely, and so it is not a good limit
model for any random quantity that is by definition pos-
itive (like a queue length or workload process). Instead,
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reflecting Brownian motion is a process whose increments
coincide with that of Brownian motion on intervals when
the process is positive, but is then modified when it hits
zero. In fact, as shown by Skorokhod in 1961, one-
dimensional reflecting Brownian motion 𝑍 can be repre-
sented as

𝑍(𝑡) = 𝐵(𝑡) + 𝐿(𝑡), (1)

where 𝐵 is a standard Brownian motion and 𝐿(𝑡) ≔
sup𝑠∈[0,𝑡]max(−𝐵(𝑠), 0) is (proportional to) the so-called
Brownian local time, which characterizes the amount of
time Brownian motion spends near zero.

The construction in (1) yields the reflecting Brownian
motion 𝑍 as a continuous function of the driving Brow-
nian motion 𝐵. In the case where 𝐵 is a standard one-
dimensional Brownian motion, by a theorem of Lévy, the
process 𝑍 has the same distribution as the “reflected” or ab-
solute value process |𝐵|; this is where the terminology “re-
flecting Brownian motion” comes from. This equivalence
no longer holds true for Brownianmotionwith a drift, and
in many higher-dimensional contexts, although the name
is still used. As will be evident from the more precise def-
inition given below, it is more accurate to think of a RBM
or more general reflecting stochastic process as a process
whose increments behave like those of the original process
on the time intervals when the reflecting process lies in the
interior of the state space, but is then suitably constrained
to live within (the closure of) a domain (which is the non-
negative reals in the one-dimensional case).

Skorokhod’s idea was extended by Harrison and
Reiman to study heavily loaded networks of single-class
queues. In this case, each coordinate of the limit process
represents the queue length at a node, and so the limit
process must lie in the positive orthant. In 1981, Harrison
and Reiman developed a multi-dimensional analog of the
Skorokhod map in the positive orthant, and subsequently,
Reiman exploited its continuity properties to show that the
heavy traffic limit of open single-class HL queueing net-
works (with generally distributed interarrival and service
times with finite moment conditions) is a reflecting Brow-
nian motion in the orthant. Furthermore, their definition
guaranteed that the process is a semimartingale, which
means that it admits a decomposition as the sum of a (lo-
cal) martingale and an adapted process that is (locally) of
bounded variation. The semimartingale property is useful
because it allows an easy application of stochastic calculus
to study the evolution of sufficiently regular functionals of
the process. The Skorokhodmap is useful in that it is path-
wise and, when continuous, it defines what is known as a
strong solution to the corresponding stochastic differential
equation with reflection (which means that the solution is
measurable with respect to the filtration generated by the
driving Brownian motion). However, it turns out that the
Skorokhod map may fail to be well-defined or continuous

for data associated with multiclass queueing networks and
more general stochastic processing networks. An alterna-
tive is to consider distributional, rather than pathwise, lim-
its and to characterize RBMs using the so-called submartin-
gale problem introduced by Stroock and Varadhan in the
1970s to study (weak solutions to) stochastic differential
equations with reflection in smooth domains with smooth
boundary conditions.

Figure 3. Ruth Williams, Michael Harrison, and Jim Dai, at a
conference in honor of Michael Harrison, 2009.

Ruth Williams’ Contributions
Ruth Williams’ mathematical career has centered on
developing methodologies for the analysis of stochas-
tic processing networks, proving hydrodynamic and
heavy traffic limit theorems that yield fluid and dif-
fusion approximations, and analyzing these approxi-
mations. Ruth Williams’ most influential early work
[VW85,Wil87, RW88, TW93, DW94] focused on develop-
ing the foundations of RBM in the orthant with disconti-
nuities in the oblique reflection field at the boundary inter-
faces. At the time, there was limited theory for such non-
smooth, non-symmetric situations, where novel behavior
such as hitting corners can occur (in contrast to Brownian
motion which hits individual points with probability zero
in dimensions greater than one). In applications to queue-
ing networks, the oblique reflection directions arise from
routing in the network, and the orthant state space repre-
sents the fact that queue lengths are always non-negative
with intersections of faces corresponding to several queues
being empty simultaneously. This work on RBMs is beau-
tifully summarized in the survey paper [Wil95], in which
Williams succinctly defines RBMs in such domains, and
discusses existence and uniqueness in law and characteri-
zations of stationary distributions.

After establishing the foundations for these RBMs and
the appearance in the early 1990s of surprising examples
showing that the stability and heavy traffic behavior of
multiclass queueing networks are more intricate than that
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of single-class queueing networks, Ruth Williams turned
to establishing invariance principles and heavy traffic limit
theorems for multiclass queueing networks. An excel-
lent short survey is in [Wil98a] (the paper accompanying
her 1998 ICM talk), which describes the general modular
framework she developed (with Maury Bramson) for es-
tablishing sufficient conditions for heavy traffic limit the-
orems for HL multiclass queueing networks.

Subsequently, at the turn of the century, she started an-
alyzing more general stochastic processing networks, in-
cluding those with resource sharing, such as in processor
sharing and bandwidth sharing networks [GPW02,KW04,
KKLW09,MPW19, PW16, FW21]. Often in resource shar-
ing, service is shared amongst all entities and one needs to
keep track of more information than queuelengths to de-
scribe the dynamics; also, these are non-head-of-the-line
(non-HL) networks. This presents new mathematical chal-
lenges, which Williams overcame by introducing measure-
valued stochastic processes to represent the dynamics of
these networks and by developing new techniques for prov-
ing hydrodynamic and heavy traffic limit theorems for
them.

Over the last fifteen years, catalyzed by participa-
tion in a meeting at the Institute for Mathematics and
its Applications (IMA), Williams has also expanded
her research to include applications in systems biology
[MHTW10,LW19,AHLW19].

In what follows, we describe some of her research con-
tributions in greater detail.
(i) Reflecting Brownian motion (RBM). We start by
defining reflecting Brownian motions in domains with
piecewise smooth boundaries [KW07]. Let {𝐺𝑖}𝑖∈ℓ be a fi-
nite collection of open subsets of ℝ𝑑, each with continu-
ously differentiable boundary, and let 𝐺 = ⋂𝑖∈ℓ 𝐺𝑖. Fix
vector fields 𝛾𝑖 ∶ ℝ𝑑 → ℝ𝑑, 𝑖 ∈ ℓ. A semimartingale reflect-
ing Brownian motion (SRBM) 𝑍 is a stochastic process on a
filtered probability space (Ω,F , (F𝑡)𝑡≥0, ℙ) taking values
only in 𝐺, which has a decomposition of the form

𝑍(𝑡) = 𝑋(𝑡) +∑
𝑖∈ℓ

∫
(0,𝑡]

𝛾𝑖(𝑍(𝑠)) 𝑑𝑌𝑖(𝑠),

where 𝑋 is a Brownian motion in ℝ𝑑 with respect to the
filtration (F𝑡)𝑡≥0 (with initial distribution supported in
𝐺, and some fixed drift and covariance), and each 𝑌𝑖 is
a continuous, adapted, non-decreasing process that only
increases at times 𝑠 when 𝑍(𝑠) ∈ 𝜕𝐺 ∩ 𝜕𝐺𝑖 (i.e., 𝑍 lies on
the corresponding part of the boundary of the domain). In
the one-dimensional setting where𝐺 = (0,∞), the process
𝑌 = 𝑌1 is the Brownian local time 𝐿 and the vector field
is simply 𝛾1(𝑥) = 1 pointing into the region. In general,
there is no reason to assume that the vector field 𝛾𝑖 is a nor-
mal vector field on 𝜕𝐺𝑖. In particular, the geometry of the

directions of reflection that arise in heavy traffic limit theo-
rems for queueing networks is dictated by the routing struc-
ture in the network, and generally leads to obliquely reflect-
ing Brownian motions. Such reflecting Brownian motions
are related to elliptic PDE with oblique derivative bound-
ary conditions in much the same way that Brownian mo-
tion is related to the Laplace equation.

Figure 4. A simulation of a two-dimensional RBM (reflecting
Brownian motion) in a wedge, with oblique reflection field.
This simulation was provided by Prof. Xinyun Chen at the
School of Data Science (SDS) in the Chinese University of
Hong Kong, Shenzhen.

It is far from obvious that SRBMs should exist, and in-
deed some natural conditions on the domain 𝐺 and the
vector fields 𝛾𝑖 are required. The vector fields must be suffi-
ciently regular andmust, in a general sense, “point inward”
on the boundary to have any chance of pushing the Brow-
nian motion back into 𝐺 when it tries to escape. More pre-
cisely, at each point 𝑥 ∈ 𝜕𝐺, some convex combination of
the vectors 𝛾𝑖(𝑥) for 𝑖 ∈ ℓ such that 𝑥 ∈ 𝜕𝐺 ∩ 𝜕𝐺𝑖 should
point inward into 𝐺. In addition, the vector fields should
not stray “too far” from the unit normal field, in a broad
sense—this is to guarantee that the process does not oscil-
late too wildly near boundary intersections to be reflected
in a meaningful way.

A special case of broad interest is when𝐺 is a polyhedral
domain in the positive orthant, and the vector fields are
constant on each face. In that case, the definition becomes
somewhat simpler: 𝑍 = 𝑋 + 𝑅𝑌 where 𝑌 = [𝑌1, … , 𝑌 𝑑]⊤
as above and 𝑅 is a 𝑑 ×𝑑matrix, called the reflection matrix
(or, more accurately, constraint matrix), whose columns
are the (constant) vector fields. When 𝐺 is the entire pos-
itive orthant, Ruth Williams and her student Lisa Taylor
[TW93] identified sufficient conditions on the vector fields
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for the (weak) existence and uniqueness in law of SRBMs,
and showed that the conditions were also necessary in a
paper with Martin Reiman [RW88]. The technical condi-
tions on the vector fields can be stated succinctly in an al-
gebraic form that 𝑅 is a completely-𝒮 matrix, which means
that for every principal submatrix 𝑅̃ of 𝑅, there is a vector
̃𝑦 in the positive orthant for which 𝑅̃ ̃𝑦 lies in the positive

orthant. This is a subtle result. Firstly, it should be noted
that this condition is only necessary for a semimartingale
RBM to exist; one can still have a well-posed RBM that
is not a semimartingale when the completely-𝒮 condition
fails and such non-semimartingale RBMs can also arise as
heavy traffic limits of multiclass queueing networks. More-
over, the RBM constructed here is what is known as a weak
solution to the stochastic differential equation with reflec-
tion. A longstanding open question that is still unresolved
is whether strong solutions also exist under this condition.

Constraining Brownian motion to stay in a region by
pushing it in the allowed “reflection” or constraint direc-
tions at the boundary can be thought of as a stochastic con-
trol problem, with highly singular controls. Proving that
such processes exist and are unique in law is highly non-
trivial. In the general piecewise smooth boundary case cov-
ered in [KW07], the proof of existence was tied together
with the other side of the story: an invariance principle
describing when an SRBM (or rather an extended SRBM,
consisting of the triple (𝑋, 𝑌, 𝑍)) arises as the diffusion
scaling limit of a system (𝑋(𝑟), 𝑌 (𝑟), 𝑍(𝑟)) that only satisfies
the boundary control approximately. (Again, the main
technical hurdle is controlling oscillations at the bound-
ary; achieving this even locally turns out to be enough to
guarantee the requisite tightness for the diffusion limit to
emerge.) Kang and Williams then proved the existence of
such general SRBMs by exhibiting approximate extended
systems and constructing the SRBM as their diffusion scal-
ing limit.
(ii) Stationary distributions of RBMs. Williams simulta-
neously also initiated the study of the stationary distribu-
tions of SRBMs, which are Markov processes; this was nat-
ural given the importance of stationary measures for sto-
chastic networks and Reiman’s (1982) result on RBMs in
the orthant arising as heavy traffic limits of openHL single-
class networks. With Paul Dupuis [DW94], she obtained
a general sufficient condition for the positive recurrence
(or ergodicity) of SRBMs in the orthant, which reduced the
problem to studying the long-time behavior of a determin-
istic constrained dynamical system (the “fluid” model) in
the orthant. Next, in view of the fact that one-dimensional
RBM is well-known to have a stationary distribution of ex-
ponential form and Jackson’s result on product-form sta-
tionary distributions for a special class of open single-class
networks, she set out to identify when SRBMs also exhibit
analogous product-form or exponential stationary distri-
butions.

In [HW87], Michael Harrison and Ruth Williams first
studied this question for obliquely reflecting SRBMs on
bounded domains with smooth boundaries governed by a
smooth, possibly oblique, but non-tangential “reflection”
vector field 𝛾. Existence and uniqueness in law of such
SRBMs follows from classical results of Stroock and Varad-
han, and drawing on the classical connection between
stationary distributions of reflected processes and elliptic
PDE with (oblique) derivative boundary conditions, they
showed that the RBM has an explicit stationary density
with an exponential product form if and only if 𝛾 satisfies
the following skew-symmetry condition: for all 𝑥, ̃𝑥 ∈ 𝜕𝐺,

⟨𝑛(𝑥), 𝛾( ̃𝑥) − 𝑛( ̃𝑥)⟩ + ⟨𝛾(𝑥) − 𝑛(𝑥), 𝑛( ̃𝑥)⟩ = 0,

where 𝑛 denotes the inward normal vector field on the
boundary 𝜕𝐺, and 𝛾 − 𝑛 is the tangential part of 𝛾.

For the case of RBMs (with covariance equal to the iden-
tity matrix) in a polyhedral domain inℝ𝑑 with normal vec-
tor field 𝑛𝑖 and a constant reflection vector field 𝛾𝑖 on the
𝑖th face, they also studied the formal analogue of the ana-
lytical PDE characterization of the stationary density that
arises in the smooth case, dubbed it the basic adjoint rela-
tion (BAR), and showed that the solution 𝑝 of the BAR has
the form

𝑝(𝑥) =
𝑑
∏
𝑖=1

exp(𝑐𝑖𝑥𝑖), 𝑖 = 1, … , 𝑑

for suitable real-valued constants 𝑐𝑖, 𝑖 = 1, … , 𝑑, if and only
if for any two distinct faces of 𝐺, labelled 𝑖 and 𝑗,

⟨𝑛𝑖, 𝛾𝑗 − 𝑛𝑗⟩ + ⟨𝑛𝑗 , 𝛾𝑖 − 𝑛𝑖⟩ = 0.

In the particular case where the domain is the orthant and
the associated reflection matrix 𝑅 is normalized to have
1’s along its diagonal, this reduces to saying that the ma-
trix 𝑅 − 𝐼 is skew-symmetric; here 𝐼 is the 𝑑 × 𝑑 identity
matrix. In all cases, the explicit dependence of the vec-
tor 𝑐 = (𝑐1, … , 𝑐𝑑) on the drift of the RBM was identi-
fied. In a separate paper [Wil87], Williams justified that
the solution of the BAR is indeed the stationary density of
the corresponding RBM. This was done by approximating
the SRBMs in polyhedral domains with piecewise constant
reflection vector fields by RBMs in certain approximating
smooth domains with smooth vector fields, and showing
that under the skew-symmetry condition, the RBM does
not reach the non-smooth parts of the boundary. The lat-
ter property is of independent interest and in general fails
when the skew-symmetry condition does not hold. These
general results for RBMs have also been used in other ap-
plications, such as Atlas models in finance, which describe
the evolution of equity markets in terms of rank-based sto-
chastic differential equations.
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(iii) Heavy traffic limits and multiplicative state space
collapse. Although it was well-known that not all multi-
class queueing networks could be approximated by SRBMs,
Williams andMaury Bramson [Wil98a] laid out amodular
approach to identifying classes of networks for which such
an approximation is possible. Specifically, they identi-
fied general sufficient conditions under which such a limit
theorem holds: first, the reflection matrix describing the
SRBM must satisfy the completely-𝒮 condition and sec-
ond, one must check whether a certain multiplicative state
space collapse condition holds. As mentioned above, the
completely-𝒮 condition guarantees well-posedness of the
associated SRBM, and also enables proof of an invariance
principle [Wil98b] that shows convergence of approximat-
ing processes to the SRBM under general conditions. The
second condition is to establish what is known as multi-
plicative state space collapse, which is a generalization of the
notion of state space collapse first considered by Reiman in
1984 and later used by Peterson in his 1991 work on heavy
traffic limits for feedforward networks. Loosely speak-
ing, state space collapse holds if, in diffusion scale, the
job count process can be approximately recovered from
the (typically lower-dimensional) workload process and
the precision of this approximation becomes exact in the
heavy traffic limit. The multiplicative version introduced
by Bramson involves a normalization by the amount of
work in the system. It is often easier to verify and can fre-
quently be shown to imply state space collapse. Bramson
andWilliams also verified the sufficient conditions for sev-
eral classes of networks including first-in-first-out (FIFO)
networks of so-called Kelly type and networks with a HL
proportional processor sharing service discipline. Taken
together, these results represent a culmination of one and
a half decades of focused effort by Ruth Williams to de-
velop the requisite mathematical theory to identify and
rigorously justify heavy traffic approximations of several
families of multiclass queueing networks.
(iv) Resource sharing in stochastic processing networks.
Having brought some measure of order to the understand-
ing of HL multiclass queueing networks, at the turn of
the century Ruth Williams started studying resource shar-
ing problems in more general stochastic processing net-
works. With her student Steven Bell, Williams considered
dynamic scheduling (or control) for parallel server systems
with HL scheduling policies, and then later shifted her
focus to the study of the non-HL Processor Sharing (PS)
scheduling policy, and more general bandwidth sharing
networks. The PS protocol, in which each server at any
time divides its processing capacity equally amongst all
jobs present in the queue at that time, seeks to provide
an egalitarian allocation of a scarce resource among com-
peting users and is an idealization of the round-robin pro-
tocol in time sharing computer systems.

Figure 5. An example of a bandwidth sharing stochastic
processing network. The split arrows indicate simultaneous
resource possession.

There is a large body of literature on PS queues. How-
ever, with only rare exceptions, most of the literature im-
poses the stringent parametric assumptions of Poisson ar-
rivals and/or exponential service requirements. Under
these assumptions, the queue process is a Markov process
in the sense that its instantaneous evolution at any time
depends only on its current state (and not on the history),
which greatly simplifies the analysis. Unfortunately, these
assumptions are typically not satisfied in real-world appli-
cations.

In [GPW02], another paper written with her postdoc-
toral fellow Amber Puha, and the PhD thesis of her stu-
dent Christian Gromoll, fluid and diffusion approxima-
tions were developed for PS queues with arrivals that form
what is known as a renewal process, and jobs that have
independent and identically distributed general service re-
quirements. Since, under these more general distributions,
the queue process on its own need no longer be Markov-
ian, they introduced ameasure-valued state representation
that at any time 𝑡 has a mass at the residual (remaining
processing) service time of each job, from which one can
recover traditional performance measures such as queue
length and workload. They then established fluid and dif-
fusion limit theorems for this measure-valued process.

These three papers together garnered the authors a “Best
Publication Award” from the INFORMS Applied Probabil-
ity Society in 2007. The citation stated that these papers
“solve outstanding difficult problems, which advance the
state of the art of Applied Probability.” Ruth Williams’
commitment to mentorship is evident from the fact that
she told the last author of the present article at the time
that the best thing about the award was that it was given
jointly with her mentees.

370 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY VOLUME 69, NUMBER 3



Figure 6. INFORMS Best Publication Award prize ceremony,
2007. From left to right: Amber Puha, Christian Gromoll, Ruth
Williams, Jim Dai.

These papers also served as the starting point for the
study of bandwidth sharing communication networks. In
2000, Massoulié and Roberts introduced a connection-
level model of Internet congestion control that represents
the randomly varying flows in a network where bandwidth
is shared fairly between file transfers, with fairness modu-
lated by a parameter 𝛼. With Poisson arrivals and expo-
nentially distributed file sizes, this model can be phrased
as a multi-dimensional Markov chain in which the tran-
sition rates are solutions of concave optimization prob-
lems. Conditions for stability (positive recurrence) of this
Markov chain were established early on, but characterizing
the heavy traffic behavior was more challenging, because
these are stochastic processing networks with simultane-
ous resource possession in which processing of files uses
capacity from multiple resources simultaneously.

In 2001-02, while visiting Stanford on her Guggenheim
fellowship, RuthWilliams initiated a collaboration on this
problem with Frank Kelly, who was also visiting Stanford
that year. Their goal was to obtain heavy traffic diffu-
sion approximations for 𝛼-fair bandwidth sharing mod-
els by extending to this more complicated setting the ap-
proach developed earlier by Ruth Williams and Maury
Bramson for multiclass queueing networks. First, in the
work [KW04] with Kelly, Ruth Williams established long-
time convergence of critical fluid model solutions to the
set of invariant states. Then in [KKLW09], with Kelly and
Ruth Williams’ PhD students Weining Kang and Nam Lee,
she used the asymptotic behavior of the fluid model to
establish a dimension reduction called multiplicative state
space collapse. Furthermore, in the case 𝛼 = 1, which
corresponds to the natural case of proportional fair shar-
ing of bandwidth, the multiplicative state space collapse

property was combined with an invariance principle Ruth
Williams established with W. Kang in [KW07] and her pre-
vious results on well-posedness of reflected diffusions in
polyhedral domains, to show that the heavy traffic limit is
a reflected diffusion in a polyhedral cone. In this case, it
can also be deduced from previous work of Ruth Williams
withMichaelHarrison [HW87] that the stationary distribu-
tions of the heavy traffic limit are explicit and of product-
form.

It should be emphasized that these limit theorems
do not merely yield mathematical statements, but ac-
tually shed insight into the qualitative phenomenon of
entrainment in these networks, whereby congestion at
some resources may prevent other resources from working
at their full capacity. Ruth Williams continues to work on
this problem, with the ultimate goal to generalize these re-
sults to cover amore realistic version of thismodel that has
generally distributed file sizes. In this case, the dynamics
are represented bymeasure-valued processes, where under-
standing long-time behavior is much more complicated.
Building on related works with Justin Mulvany and Am-
ber Puha for the processor sharingmodel [MPW19,PW16],
Ruth Williams and her PhD student Yingjia Fu have made
recent progress on this subject. Specifically, in [FW21], Fu
and Williams construct Lyapunov functions based on 𝑓-
divergence (a generalization of relative entropy) to under-
stand the long-time behavior of critical (measure-valued)
fluid models in the presence of general file size distribu-
tions.

Figure 7. Ruth Williams working with her student Yingjia Fu,
2019.

(v) Constrained Langevin approximations for biochem-
ical reaction networks. Key processes in chemical and
biological systems are described by complex networks of
chemical reactions, which are frequently not amenable
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to exact analysis. Classically, the evolution of molecu-
lar concentrations is often modelled by coupled systems
of nonlinear differential equations, which can be justi-
fied via a functional law of large numbers, in the limit
as the number of molecules of all species goes to infinity.
However, in systems biology the concentrations of some
constituent molecules can be low, and thus deterministic
models are inadequate. A common stochastic model of
chemical kinetics treats the system as a continuous time
Markov chain that tracks the number of molecules of each
chemical species, and quantities of interest are then ap-
proximated by Monte Carlo estimates using simulations
of the sample paths. However, since each reaction is ac-
counted for in this model, these simulations can become
computationally prohibitive even for a modest number of
species. When the number of molecules is moderately
large (though still not sufficiently large to ignore stochas-
tic fluctuations), this model is often replaced by solutions
of associated stochastic differential equations (SDE), re-
ferred to as diffusion approximations, which can be sim-
ulated more efficiently. Two commonly used diffusion
approximations are the so-called linear noise approxima-
tion, obtained by linearizing fluctuations around the deter-
ministic approximation, and the chemical Langevin equa-
tion. However, both approximations have serious draw-
backs. The linear approximation fails to capture fluctua-
tions due to nonlinearities in the reaction rates and, unlike
the Markov chain models, its solution can become neg-
ative, which is not physically meaningful. On the other
hand, the Langevin equation is better at capturing nonlin-
earities and serves as a good approximation as long as it is
valid, but since its coefficients involve square roots of the
concentrations of the species, it is typically ill-posed be-
yond the first time any coordinate of the solution reaches
zero.

Several alternative models to deal with this negativity
issue were proposed, including other Langevin-type mod-
els as well as hybrid methods that tried to combine the
accuracy and robustness of the Markov chain models with
the computational efficiency of diffusion approximations.
Ruth Williams realized that some of the fixes unnecessar-
ily perturb the global dynamics to deal with what is in-
herently a local issue (near the boundary of the orthant);
she instead proposed a constrained Langevin approximation,
which is an obliquely reflected diffusion in the orthant
satisfying the non-negativity constraints of the compo-
nent processes [AHLW19, LW19]. She presented prelimi-
nary results on this work as part of her Kolmogorov lec-
ture at the World Congress in Probability and Statistics
in July 2016. As demonstrated there, this approximation
agrees with the chemical Langevin approximation until
the first time any component goes negative, but is well-
defined for all time and performs better than the existing

approximations. Subsequently, Ruth Williams and Saul
Leite rigorously showed that this reflected diffusion pro-
cess arises as the weak limit of a sequence of jump-
diffusion Markov processes that mimic the Langevin sys-
tem in the interior and behave like a scaled version of
the Markov chain on the boundary [LW19], which in
particular required generalizing previous results on well-
posedness of reflecting diffusions.

Continuing Legacy
Through her extraordinary continuing career, Ruth
Williams has left a large imprint on probability theory and
onmathematics in general. Her influence has been felt not
only through her groundbreaking research, but through
her direct involvement in the community. She has advised
eleven PhD students (all of whom graduated fromUC San
Diego) and she is currently advising three more. She has
supervised many postdoctoral fellows, masters students,
and undergraduates (at UC San Diego). The research work
that she did with her advisees and mentees has earned
many accolades, some of which were highlighted above,
and others are too numerous to mention.

Another constant in Ruth Williams’ career has been her
unwavering commitment to supporting and promoting
women and underrepresented minorities. From organiz-
ing and speaking at women-centered and AWM-sponsored
mathematical conferences, to extensive mentorship of ju-
nior colleagues and involvement in university-wide post-
doctoral initiatives at the University of California, she has
always been a strong advocate for the advancement of un-
derrepresented groups in mathematics and science. In
recognition of her dedication to this cause, INFORMS pre-
sented her with the prestigious Award for the Advancement
of Women in Operations Research and Management Sci-
ences (2017).

In conjunction with her many research accomplish-
ments and accolades, Williams has provided a truly as-
tonishing array of service to her department, to UC San
Diego, and to the international mathematics and scien-
tific communities. A complete list would go on for pages;
we mention only a few highlights here. She has devoted
decades to editorial boards of highly respected journals
such as Annals of Applied Probability, Electronic Journal of
Probability and Electronic Communications in Probability, and
Mathematics of Operations Research. She has served on the
Council (2003–2006) and as President (2011–2012) of the
IMS (Institute of Mathematical Statistics). As IMS Presi-
dent, she spearheaded the effort to become an Associate
Member of ICIAM (the International Council for Indus-
trial and Applied Mathematics) to foster stronger ties to
the applied mathematics community. In order to be more
welcoming to junior researchers, she also arranged for tuto-
rials to be added to the annual SSP (Seminar on Stochastic
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Processes); in particular, she created a subcommittee of
the IMS New Researchers Committee to suggest speakers
for the SSP tutorials.

She was on the Bernoulli Society Council (2001–2004)
and on the Board of Governors for the Institute for Math-
ematics and its Applications (2003–2006). She served as
Chair of the Joint Program Committee for the 7th World
Congress in Probability and Statistics (2008). She helped
found the Steering Committee of the Stochastic Networks
conference series initiated by Peter Glynn, Thomas Kurtz,
and Peter Ney. She was a member of the Governing Board
for the AustralianMathematics Research Institute, MATRIX
(2015–2020). She currently serves on theGoverningCoun-
cil and the Executive Committee of the National Academy
of Sciences. She has profoundly broken the stereotype par-
titioning mathematicians into those who are talented at
research and mentorship and those who are devoted to
service; Ruth Williams is a paragon of the mentor-scholar-
academic.

Figure 8. Group photo from a conference in honor of Ruth
Williams at the IMA, 2016. https://www.ima.umn.edu
/2014-2015/SW6.25-27.15.

In San Diego, Ruth Williams met and married Bill Hel-
ton: a fellow UC San Diego mathematician who, like her,
straddles the divide between pure and applied mathemat-
ics. These days, they enjoy spending their leisure time out-
doors, gardening or hiking. He has been her constant com-
panion and, in recent years, occasional collaborator. As
it happens, her initial forays into systems biology applica-
tions included her first paper coauthored with Gheorghe
Craciun and Bill Helton, on homotopymethods for count-
ing equilibria in dynamic models of chemical reaction net-
works.

Williams is as active as ever, finding new ways to use
mathematics to explain the world around us. Her current
major research interests include stochastic models in sys-
tems biology, and entropy methods in the analysis of sto-
chastic processing networks. On the first front, she has

collaborated with the biodynamics lab at UC San Diego,
led by Jeff Hasty and Lev Tsimring, on enzymatic pro-
cessing networks. In connection with this area, she has
worked with a PhD student, David Lipshutz, on (stochas-
tic) differential delay equations relating to delayed protein
degradation. Stochastic modeling of genetic circuits holds
the promise of new understanding in cellular and molec-
ular biology, a rapidly expanding quantitative field. She
is currently collaborating with Domitilla Del Vecchio and
RonWeiss at MIT on stochastic modeling of epigenetic cell
memory.

On the second front, Williams’ current work using
entropy-like notions has been very fruitful in analyzing
fluid limits of certain non-HL systems: bandwidth sharing
networks. These constitute just one of a huge number of
non-HL real world networks, and there are many reasons
to believe the Lyapunov approach can help understand
these. This has the potential to make a huge impact on
the field, since the relationship between bandwidth shar-
ing models and more general non-HL stochastic process-
ing networks is analogous to the relationship between ba-
nanas and non-banana fruits. RuthWilliamswill no doubt
leave a lasting mark on these problems—as she is fond of
saying, “I eat problems for breakfast.”
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