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Towards Making LMIs Automatically

1 Introduction

In control theory applications of optimization problems, one comes across constraints on
noncommuting variables in the form of matrix inequalities involving rational functions of
matrix variables. The inequality

PA+ ATP + (PB + CTD)R−1(PB + CTD)T + CTC < 0

is an example of an inequality involving a rational function of several matrix variables.
Since matrix multiplication does not commute, we must deal with these rational functions of
matrix varaibles as rational functions in noncommuting indeterminants when manipulating
these expressions algebraically. When these inequalities involving rational functions of matrix
variables can be written in the form of linear matrix inequalities, there are reliable numerical
algorithms for finding optimal solutions in a feasiblity domain. To this end, it is in our interest
to study the relationships between positivity sets of rational functions in noncommuting
variables and LMIs.

Consider x = (x1, . . . , xg) a vector of noncommuting indeterminants. Define a NC linear
pencil (NC stands for noncommutative) as a function, L(x, xT ), that can be written as

L(x, xT ) = A0 +

g∑
i=1

Aixi + Fix
T
i

for some matrices A0, Ai, Fi ∈ Rm×m for some m. For example if x = (x1, x2), then

L(x, xT ) :=

(
x1 + xT1 x2

xT2 1

)
=

(
1 0
0 0

)
x1 +

(
1 0
0 0

)
xT1 +

(
0 1
0 0

)
x2 +

(
0 0
1 0

)
xT2 +

(
0 0
0 1

)
is an NC linear pencil. Also notice that a Schur complement of L(x, xT ) is

r(x, xT ) := x1 + xT1 − x2x
T
2 .

Using some basic facts about Schur complements we can conclude that for any tuple of m×m
matrices (X,XT ),

L(X,XT ) > 0 iff r(X,XT ) > 0.

The types of realizations that we will be discussing involve writing NC rational functions
as Schur complements of NC linear pencils.

Theorem 3.1 Suppose that r(x, xT ) is a symmetric NC rational function. Then there
exists a symmetric NC linear semi-pencil L(x, xT ) such that r(x, xT ) is the Schur comple-
ment of L(x, xT ). In the case that all of the xi are symmetric, there exists a symmetric NC
linear pencil L(x) whose Schur complement is r(x).
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The fact that all symmetric NC rational functions can be realized as the Schur comple-
ment of a symmetric NC linear pencil is not a new result (e.g. Berstel & Reutenauer, 1988.)
The question of how one can construct such a linear pencil is answered in this paper. We
will give a more constructive proof that all symmetric NC rational functions are Schur com-
plements of NC linear pencils. From this easy proof an algorithm for construcing the pencil
in question readily follows. The resulting algorithm has been implemented under the NC
Algebra package for Mathematica.

To prove that all symmetric NC rational functions are realizable as Schur complements
of linear pencils, we will first need a different type of realization. We say that a rational
function, r(x, xT ), has a CGB representation if there exist some d ∈ N, B,C ∈ Rd and a
d× d NC linear pencil G(x, xT ) so that

r(x, xT ) = CTG(x, xT )−1B.

For example consider again
r(x, xT ) := x1 + xT1 − x2x

T
2 .

Using Lemma 2.1 one can see that

r(x, xT ) = CTG(x, xT )−1B

when

C =


0
1
0
1
0
0

 , G(x, xT ) =


x1 + xT1 1 0 0 0 0

1 0 0 0 0 0
0 0 y −1 0 0
0 0 −1 0 0 1
0 0 0 0 yT 1
0 0 0 0 1 0

 and B =


0
1
0
0
0
1

 .

Theorem 2.2 All NC rational functions have a CGB representation.

Given a symmetric rational function we use this CGB representation to find a symmetric
NC linear pencil whose Schur complement is the given rational function.

1.1 Notation

Again, let x = {x1, . . . , xg} denote noncommuting indeterminants. Let N∗(x) denote the
free R-algebra on the 2g generators {x, xT} = {x1, . . . , xg, x

T
1 , . . . , x

T
g }, i.e. the noncom-

mutative polynomials on those 2g generators. The algebra has a natural involution de-
termined by xj 7→ xTj , xTj 7→ xj, and supposing that w is a word in {x, xT}, say w =
z1 · · · zn, then wT = zTn · · · zT1 . We say that p(x, xT ) ∈ N∗(x, xT ) is symmetric if p(x, xT ) =
(p(x, xT ))T . Let p(x, xT )−1 denote the inverse of p(x, xT ) satisfying p(x, xT )−1p(x, xT ) = 1 =
p(x, xT )p(x, xT )−1 and thus (p(x, xT )−1)T = (p(x, xT )T )−1. Let the NC rational functions
of {x, xT} with real coefficents, 1 denoted by R∗(x), be the closure of N∗(x) under finite

1We do not address the complicated issue of when two rational expressions are the same. Fortunately it
is not needed here since there may be many different realizations for a single rational function.
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numbers of inversions, products, transposes, and sums. Define r(x, xT ) to be symmetric if
(r(x, xT ))T = r(x, xT ). When the xi are assumed to be symmetric denote the polynomials
as N (x) and the rationals as R(x).

This article describes elementary constructions of “system realizations” of multivariable
noncommutative symmetric rational functions. The type of system realization that we pro-
duce is most easily defined as a Schur complement of a symmetric NC linear pencil where
these new terms are defined as below.

For a d × d matrix L(x, xT ) call L a NC linear semi-pencil if the entries of L are
polynomials in N∗(x) of degree one or less. We say that a d× d matrix L(x) is a NC linear
pencil if the entries of L are polynomials in N (x) of degree one or less.

Recall that if M =

(
A B
C D

)
is a block 2× 2 matrix, then

M−1 =

(
A−1 + A−1BS−1

1 CA−1 −A−1BS−1
1

−S−1
1 CA−1 S−1

1

)
(1.1) it:e11

when A and S1 = D − CA−1B are invertible. Or equivalently,

M−1 =

(
S−1

2 −S−1
2 BD−1

−D−1CS−1
2 D−1 +D−1CS−1

2 BD−1

)
(1.2) it:e12

when D and S2 = A − BD−1C are invertible. The matrices S1 and S2 are called Schur
complements of M .

1.2 Symmetric Rational Functions in Symmetric Indeterminants

Suppose that x = {x1, . . . , xg} is a vector of symmetric noncommuting indeterminants. In
addition suppose that

L(x) = A0 + A1x1 + · · ·+ Agxg

is a symmetric NC linear pencil where Ai ∈ Rd×d are symmetric for all i. We say that L(x)
is pinned provided that there exists some v ∈ Rd such that Aiv = 0 for all 1 ≤ i ≤ g. We
call v the vector pinning the pencil. Otherwise the pencil is unpinned.

Consider a symmetric descriptor realization

r(x) = D + C(J − L(X))−1CT

for some NC linear pencil L(x) with A0 = 0 of a given symmtric rational function r(x). We
say that the realization is observable if the following condition is satisfied

CJAwv = 0 for all words w

implies v = 0. Controllable means that the span of (JAw)TCT is all of Rd. The realization
is called minimal if it is both controllable and observable. By symmetry controllability and
observability are equivalent.

Due to recent work of Helton and collaborators we know the following result:
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Theorem 1.1 (HMV in prep) Consider a symmetric descriptor realization

r(x) = D + C(J − L(x))−1CT .

of r which is controllable (so observable as well). Assume is matrix convex to the extent that
there exists an ε > 0 so that

1

2
r′′(X)[H] = C(J − L(X))−1L(H)(J − L(X))−1L(H)(J − L(X))−1CT

is finite and positive semidefinite for all |X| < ε and all H.
(1) The symmetric pencil J − L(X) is unpinned implies J is positive definite. Wlog we

can take J = I.
(2) More generally even if the realization is pinned, then define

α0 :=
(
A1 A2 . . . Ag

)
and let Pα0 denote the orthogonal projection onto the range of α0, then Pα0JPα0 is positive
semidefinite. Moreover when r is a single NC rational function rather than a matrix of
NC rational functions, the pinning space has dimension at most one, so the codimension of
Range α0 is at most one. This implies that J has at most one negative eigenvalue.

Given a symmetric convex rational function r(x) it is not difficult to show that the
algorithm presented in this paper will produce a descriptor realization. If that realization
were minimal and unpinned, then as a consequence of the above result the sublevel sets for
r(x) will be equivalent to LMIs. So we face two clear problems with our realization.

1. Our realization is not necessarily minimal. The issue of taking our realization and
writing an equivalent minimal realization is not difficult however.

2. After we find a minimal realization it may will be a pinned realization. The issue of
“unpinning” a realization is still open.

If we can indeed unpin minimal realizations, then the algorithm presented in this paper
would be a first step towards making LMIs automatically from sublevel sets of symmetric
rational functions.

1.3 LMIs
sec:lmi

In many practical optimization problems when one can write inequality constraints in the
form of linear matrix inequalities, there are very reliable numerical algorithms to solve the
optimization problem. Our overall goal would be to write a set of inequality constraints
given as rational functions in the form of an LMI.

Given a rational function r(x) in symmetric inderminants x = (x1, . . . , xg) we can define
the positivity domain of r to be

Dr := {X ∈ Rng×n for some n : r(X) > 0 and XT
i = Xi}.
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The component of Dr containing 0 we will denote as D0
r . Given a symmetric NC linear pencil

L(x) define similarly

DL := {X ∈ Rng×n for some n : L(X) > 0 and XT
i = Xi}.

Finding a symmetric NC linear pencil L(x) so that DL = D0
r is what is meant by writing

the positivity set of a rational function as an LMI.

1.4 Outline

In Section
s2
2 we will prove the existence of a representation of the functions in R∗(x) that will

be used in Section
s3
3. We will prove the main realization theorem in Section

s3
3. In Section

s4
4

we will generalize the results of Sections
s2
2 and

s3
3 to include matrix valued rational functions.

Finally, in Section
s5
5, we will discuss briefly the algorithms that NC Algebra uses to find the

representations of interest.

2 A Representation of Functions in R∗(x)
s2

In this section we will show that for every r(x, xT ) ∈ R∗(x) there exist vectors C and B in
R
d and a d×d NC linear semi-pencil G(x, xT ) such that r(x, xT ) = CTG(x, xT )−1B. We will

call such a function r(x, xT ) CGB representable and let Z(x, xT ) denote the set of CGB
representable functions in R∗(x).

2.1 Some Properties of Z(x, xT )

it:l211L21

Lemma 2.1
1. Suppose that r(x, xT ) ∈ N∗(x) is a degree one or less polynomial.

Then r(x, xT ) ∈ Z(x, xT ).

it:l212 2. Suppose that

r1(x, xT ) = CT
1 G1(x, xT )−1B1 ∈ Z(x, xT ) and r2(x, xT ) = CT

2 G2(x, xT )−1B2 ∈ Z(x, xT )

for some NC linear semi-pencils G1(x, xT ) and G2(x, xT ). Then

(a) r1(x, xT ) + r2(x, xT ) ∈ Z(x, xT ),

(b) r1(x, xT )r2(x, xT ) ∈ Z(x, xT ), and

(c) (r1(x, xT ))T ∈ Z(x, xT ).

it:l213 3. Suppose that r(x, xT ) = CTG(x, xT )−1B for some NC linear semi-pencil G(x, xT ) and
that r(x, xT ) 6= 0. Then r(x, xT )−1 ∈ Z(x, xT ).

The proof gives constructions for each of the above items.
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1. Suppose that r(x, xT ) ∈ N∗(x) and r is degree one or less. Then

r(x, xT ) =
(
1 0

)(0 1
1 −r(x, xT )

)−1(
1
0

)
. (2.3) e23

So r ∈ Z(x, xT ).

2. (a) Notice that r1(x, xT ) + r2(x, xT ) =

(
CT

1 CT
2

)(G1(x, xT ) 0
0 G2(x, xT )

)−1(
B1

B2

)
. (2.4) e24

So r1(x, xT ) + r2(x, xT ) ∈ Z(x, xT ).

(b) Notice that(
−G1(x, xT ) B1C

T
2

0 G2(x, xT )

)−1

=

(
−G1(x, xT )−1 G1(x, xT )−1B1C

T
2 G2(x, xT )−1

0 G2(x, xT )−1

)
.

So then (
CT

1 0
)(−G1(x, xT ) B1C

T
2

0 G2(x, xT )

)−1(
0
B2

)
(2.5) e25

= CT
1 (G1(x, xT )−1B1C

T
2 G2(x, xT )−1)B2 = r1(x, xT )r2(x, xT ).

Thus r1(x, xT )r2(x, xT ) ∈ Z(x, xT ).

(c) Since
(r1(x, xT ))T = BT

1 G1(x, xT )−TC1, (2.6) ep24

we have that (r1(x, xT ))T ∈ Z(x, xT ).

3. Notice that by equation
it:e11
1.1,

(
0 1

)(−G(x, xT ) B
CT 0

)−1(
0
1

)
= (CTG(x, xT )−1B)−1 = r(x, xT )−1 (2.7) e26

when r(x, xT ) 6= 0. Thus when r(x, xT ) 6= 0, we have r(x, xT )−1 ∈ Z(x, xT ). q.e.d.

2.2 The Existence Theorem

it:p22 Theorem 2.2 Every r(x, xT ) ∈ R∗(x) is CGB representable.

Proof:
By Lemma 2.1.1 we see that all NC polynomials of degree one or less are CGB representable.
Thus since each p(x) ∈ N∗(x) can be written as a finite sum of finite products of degree one
or less NC polynomials and by Lemma 2.1.2, we have that N∗(x) ⊆ Z(x, xT ). Therefore by
the closure properties of Lemma 2.1.2 and Lemma 2.1.3 and the construction of R∗(x) we
have that R∗(x) ⊆ Z(x, xT ). q.e.d.
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3 The Pencil Result
s3

In this section we will prove that any symmetric r(x, xT ) ∈ R∗(x) can be written as a Schur
complement of some symmetric NC linear semi-pencil.

3.1 The Realization Theorem

it:p31 Theorem 3.1 Suppose that r(x, xT ) ∈ R∗(x) is symmetric. Then there exists a symmetric
NC linear semi-pencil L(x, xT ) such that r(x, xT ) is the Schur complement of L(x, xT ). In
the case that all of the xi are symmetric, there exists a symmetric NC linear pencil L(x)
whose Schur complement is r(x).

Proof:
From Proposition

it:p22
2.2, there exist C1, B1 ∈ Rd and a d × d NC linear semi-pencil G1(x, xT )

such that 1
2
r(x, xT ) = CT

1 G1(x, xT )−1B1. Define now

C :=

(
C1

0

)
, B :=

(
0
B1

)
, and G(x, xT ) :=

(
0 (G1(x, xT ))T

G1(x, xT ) 0

)
. (3.8) e37

Notice we have 1
2
r(x, xT ) = CTG(x, xT )−1B and G is symmetric. Consider now the symmet-

ric NC linear semi-pencil L(x, xT ) defined as follows

L(x, xT ) :=



0 1 CT 1 0 0 CT

1 1 BT 0 0 0 0
C B D 0 0 0 0
1 0 0 −1 −BT 0 0
0 0 0 −BT −D 0 0
0 0 0 0 0 −1 −BT

C 0 0 0 0 −B −D


(3.9) e38

where D := G(x, xT ) +BBT . Now taking the Schur complement as in S2 of equation
it:e12
1.2 we

have Schur complement(L(x, xT ))

= −
(
1 CT

)( 1 BT

B D

)−1(
1
C

)
+
(
1 0

)( 1 BT

B D

)−1(
1
0

)
+
(
0 CT

)( 1 BT

B D

)−1(
0
C

)
Now by equation

it:e11
1.1 we have(

1 BT

B D

)−1

=

(
1 +BTG(x, xT )−1B −BTG(x, xT )−1

−G(x, xT )−1B G(x, xT )−1

)
.

So Schur complement(L(x, xT )) = CTG(x, xT )−1B +BTG(x, xT )−1C = r(x, xT ) since r and
G are symmetric. When the xi are symmetric, L(x) := L(x, xT ) will clearly be a symmetric
NC linear pencil. q.e.d.
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3.2 A Remark on Applications

In some engineering problems one might encounter a rational function similar to those in this
paper. One possible difference between those encountered in practice and those discussed so
far may be that some of the “indeterminants” are actually known. For example, one might
be interested in a Riccati expression

R(X) := AX +XAT −XBBTX + CTC

when A,B,C are known and X = XT is unknown. Treating each variable as an indetermi-
nant, one can easily see that R(X) is a rational function in the sense defined earlier. Thus
there is a symmetric NC linear pencil whose Schur complement is equal to R(X). However
in the case that some of the variables in x = (x1, . . . , xg) are known, we may consider a
modified definition of NC linear pencil. Instead of saying that the entries of the pencil are
degree one or less polynomials, we can loosen the requirement on the entries and say that
each term can have one or fewer factors that is an unknown variable. For example, looking
back at the Ricatti scenario,

p1(X) := AX +XAT + CTC

would be an acceptable entry in a linear pencil while

p2(X) := XBBTX

would not. Notice that this new definition of NC linear pencil would not change any of the
results so far – it only expands the class of NC linear pencils. Indeed

L(X) :=

(
AX +XAT + CTC XB

BTX 1

)
would be a NC linear pencil whose Schur complement is R(X).

4 Matrix Valued Rational Functions
s4

In this section we will show that both Theorem
it:p22
2.2 and Theorem

it:p31
3.1 generalize to the case

of matrix valued rational functions. By matrix valued rational functions we mean m × n
matrices W (x, xT ) with coefficents in R∗(x).

4.1 Generalizing Theorem
it:p22
2.2

To begin, we must extend what is meant by CGB representable. If W (x, xT ) is a m × n
matrix valued rational function, then W (x, xT ) is called CGB representable when there
exist d ∈ N,CT ∈ Rm×d,B ∈ Rd×n, and a d × d NC linear semi-pencil S(x, xT ) such that
W (x, xT ) = CTS(x, xT )−1B.

it:p41 Theorem 4.1 Every matrix valued rational function is CGB representable.
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Proof:
Suppose that W (x, xT ) = (ri,j(x, x

T ))m,ni,j=1 for some ri,j(x, x
T ) ∈ R∗(x). Then by Theorem

it:p22
2.2 for each i, j there exist Ci,j, Bi,j ∈ Rdi,j and a di,j × di,j NC linear semi-pencil Gi,j(x, x

T )
such that ri,j(x, x

T ) = CT
i,jGi,j(x, x

T )−1Bi,j. Now define

CT :=


CT

1,1 · · · CT
1,n 0 · · · 0 · · · 0 · · · 0

0 · · · 0 CT
2,1 · · · CT

2,n · · · 0 · · · 0
...

. . .
...

0 · · · 0 0 · · · 0 · · · CT
m,1 · · · CT

m,n

 ,

S(x, xT ) :=



G1,1 · · · 0
...

. . .
...

0 · · · G1,n

0 · · · 0
...

. . .
...

0 · · · 0

· · ·
0 · · · 0
...

. . .
...

0 · · · 0
0 · · · 0
...

. . .
...

0 · · · 0

G2,1 · · · 0
...

. . .
...

0 · · · G2,n

· · ·
0 · · · 0
...

. . .
...

0 · · · 0
...

...
. . .

...
0 · · · 0
...

. . .
...

0 · · · 0

0 · · · 0
...

. . .
...

0 · · · 0

· · ·
Gm,1 · · · 0

...
. . .

...
0 · · · Gm,n



,

B :=



B1,1 · · · 0
...

. . .
...

0 · · · B1,n

B2,1 · · · 0
...

. . .
...

0 · · · B2,n
...

Bm,1 · · · 0
...

. . .
...

0 · · · Bm,n



.

Let d =
m,n∑
i,j=1

di,j. Notice that CT ∈ Rm×d,B ∈ Rd×n, and S(x, xT ) is a d × d NC linear

semi-pencil. In addition it is an easy computation to show that W (x, xT ) = CTS(x, xT )−1B.
Thus we have that every matrix valued rational function is CGB representable. q.e.d.

4.2 Generalizing Theorem 3.1

it:p42 Theorem 4.2 Suppose that W (x, xT ) ∈Mm(R∗(x)) is symmetric. Then there exists a sym-
metric NC linear semi-pencil L(x, xT ) such that W (x, xT ) =Schur Complement(L(x, xT )).
In the case that all of the xi are symmetric, there exists a symmetric NC linear pencil L(x)
whose Schur complement is W (x).
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Proof:
By Theorem

it:p41
4.1 there exist d ∈ N, CT

1 ∈ Rm×d, B1 ∈ Rd×m, and a d × d NC linear semi-
pencil G1(x, xT ) such that 1

2
W (x, xT ) = CT

1 G1(x, xT )−1B1. From this point the proof follows
identically to that of Proposition

it:p31
3.1. q.e.d.

5 Symbolic Computation of Realizations
s5

The theorems in this paper convert readily to computer algorithms for finding realizations.
In fact they were enhanced and implemented by John Shopple under the NC Algebra package
for Mathematica.

The most basic algorithms coming from ideas presented in the paper come from Lemma
L21
2.1. The corresponding functions manipulate given CGB representations in a way that cor-
responds to some algebraic manipulation of the given rational expression. The function
LPInverse takes a CGB representation for a rational expression as input and outputs the
CGB representation for the inverse of the given rational expression by implementing Equa-
tion

e26
2.7. Similarly the function LPTranspose takes a CGB representation for some rational

expression as input and outputs the CGB representation of the transpose of the given ex-
pression by implementing Equation

ep24
2.6. Given the CGB represenations for two rational

expressions, the functions LPCombinePlus and LPCombineTimes output the CGB represen-
tation of the sum and product of the given rational expressions. The formulas for the output
of these two functions can be read off of Equations

e24
2.4 and

e25
2.5.

The function NCMultiRealization takes as inputs a NC rational expression and a list
of indeterminants and then outputs a CGB representation for the given rational expression.
The algorithm is recursive. It first determines whether the rational expression is linear or not.
If the expression is linear, then the CGB representation (given by equation

e23
2.3) is returned.

If not, then the function looks at the top operation (the Head) that is used in the definition
of the expression, e.g. Plus, inv, tp, NonCommutativeMultiply, or Times. Then the
function calls (and returns the output of) the appropriate function from LPCombinePlus,

LPInverse, LPTranspose, and LPCombineTimes. The inputs for the CGB manipulating
functions in the function calls from NCMultiRealization will be NCMultiRealization ap-
plied to each argument of the Head (thus the recursion.) As an example, suppose that

r(x, xT ) = x+ x ∗ ∗xT .

Here the ∗∗ represents NonCommutativeMultiply and the Mma Head of the representation
for r(x, xT ) is Plus. If NCMultiRealization is called with inputs r(x, xT ) and {x, xT}, then
the function will return

LPCombinePlus
[
NCMultiRealization[x, {x, xT}], NCMultiRealization[x ∗ ∗xT , {x, xT}]

]
where NCMultiRealization[x ∗ ∗xT , {x, xT}] returns

LPCombineTimes
[
NCMultiRealization[x, {x, xT}], NCMultiRealization[xT , {x, xT}]

]
.

Since the expressions x and xT are linear, NCMultiRealization with inputs given by x or
xT and {x, xT} will return CGB representations given by Equation

e23
2.3.
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The function CGBtoPencil takes a CGB representation for some symmetric rational
expression r(x, xT ) and returns a symmetric NC linear semi-pencil whose Schur complement
is r(x, xT ). The algorithm can be read off from the proof of Theorem

it:p31
3.1. In particular, the

function redefines the given C,G, and B as in
e37
3.8 also multiplying C by 1

2
. Then it returns

a symmetric NC semi-pencil exactly as in equation
e38
3.9.

The function NCFindPencil takes a symmetric rational expression and a list of inde-
terminants and outputs a symmetric NC linear semi-pencil whose Schur complement is the
given rational expression. The function NCFindPencil calls NCMultiRealization with the
given rational expression and list of indeterminants as input. The function then sends the
output of NCMultiRealization to CGBtoPencil whose output is the desired realization.

There are also functions written to deal with the case of matrix valued rational functions.
The functions CGBtoPencilMatrix and NCFindPencilMatrix are almost exactly as those
above – the exceptions are in NCFindPencilMatrix the input is a matrix valued rational
function and it calls NCMatrixMultiRealization rather than NCMultiRealization. The
algothithm for NCMatrixMultiRealization follows from the proof of Theorem

it:p41
4.1. Indeed if

the matrix valued rational function W (x, xT ) = (ri,j(x, x
T ))m,ni,j=1 is input, then the function

will find a CGB representation for each ri,j(x, x
T ) using NCMultiRealization. It then

returns a CGB representaion for W (x, xT ) using the equations in the proof of Theorem
it:p41
4.1.
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