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Chapter 1

Introduction

The title of my thesis is ‘Modeling and Control, of Glycolysis in Trypa-
nosoma brucei’. This report is addressed to all researchers interested in
the above mentioned subject, both mathematicians an biologists. The main
problem of this project is development of control theory for biochemical
reaction networks.

The theory discussed in this report will be applied to the model of glycoly-
sis of Trypanosoma brucei, as described in the thesis of B.M. Bakker. The
biochemical model is developed by P. Michels and co-workers, from the In-
stitute for Cellular Pathology, Université Catholique de Louvain, Brussels,
Belgium.

Trypanosoma brucei is the parasite that causes the African sleeping disease.
This disease is transmitted to humans through the bite of a tsetse fly. Try-
panosoma brucei is a unicellular, eucaryotic organism. The tsetse fly feeds
itself with the blood of animals and humans. When a person is bitten by
an infected fly, Trypanosoma brucei proliferate and invades almost all the
organs of the body of the host.

In most cases the immune system of the host can destroy the parasites, but
some Trypanosomes can attack the immune system, and finally destroy it. In
this phase symptoms of human trypanosomiasis are high fever, a headache,
weakness, and pruritus. In advanced stages of the disease the parasite will
invade the central nervous system, this is the reason of behavior change of
patients. Another common symptom in the advanced stage is sleeping for
long periods of the day and having insomnia at night. When the disease
is untreated the person will die within several months or years after the
infection [24], [25].

For the above disease very little medication is available, and the drugs
that are available are often not working very effectively. We know that
Trypanosomes live in the bloodstream of humans where its ATP supply
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is depending only on glycolysis. This when glycolysis cannot take place,
Trypanosoma brucei do not have any energy supply. This, the pathway of
glycolysis can be important for rational drug design.

During glycolysis in Trypanosoma brucei, glucose is converted into pyruvate
and glycerol in several steps. During this process ATP is produced, which is
the cells energy supply. In Trypanosoma brucei glycolysis takes place in an
organelle called the glycosome. In humans glycolysis will take place in the
cytosol. An idea for drug design is using the glycolysis to control the output
variables, which can be ATP or Pyruvate. In this report control is applied
on the particular biochemical reaction network of Trypanosoma brucei.

Before discussing the main problem of this report a positive dynamical sys-
tem is obtained for the model of glycolysis in Trypanosoma brucei, after
this dynamical system properties, positivity and steady state will be dis-
cussed. Finally control of biochemical reaction networks shall be discussed.
The structure of the chapters is first describing the theory, which is used
and mentioning several ideas. Afterwards the theory will be applied on the
biochemical model of glycolysis in Trypanosoma brucei. The methods are
explained in my report, but most of the results are denoted in the appendix.
In the remainder of this chapter the general contents of each chapter will be
mentioned.

In Chapter 2 the main problem of this report is formulated in more detail.
Also several motivations for this problem are discussed.

In Chapter 3 continuous-time positive dynamical systems for biochemical
reaction networks are obtained. First in Section 3.1 obtaining a biochemical
model is discussed. Single reactions in a reaction network are described,
which can be combined to a network of reaction equations. This is followed
by a procedure for determining a biochemical reaction network for the model
of glycolysis in Trypanosoma brucei in Section 3.2.

To understand biochemical reaction networks a mathematical model will be
formulated in Section 3.4. A way to determine a mathematical model is to
formulate a dynamical system of differential equations of the reaction system
rate equations are used for this approach. The reaction kinetic that is used
for most rate equations in the model of glycolysis in Trypanosoma brucei is
Michaelis-Menten reaction kinetics. In Section 3.3 this will be discussed.

Finally in Section 3.5.1 the mathematical model for glycolysis in Trypano-
soma brucei formulated by B.B. Bakker is considered in [2]. This model con-
tains a set of differential equations, moiety equations, equilibrium equations
and equations for pools of species. The model will be translated first into
a model with mathematical notations as used in dynamical system theory.
Afterwards, reduction of state variables will take place and the system will
be converted. Finally, the output variables will be determined.
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Chapter 4 deals with system properties of rational dynamical systems. In
this chapter positivity and steady state of a dynamical system are discussed.
Since states of systems for biochemical reaction networks are concentrations,
these state variables have to be positive. In Section 4.1 definitions and the-
orems about positivity are mentioned. Afterwards in Section 4.2 positivity
of the model of glycolysis in Trypanosoma brucei is checked.

After discussing positivity, the property of steady state is considered in
Section 4.4. In this section questions about stability, asymptotic stability,
and globally asymptotic stability of a steady state are discussed. To discuss
these properties the articles [23], and [10], of respectively E.D. Sontag and
M. Feinberg are used. In Section 4.6 steady state values are determined
numerical for the model of glycolysis in Trypanosoma brucei.

In Chapter 5 control of dynamical system will be discussed, with respect
to the main problem. Motivations for this subject are problems that arise
in drug design, food processing, waste water treatment, and other biotech-
nology. These motivations are mentioned in Section 5.1. In this section we
first want to explain problems to control a specific output, by controlling
the input vector. Control theory can be used in this context.

In Section 5.2 the main problem, control of biochemical reaction networks
is formulated and four approaches to control biochemical reaction networks
with respect to drug design are discussed. These four approaches are: 1)
the method of simulation of the steady state, when putting random one or
combination of input variables equal to zero; 2) metabolic control theory; 3)
control design via abstraction and graph algorithms; 4) control theory for
zeroing outputs.

In Section 5.3 the method control design via abstraction and graph algo-
rithms, for control to rational drug design is explained in more detail, be-
cause this method will be applied on the model of glycolysis in Trypanosoma
brucei in Section 5.4. This method makes use of the graph of the biochem-
ical network. Afterwards the cut set method is applied to this graph. Then
it will be checked whether a path exist between inflow and outflow. Finally
results will be checked with the help of numerical simulation of a new steady
state.

In Chapter 6 our results are summarized and the main problem of this
report is discussed. Further some open questions that are not considered in
this report are mentioned.
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Chapter 2

Problem formulation

The aim of this project is the development of control theory for biochemical
reaction networks, in particular at the level of a cell of a biological orga-
nism. Motivations for this project are: 1) the understanding of the function
of the cell, both biochemically and mathematically; 2) rational drug design,
determination of chemical substances which inhibit one or more enzymes in
a micro-organism so as to disable this organism. This project is also moti-
vated by future biotechnology, such as using the cell to produce particular
chemicals. To work out these goals mathematics can be used, such as control
and system theory.

In this project the main problem is to develop control theory. This involves
modeling biochemical reaction networks as dynamical control systems and
analysis of dynamical system properties of such systems. The mathema-
tical model of a biochemical reaction network is in the form of a dynamical
system described by a differential equation and algebraical equations. The
problem of the project includes development of control laws for zeroing one
or more particular outflows based on zeroing of input functions by inhibiting
of particular reactions. Finally the problem includes development of control
laws to increase one or more particular outflows of the network. This is not
including in this report.

The approach to the above problem is the use of control and system theory,
in particular for rational positive systems. First a biological model for a
biological phenomenon is formulated, followed by a formulation of a mathe-
matical model, as a system of differential equations and algebraic equations.
After making a model, dynamical system properties such as positivity of the
system, and steady state are determined. Specific questions are to how to
determine whether the steady state exists, whether it is unique, and whether
it is globally asymptotically stable. The last step is control for rational drug
design. The existence problem of an enzyme which is inhibited, results for
example in a zeroing of the ATP outflow. This problem can be transformed
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into the existence problem of a path in a graph. Inhibition of the production
of ATP can be done by limiting the enzyme concentrations in a continuous
way. For that situation one also wants to determine whether there exists a
new steady state and whether it is unique and asymptotically stable.
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Chapter 3

Dynamical systems for

biochemical reaction

networks

Phenomenon with a dynamic evolution in time are investigated in many
diverse areas. Examples of such phenomena are in biology, engineering, eco-
nomics, physics, and chemical processes. In biology we can consider for ex-
ample the cycle of a yeast cell or gene expression in the yeast cell. In this
chapter modelling for biochemical reaction networks is considered.

In biochemical modeling, models are formulated for biological phenomena.
The procedure consists of two steps: 1) from the biological phenomenon to
the biological model; 2) from a biological model to a mathematical model.

An example of modeling is that of glycolysis in Trypanosoma brucei. This
example is used throughout this report. So first the biological organism of
Trypanosoma brucei is considered. For a biological or physical phenomenon
one formulates a biological or physical model. This model consist of a net-
work of reaction equations. In the case of glycolysis in Trypanosoma brucei it
consists of a network of reaction equations in an organelle called glycosome,
this is closely related to peroxisomes.

From a biological or physical model a mathematical model can be made
in the form of a dynamical system. A dynamical system is a mathematical
structure, often a set of differential equations, which describes the time evo-
lution of a phenomenon. A dynamical system has a state expressed as a
collection of numbers. The differential equations describe how the evolution
of the future state depends on the current state.

In this chapter the reader will find continuous-time positive dynamical sys-
tems for biochemical reaction networks. In a continuous-time positive dy-
namical system the state is a vector of positive real numbers. First a bio-
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chemical model is discussed, this is followed by a procedure for making a
dynamical model for glycolysis in Trypanosoma brucei.

3.1 Procedure of Biochemical Modelling

First a biochemical process is considered, in an eucaryotic cell or in a reactor
for example. One is interested in the functioning of a cell, by using the
increased knowledge of the genome of plants and animals. For example, in
the communication of the cell with the environment, which reactions take
place inside the cell, and what the influence of enzymes is at the reactions
inside the cell. To understand biochemical reaction networks, biochemists
and mathematicians try to make a mathematical model of the phenomenon,
from which they can obtain relations.

Before making a mathematical model a biochemical- or physical model has
to be made of a biochemical process. This means making a biochemical
reaction network of the process, or when the process is very easy, one single
reaction equation. Reactions in a biochemical reaction network are described
by single reaction equations, which can be combined to a network of reaction
equations. The reaction equations can be either reversible or irreversible.

So to make a biochemical reaction network one first has to investigate, which
reactions take place in the process. For example, when a cell is considered
one has to investigate which reactions take place inside and outside the cell.
This can be done experimentally by biologist or chemists. However it is not
always possible to find all single reaction equations of a network. Some net-
works are too complicated to find all the reaction equations experimentally,
other networks are simply too big. For example it can be that one does not
know which part of the DNA is responsible for a particular function. When
one has determined all of the single differential equations that play a role
in the network one can combine them to a system of reaction equations.
The processes that take place are often so big, that even if all the reaction
equations are known it impossible is to construct a network.

So first we consider single reaction equations. A single reaction equation
can be seen as an interaction between reactant molecules. Atoms or groups
of atoms rearrange resulting in breaking and forming chemical bonds in a
chemical reaction. A biochemical reaction consist of one of more substrates
that react, often with the help of enzymes, to form one or more products. A
biochemical reaction is always reversible, but often the rate of the backwards
reaction is very small and is neglected by biochemists and then we call the
reaction irreversible.

A single reaction is of the following type:

S1 + . . . + Sk � Sk+1 + . . . + Sn, for k, n ∈ N. (3.1)
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When this reaction is reversible, the reaction proceeds in both directions at
the same time, and when it is irreversible, the reaction proceeds in only one
direction, usually from left to right.

A biochemical reaction network is a system of biochemical reactions that
interact with each other. The product of one of the reactions in the network
can for example be a substrate, or a part of the substrates, for another
reaction in the network. In a system of biochemical reactions there are often
more species and complexes than in a single reaction equation. The number
of different biochemical reactions in the network is denoted by r.

The substrates and products that occur in the reaction equations are called
chemical species. The number of chemical species is denoted by n ∈ N and
by S the set of species is denoted. The object on the left side and the object
on the right side of a chemical reaction equation are called the complexes
of a chemical reaction equation. The number of complexes of the chemical
reaction is denoted by m ∈ N, and the set of complexes is denoted by
C. In a reaction equation a substrate can also be a complex. In a single
reaction equation the number of complexes is usually two, but when one
considers a network of reaction equations we shall see that the number of
complexes is more than two. So for reaction (3.1), S1, . . . , Sk denote the
substrates and Sk+1, . . . , Sn denote the products. Thus the set of species is
S = {S1, S2, . . . , Sn}. In this reaction equation S1 + · · · + Sk and Sk+1 +
· · · + Sn are the two complexes, so the set of complexes is C = {S1 + · · · +
Sk, Sk+1 + · · · + Sn}, with m = 2.

The stoichiometry of a biochemical reaction and a biochemical reaction net-
work is useful for the construction of a mathematical model. It is also an
essential characteristic of biochemical reaction networks. The stoichiometry
is the proportion of molecularities with which the substrates and products
react, so the amount of molecules of products and substrates in the reaction.
The signs of the stoichiometric coefficients depend on the direction of the
reaction. The chemicals on the left-hand side of a reaction equation are the
reactants. The stoichiometric coefficients for these substrates have a nega-
tive sign [13]. In reaction (3.1), S1, . . . , Sk, have stoichiometric coefficient
−1, for the forward reaction, because these substrates are consumed by the
reactions, and the products Sk+1, . . . , Sn all have stoichiometric coefficient
1, for the forward reaction equation. For the backward reaction equation
S1, . . . , Sk, have stoichiometric coefficient 1, and Sk+1, . . . , Sn have stoichio-
metric coefficient −1.

For a network with m complexes and n chemical species, a set of m column
vectors in Rn is introduced, called complex vectors. The entries of the column
vectors are the contributions of the species in the complexes. The column
vectors are denoted by b1, b2 . . . bm, the ordering of the numbering of the
complexes is not important. Usually an ordering follows directly from the
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network. Denote by bij the contribution coefficient of the jth species in the
ith complex is meant. So this is the jth species of the ith complex. Hence
the coefficients within the various complexes are all nonnegative numbers.
The complex vectors are dependent on the standard basis for Rn, denoted
by {e1, e2, . . . , en}. Here ei is the vector with entry 1 at the ith place and
with the other n − 1 entries zero. For reaction equation (3.1) the complex
vectors are

b1 = e1 + · · · + ek,

b2 = ek+1 + · · ·+ en.

Finally for each reaction of the network a stoichiometric reaction vector,
yi, i = 1, . . . , r, with r the number of reactions, is defined as the difference
between both complex vectors, then can be considered on both sides of
the specific reaction in the network. So yi = bk − bl means that in the
corresponding reaction equation the lth complex is consumed and the kth
complex is produced. So yi contains the stoichiometric coefficients of the ith
reaction. For example (3.1), the stoichiometric vectors are

y1 = b2 − b1 = (−1, . . . ,−1(k), 1, . . . , 1(n))′,
y2 = b1 − b2 = (1, . . . , 1(k),−1, . . . ,−1(n))′.

So one can see that the entries of the stoichiometric vector are exactly the
stoichiometric coefficients [10].

Chemical reactions are often catalyzed by enzymes, and so is Glycolysis in
Trypanosoma brucei. The enzymes bind to one or more of the reactants
of the reaction that they catalyze. By doing this the enzyme lower the ac-
tivation energy. This is the energy needed and by this the reaction rate
becomes higher. Enzyme molecules can collide and bind quicker to the sub-
strate molecules when the concentration of substrate molecules is higher.
This is also the case when the temperature is higher, but there is a limit.
When the temperature has passed this limit an enzyme becomes denatured
and ineffective. There are also inhibitors for the chemical reaction. Compet-
itive inhibitors bind to the same site as the substrate, so the substrate can
not bind the enzyme. Noncompetitive inhibitors are molecules that bind to
another site of the enzyme and reduce the rate of catalyzing the chemical
reaction. Enzyme kinetics is the study of the reaction rate of a chemical
reaction that is catalyzed by one or more enzymes. The following example
is an example of a reaction equation of a chemical reaction catalyzed by
enzymes.
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Example 3.1

E + A � EA � E + P

Here E denotes the enzyme, A the substrate and P the product of the chem-
ical reaction. First a molecule of substrate A, binds to a binding site of the
enzyme E. The result is a complex EA. Then the reaction A → P is cata-
lyzed by the enzyme and the product P occurs. Actually this is not a single
reaction equation, but one often writes

A
Enzyme
→ P.

The number of species is four in this reaction equation, n=4, and the num-
ber of complexes is equal to three, m=3. Here the set of species is S =
{E,A,EA,P} and the set of complexes is C = {E + A,EA,E + P}. For
this example the complex vectors in R4 are

b1 = (1, 1, 0, 0)′ ,

b2 = (0, 0, 1, 0)′ ,

b3 = (1, 0, 0, 1)′ .

The number of reaction equations, r, is four, so the stoichiometric vectors
are

y1 = b1 − b2 = (1, 1,−1, 0)′ ,
y2 = b2 − b1 = (−1,−1, 1, 0)′ ,
y3 = b3 − b2 = (1, 0,−1, 1)′ ,
y4 = b2 − b3 = (−1, 0, 1,−1)′ .

The following example is an example of a single reaction equation that is
catalyzed by an enzyme. This chemical reaction is the first reaction that
takes place in glycolysis.

Example 3.2

Glc + ATP
Hexokinase
−→ Glc-6-P + ADP.

This reaction is the first reaction of glycolysis. In this reaction glucose has
entered the cell and is phosphorylated by the enzyme hexokinase. Hexok-
inase transfers a phosphate group from ATP to glucose, yielding glucose
6-phosphate [6, p. 154].

In this example Glc, ATP, Glc-6-P and ADP denote species. In this reaction
one molecule of glucose can react with one molecule of ATP to produce one
molecule of glucose 6-phosphate and one molecule of ADP. In this reaction
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Glucose and ATP are the substrates and glucose 6-phosphate and ADP the
products. So Glc and ATP can represent respectively S1 and S2 in this reac-
tion and Glc-6-P and ADP can represent P1 and P2 respectively. As one can
check in this reaction n = 4 and m = 2. So then one has S = {S1, S2, P1, P2}
and C = {S1 +S2, P1 +P2}. By this the complex vectors of this example are

b1 = (1, 1, 0, 0)′ ,

b2 = (0, 0, 1, 1)′ .

The stoichiometric vector for this reaction equation is

y1 = b2 − b1 = (−1,−1, 1, 1)′ .

The following two examples are examples of biochemical reaction networks.
For these examples the set of species and the set of complexes is given, and
also the complex vectors and the stoichiometric vectors are determined.

Example 3.3

S1 + S2
- S3

- S4,
6

In this example S3 is produced by the substrates S1 and S2, while the product
S4 is produced by S3. From the product S4 the substrates S1 and S2 can
be produced by dissociation. In this biochemical reaction network n=4 and
m=3. The sets of species and complexes are S = {S1, S2, S3, S4} and C =
{S1 + S2, S3, S4}. The complex vectors for this system are

b1 = (1, 1, 0, 0)′ ,

b2 = (0, 0, 1, 0)′ ,

b3 = (0, 0, 0, 1)′ .

For this network r = 3, and by this the stoichiometric vectors are

y1 = b2 − b1 = (−1,−1, 1, 0)′ ,
y2 = b3 − b2 = (0, 0,−1, 1)′ ,
y3 = b1 − b3 = (1, 1, 0,−1)′ .

Example 3.4

S1 + S2
- S3 + S4

- S5 + S6,

The substrates S1 and S2 react with each other to form two substrates S3 and
S4. From S3 and S4 the products S5 and S6 can be produced. In this example
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the number of species is six, n = 6, and the number of complexes is 3, m = 3.
Now the sets of species and complexes are S = {S1, S2, S3, S4, S5, S6} and
C = {S1 + S2, S3 + S4, S5 + S6}. The complex vectors for this example are

b1 = (1, 1, 0, 0, 0, 0)′ ,

b2 = (0, 0, 1, 1, 0, 0)′ ,

b3 = (0, 0, 0, 0, 1, 1)′ .

The stoichiometric vectors of this network are

y1 = b2 − b1 = (−1,−1, 1, 1, 0, 0)′ ,
y2 = b3 − b2 = (0, 0,−1,−1, 1, 1)′

Now that a reaction equation and a reaction system have been explained,
the model of glycolysis in Trypanosoma brucei can be discussed.

3.2 Biochemical modelling of glycolysis in Trypa-

nosoma brucei

An example of a biochemical reaction network is glycolysis of Trypanosoma
brucei. First glycolysis shall be explained and then a biochemical reaction
network is formulated. Barbara Bakker has presented a biochemical reaction
network in her thesis, see [2, Ch. 2 ]. The biochemical model is developed
by P. Michels and co-workers, from the Institute for Cellular Pathology,
Université Catholique de Louvain, Brussels, Belgium.

Trypanosoma brucei causes the African sleeping disease. During part of its
life cycle Trypanosoma brucei lives freely in the bloodstream and other extra-
cellular fluids of its mammalian host. By bites of the tsetse fly Trypanosoma
brucei can be transferred from one host to another host. Trypanosoma brucei
has neither have a Krebs cycle nor oxidative phosphorylation and it does
not store carbohydrates. Thus in the bloodstream of the host, Trypanosoma
brucei obtains its free energy, ATP, solely from glycolysis. During glycolysis,
glucose is converted into pyruvate. Glycolysis in Trypanosoma brucei differs
from glycolysis in other eukaryotes, such as humans. A part of the glycolysis
of Trypanosoma brucei takes place in organelles called glycosomes, namely
the conversion from glucose in 3-Phosphoglycerate (3-PGA). About 90 % of
the proteins in the glycosomes consists of glycolytic enzymes, that is why
the organelle is called glycosome. Glycosomes are evolutionary and func-
tionally closely related to peroxisomes. The last two steps to pyruvate take
place in the cytosol of the cell. First glucose has to be transported across the
plasma membrane and the glycosomal membrane. When glucose enters the
glycosome it is converted to 3-phosphoglycerate (3-PGA) in the glycosome
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in several steps. After glucose is converted into 3-PGA, 3-PGA is converted
into pyruvate in the cytosol.

Glucose enters the glycosome by first entering the cytosol from outside the
cell by a glucose transporter ([6], [2]), after which it enters the glycosome
by an other glucose transporter,

Glcex ←→ Glcc ←→ Glcg.

When glucose enters the glycosome it is phosphorylated into glucose 6-
phospate (Glc-6-P) by the enzyme Hexokinase. Hexokinase transfers a phos-
phate group from ATP to Glucose. The product, Glc-6-P is more chemically
reactive than Glucose. The single phosphorylation reaction is the following:

Glcg + ATPg
HK
−→ Glc-6-Pg + ADPg.

Then Glucose 6-phospate is rearranged to convert it to Fructose 6-phosphate
by the enzyme Glucosephosphate isomerase (PGI). This occurs in a re-
versible reaction, and gives the reaction equation

Glc-6-P
PGI
←→ Fru-6-P.

In the following step, another molecule of ATP is invested in glycolysis. An
enzyme, Phosphofructokinase (PFK), transfers a phosphate group from ATP
to the sugar Fructose 6-phosphate, to produce Fructose 1,6-bisphosphate by
the following reaction:

Fru-6-Pg + ATPg
PFK
−→ Fru-1,6-BPg + ADPg.

Now two molecules of ATP are invested in the glycolysis. Fructose 1,6-
bisphosphate consists of two phosphate groups on both opposite ends. An en-
zyme, Fructose-1,6-bisphosphate aldolase (Fru-1,6-BP) cleaves the molecule
of Fructose1,6-bisphosphate into Dihydroxyacetone phosphate (DHAP) and
Glyceraldehyde-3-phosphate (GA-3-P), both three carbon sugars. So the re-
action by Fru-1,6-BP aldolase, produce DHAP and GA-3-P from Fru-1,6-BP,
in the following reversible reaction equation:

Fru-1,6-BPg
ALD
←→ DHAPg + GA-3-Pg.

Triosephosphate isomerase (TIM) is an enzyme that catalyzes the reversible
conversion between DHAP and GA-3-P,

DHAPg
TIM
←→ GA-3-pg.

When only this single reaction can take place, this reaction reaches equilib-
rium. But in the glycosome this does not happen, because other enzymes
use DHAP and GA-3-P as substrate.
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From this point on two branches in glycolysis of Trypanosoma brucei are
considered. Starting with DHAP, glycerol is produced after a few steps, and
starting with GA-3-P, 3-PGA, and from this pyruvate is produced. In the
reactions above, ATP consumption is considered, but in the following steps
ATP is produced.

Now the enzyme Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), cat-
alyzes the reaction from GA-3-P to 1,3-Bisphosphoglycerate (1,3-BPGA).
The sugar GA-3-P is oxidized by the transfer of electrons and H+ to NAD+,
forming NADH. The enzyme uses the energy released from the oxidation re-
action, to attach a phosphate group to the oxidized substrate. The product
1,3-BPGA has a very-high potential energy. The following reaction equation
is considered:

GA-3-Pg + NAD+
g

GAPDH
←→ NADHg + 1,3-BPGAg.

The enzyme Phosphoglycerate kinase (PGK) transfers the phosphate group,
added by the reaction equation above, to ADP. So by this reaction ATP and
3-Phosphoglycerate are produced by release of one phosphate group from
1,3-BPGA. So the reaction equation is the following:

1,3-BPGAg + ADPg
PGK
←→ 3-PGAg + ATPg.

By this last reaction ADP is consumed and ATP is produced. After this
3-PGA is transported across the glycosomal membrane,

3-PGAg ↔ 3-PGAc,

and by the enzyme Phosphoglycerate mutase (PGM) the phosphate group
of 3-PGA is relocated. By this 3-PGA is converted in 2-Phosphoglycerate
(2-PGA),

3-PGAc
PGM
←→ 2-PGAc.

By the enzyme enolase (ENO) a double bond in 2-PGA is formed by ex-
tracting a water molecule, this produces Phosphoenolpyruvate (PEP),

2-PGAc
ENO
←→ PEPc.

This reaction results in rearranging of the electrons, which makes the phos-
phate bond very unstable. By this the reaction from PEP into pyruvate can
take place more easily. In this reaction the phosphate group from PEP is
transferred to ADP by Pyruvate kinase (PYK). So ATP is produced from
ADP and pyruvate is produced from PEP. The reaction equation is as fol-
lows:

PEPc + ADPc
PYK
−→ Pyruvatec + ATPc.
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Finally pyruvate crosses the cell membrane by a Pyruvate transporter,

Pyruvatec ↔ Pyruvateex.

So far in the glycolyse there are two molecules of ATP used and two molecules
of ATP produced.

In the other branch the NADH that is produced in the glycosomes by
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is used, in the glyco-
some, to reduce dihydroxyacetone phosphate (DHAP) to glycerol 3-phosphate
(Gly-3-P),

DHAPg + NADHg
GDH
←→ Gly-3-Pg + NAD+

g .

After this Gly-3-P is reoxidized by oxygen by an enzyme glycerol-3-phosphate
oxidase (GPO), in the mitochondria. This reoxidation reaction produces
H2O,

Gly-3-Pc + 0.5O2m
GPO
−→ H2Om + DHAPc.

Before the reaction above can take place, first Gly-3-P has to cross the gly-
cosomal membrane, by a transporter. After Gly-3-P is reoxidated in DHAP,
DHAP has to across the glycosomal membrane by a transporter.

Under anaerobic conditions a phosphate group of Gly-3-P is added to ADP
by Glycerol kinase (GK), by a reversible reaction. Then Gly-3-P is converted
into glycerol by Glycerol kinase and a molecule of ATP is produced,

gly-3-Pg + ADPg
GK
←→ glycerolg + ATPg.

After this glycerol can cross the glycosomal- and the cell membrane.

In the cytosol also the following reaction took place by ATP utilisation:

ATPc ↔ ADPc + Pc.

All the individual reactions of glycolysis are considered now. When the re-
action equations are taken together the complete system of glycolysis in
Trypanosoma brucei can be considered. The system consists of biochemi-
cal reactions. In [2], B. Bakker has composed the system, called the reaction
scheme of the model of glycolysis in the bloodstream of Trypanosoma brucei.

In the glycolysis of Trypanosoma brucei two molecules of ATP are consumed
and three molecules of ATP are produced. Thus starting with one molecule
of glucose there is a netto ATP production of one molecule ATP. The netto
ATP production only takes place in the cytosol and neither in the glycosome
nor in the mitochondrion. In the glycosome the consumption of ATP by
hexokinase and by phosphofructokinase is balanced by the production of
ATP by phosphoglycerate kinase. In the cytosol there is net glycolytic ATP
production by pyruvate kinase.

15



0.5O2

GA-3-P+NAD

Mitochondrion

Glycosome

Cytosol

ATPAMP

AMP ATP

2ADP

2ADP

ADP

ATP

ADP

ATP

H2O

ADP

ATP

NADH
Gly-3-P

DHAP

Glycerol

1

16

19
ADP

ATP

From Theses Dr. B. M. Bakker.
Figure 3.1: The reaction scheme of the model of glycolysis in bloodstream form T. brucei. 
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For this example 32 of the in total 39 different species, S1, . . . , S37, are
considered. The number of complexes for this example is equal to 42. The
species Glcex, Glcc, and Glcg stand for the species that occur when glucose
enters first the cell and after this the glycosome by glucose transporters. In
this case the complexes are the same as the species. For the reaction

Glcg + ATPg
HK
−→ Glc-6-Pg + ADPg,

the species are respectively Glcg, ATPg, Glc-6-Pg and ADPg. In this re-
action the complexes are Glcg + ATPg, and Glc-6-Pg + ADPg. So when
all reaction equations are considered one finds in total 32 different species
and 42 different complexes. In the appendix one can find all the reaction
equations for this example, the list of species and complexes, and the set
of species and complexes. With the help of the reaction equations and the
complexes that are considered in these equations, reaction vectors can be
found. For the transport of glucose across the cell- and the glycosomal mem-
brane the reaction vectors are y1 = e38 − e2, y2 = e2 − e38, y3 = e1 − e38,
and y4 = e38 − e1. For example for the reaction equation above the reaction
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vector is, y5 = e7 +e3−e2 +e6. This is true because S6 and S2 are consumed
and S7 and S3 are produced in this reaction.

3.3 Michaelis-Menten Reaction Kinetics

Under constant temperature and pressure, the direction in which a reaction
may occur is determined by the change in the Gibbs free energy, G, [16].
The Gibbs free energy is defined as

4G = 4Go′ + RT ln
[S]

[P ]
,

with R the gas constant, T the temperature, [S] the substrate concentration,
and [P ] the product concentration. When the Gibbs free energy is negative
the process may proceed in the forward direction, the substrate is converted
into the product. When the Gibbs free energy is positive the reaction will
proceed backwards, the product is converted into the substrate. When the
Gibbs free energy is equal to zero there is no net forward and backward
reaction, so the reaction is in equilibrium. In other words, when the con-
centration of substrate and product have their equilibrium values, 4G = 0.

Then one can find for the equilibrium constant, Keq =
[P ]eq

[S]eq
the following:

Keq = e−
4Go′

RT .

The Gibbs free energy determines the direction of a reaction, but it does not
determine the rate of a reaction. The rate of a reaction equation depends on
the specific reaction kinetics. Biochemical reaction kinetic is based on the
idea that the rate can be expressed as unique function of the concentrations
of all species that occur in the reaction. Usually reaction networks are de-
pendent on the availability of enzymes, so the reaction rates also depends
on the enzyme concentrations [16].

The reaction kinetic that is used for most rate equations in the model of
glycolysis of Trypanosoma brucei is Michaelis-Menten reaction kinetics. So
it is useful to have some knowledge of this reaction kinetics to understand
the rate equations considered in the section on mathematical modelling. The
Michaelis-Menten reaction kinetics was first described by Leonor Michaelis
(1875-1949) and Maud Leonora Menten (1879-1960). Michaelis and Menten
showed that this theory could work accurately for their results, because of
the nature of their experiments.

The reaction rate depends on the type of enzyme that catalyzes the reaction.
Some enzymes are for example a much more effective catalyst for one of
the directions of the reaction then for the other direction. The rate also
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depends for example on the availability of inhibiting substrates or inhibiting
products. So depending on such factors a rate equation can be determined.
With the help of experiments one can find which type of rate equation has
to be considered for a specific reaction. During the experiments one can find
the curve that belongs to the rate of a reaction equation. With the help of
this curve one can find the type of rate equation that belongs to the reaction
equation. In this chapter general types of rate equations and specific rate
equations that occur in glycolysis of Trypanosoma brucei are considered.

First Michaelis-Menten equations for one substrate and one product and
then the Michaelis-Menten equations for a two substrate two product mix-
ture are considered. For the Michaelis-Menten equations for one substrate
first an irreversible reaction and afterwards a reversible reaction is treated.
Subsequently, product inhibition and cooperativity are discussed. After this
Michaelis-Menten equations for two substrates are treated, including pro-
duct inhibition.

3.3.1 Michaelis-Menten Type Equation for One Substrate

First the rate equation for a reaction in which one substrate reacts with an
enzyme as catalyst to form one product is considered. There are two cases
that are considered, the reversible case and the irreversible case.

For the following rate equation there is assumed to be no reverse reaction
from P to ES, the ES-complex is assumed to be in steady state and the
amount of enzyme-bound S, [ES] is assumed to be negligible. So the rate
equation of

E + S � ES → E + P

is

r =
V + [S]

Ks

1 + [S]
Ks

.

In this equation V + is the maximal rate of the reaction when the substrate
[S] is increased, and the Michaelis constant Ks is the concentration of S
where the rate is exactly half of V +.

The rate equation derived for the reversible reaction

E + S � ES � E + P

is

r =
V + S

Ks
− V − P

Kp

1 + S
Ks

+ P
Kp

.
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Here V + is the maximal rate of the forward reaction and V − is the maximal
rate of the backward reaction.

Now first the Michaelis-Menten equation is derived for the irreversible reac-
tion, after this the Michaelis-Menten equation for the reversible reaction is
derived.

Irreversible Michaelis-Menten Mechanism

The reaction scheme to be considered first is:

E + S � ES
k2→ E + P.

The assumption on the reversible first step of this reaction is that it is fast
enough to be represented by an equilibrium constant, namely Ks = es

x
, with

e the concentration of free enzyme, [E], s the concentration of the substrate,
[S], and with x the concentration of the intermediate substrate [ES]. The
free enzyme and substrate are not directly measurable. Because of this re-
strictions they have to be expressed in terms of the initial concentrations
e0 and s0, which are measurable. The stoichiometric relations e0 = e + x
and s0 = s + x are used to determine the concentrations e and s. So the
intermediate concentration x cannot be greater than e0, so when s0 is much
larger than e0 it is also much larger than x. Hence in that case s0 can be
estimated by s. Now the following expression for x is considered:

x =
es

Ks
=

(e0 − x)s

Ks
⇒ x =

e0
(

Ks

s

)

+ 1
.

The second step in the reaction is the reaction from the intermediate pro-
duct, ES, to the free enzyme and the product, P , ES → E + P . This is a
first-order reaction, with a rate constant, defined as k2. Then, when v is the
rate of this reaction,

r = k2x =
k2e0

(

Ks

s

)

+ 1
=

k2e0
s

Ks

1 + s
Ks

.

Now the first step is not to be assumed in equilibrium, so

E
e0−x

+ S
s

k1

�

k−1

ES
x

k2→ E + P
p
.

Briggs and Haldane (1925) determined a more general method to derive the
rate equation. This leads to the following rate equation for the intermediate
concentration, x:

dx

dt
= k1(e0 − x)s− k−1x− k2x.
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This equation is in steady state when dx
dt

= 0, so then x is equal to

x =
k1e0s

k−1 + k2 + k1s
.

Now the rate equation for the second step can be derived:

r = k2x⇒ r =
k2e0s

k−1+k2

k1
+ s

=
V +s

Ks + s
=

V + S
Ks

1 + S
Ks

,

with V + = k2, the maximal rate and Ks = k−1+k2

k1
, the Michaelis-Menten

constant. This equation is called the Michaelis-Menten equation and is the
fundamental equation of enzyme kinetics.

The curve defined by the Michaelis-Menten rate equation is a hyperbola
through the origin.

Michaelis-Menten rate curve
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The asymptotes of this curve are s = −Ks and r = V +. When s small, the
the denominator is close to Ks, then r close to V +s

Ks
. So r is proportional to

s. When s is equal to Ks, the rate equation for r is equal to

r ≈
V +s

2s
=

1

2
V +.

In these conditions the rate is half of its limiting value, V +, and Ks can be
defined as the concentration at which r = 0.5V +. When the concentration s
is very large, Ks can be neglected in comparison with s and the rate equation
is approximately equal to V +,

r ≈ V +.

Reversible Michaelis-Menten Mechanism

Most of the reactions that are important in biochemistry are reversible. This
means that significant amounts of substrate and product are available in the
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reaction mixture, when it reaches equilibrium. Now the following reversible
reaction equation is considered:

E
e0−x

+ S
s

k1

�

k−1

ES
x

k2

�

k−2

E + P
p
.

The rate equation for the intermediate product ES is:

dx

dt
= (e0 − x)sk1 − xk−1 + (e0 − x)pk−2 − k2x.

When the reaction is in steady state, this rate equation is equal to zero.
Solving for x one finds:

x =
k1e0s + k−2(e0 − x)p

k−1 + k2 + k1s + k−2p
.

To determine the rate equation r for the production of P both the forward
and the backward reaction are included, because of the reversibility. The
net rate of release of P is determined by subtracting the rate at which it is
consumed in the reaction E + P → ES from the rate at which it is released
in the reaction ES → E + P . The net rate is equal to

r = k2x− k−2(e0 − x)p

= −k−2e0p + x(k2 + k−2p)

= −k−2e0p +
k1e0s + k−2e0p

k−1 + k2 + k1s + k−2p
(k2 + k−2p)

=
−k−1k−2e0p− k2k−2e0p− k1k−2e0sp− k2

−2e0p
2

k−1 + k2 + k1s + k−2p
+

k2k1e0s + k2k−2e0p + k1k−2e0sp + k2
−2e0p

2

k−1 + k2 + k1s + k−2p

=
k2k1e0s− k−1k−2e0p

k−1 + k2 + k1s + k−2p
.

When it is assumed that p = 0 the same equation as in the irreversible case
is obtained, except that s should be replaced by s0, because only at t = 0
one can put p = 0. When s is assumed to be 0, the above equation for the
rate r is equal to

r =
−k−1k−2e0p

k−1 + k2 + k−2p
.

In this equation the rate has a negative sign, because the rate is defined as
the rate of release of P .

21



The equation for r can be written in Michaelis-Menten form:

r =
k2k1e0s− k−1k−2e0p

k−1 + k2 + k1s + k−2p

=
V + s

Ks
− V − p

Kp

1 + s
Ks

+ p
Kp

,

with V + = k2k1e0

(k−1+k2)
and Ks = k1

(k−1+k2) for the forward reaction, and V − =
k−1k−2e0

(k−1+k2) and Kp = k−2

(k−1+k2)
for the backward reaction.

The above equation can be considered as the general reversible form of the
Michaelis-Menten equation, for one substrate, [7].

Competitive Product Inhibition

A substance that decreases the rate of an enzyme-catalysed reaction when
it is present in the reaction mixture is called an inhibitor. Inhibition can
take place in many different ways, and there are many different types of
inhibitors. When an inhibitor is competitive, the substrate and the inhibitor
compete for the same site.

When it is assumed that only one product is available in a reaction mixture,
which is often not the case, the rate is assumed to be almost irreversible
in the case of product inhibition. Actually, product inhibition is observable
in many essentially irreversible reactions. In this case it is possible for the
product P to bind to the binding side of the enzyme. The mechanism is as
the two-step mechanism, only the first step is irreversible and the second is
not

E + S → ES � P.

This phenomenon is not very likely as a general phenomenon. The three-step
mechanism can also occur,

E + S � ES → EP � E + P.

This mechanism is based on the case that inhibition can take place in an
irreversible reaction if the chemical transformation of EP in ES cannot take
place, so this transformation is irreversible. In this case the product causes
the enzyme to stay as the EP complex, and by this it is unavailable for
reacting with the substrate.

The numerator that refers to the reverse reaction is taken zero in the case of
product inhibition, because the reaction is seen as being irreversible. When
the reaction is only in forward direction the amount of product accumulates.
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So the effect is adding more and more product, and this increases the de-
nominator of the rate equation, and thus inhibits the forward reaction. So
the following rate is obtained for competitive product inhibition:

r =
V + s

Ks

1 + s
Ks

+ p
Kp

.

So r only contains p in the denominator [7].

Cooperativity

Many enzymes that play an important role in metabolic regulation, respond
very sensitive to changes in concentrations of metabolites. This is called
cooperativity.

The degree of cooperativity of an enzyme can often be expressed by the
following equation:

r =
V +ah

Kh
0.5 + ah

,

for some h ∈ R. This equation is called the Hill equation, because it was
published by Hill (1910). In this equation V + is still the limiting rate and
K0.5 defines the value of the substrate concentration s at which r = 0.5V +.
Hill regarded this equation as empirically and has no physical meaning for
the exponent h, which is called the Hill coefficient [7].

3.3.2 Michaelis-Menten Type Equation for Two Substrates

Reactions of a single substrate and a single product are rare in biochemistry.
Also in Glycolysis of Trypanosoma brucei most of the reactions, not all, are
reactions of two substrates, with two products as its end product. So in this
subsection the general reaction with two substrates and two products is used
as a general example,

S1 + S2 � P1 + P2.

This example is the most common reaction type in biochemistry.

Almost all reactions with two substrates and two products are formally
group transfer reactions. With the help of rewriting the general reaction one
can see this. The reaction

GX + Y � X + GY

is considered, with S1 is written as GX and S2 written as Y . In this re-
action a group G is transferred from GX to the molecule Y . This group
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transfer can occur in different ways. Two types of group transfer mechanisms
are ternary-complex mechanisms (random-order and compulsory-order ) and
substituted-enzyme mechanisms.

The ternary-complex mechanisms proceed by forming a complex EGX · Y ,
this is called a ternary-complex. This complex contains the enzyme and the
substrates in one complex. In the random-order ternary-complex mechanism
GX as well as Y can bind to the enzyme E. So both complexes can occur as
intermediate product. In the compulsory-order mechanism first GX binds
to the enzyme E. In these two mechanisms the group G is transferred once.

Also the substituted-enzyme mechanism is a common important mechanism.
The ternary-complex is impossible, because the binding sites for X and Y
are the same or overlapping. In this mechanism it is possible for the substrate
to bind to the wrong form of the enzyme. A consequence of this is substrate
inhibition at high substrate concentrations. In this mechanism there is one
order, so there is no random order. In this mechanism G is transferred twice,
first from the substrate GX to the free enzyme E, then from the substituted
enzyme EG to the substrate Y .

For the rate equations in the Glycolysis of Trypanosoma brucei, the enzymes
that catalyze the reactions between two non-competing product-substrate
couples (GAPDH, PGK, Glycerol-3-phosphate dehydrogenase (GDH) and
GK) use the random-order ternary-complex mechanism. So in this section
this mechanism is considered.

Random-Order Ternary-Complex Mechanism

The mechanism is called ternary-complex, because it contains the enzyme
and both substrates in a single complex, EGX · Y . In the random-order
ternary-complex mechanism GX as well as Y can bind to the enzyme in a
random order. So both EGX and EY can be intermediate product. When it
happens that no binding site exists on the enzyme for one of the substrates
until the other has bound, then the order of binding is called compulsory
order. When all substrates and products are considered, four different orders
are possible. But the reverse reaction is expected to be analogous to the for-
ward reaction, so the second product is then analogue to the first substrate.
Thus only two of the four possibilities are very likely.
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Random-order ternary-complex mechanism, [4]

EGY+X E+GY
+
Y (Productive ternary complexes) +

X

EY+GX
+
X

EX+GY
+
Y

EXY
(Non-productive
ternary complexes)

EX-GYE+GX
+
Y

EXG EXG-Y

The complex EXY does not always occur in the random-order mechanism,
but it can normally be expected to exist. When the group G is not too big
EXG ·GY can result from binding of GY to EGX or of GX to EGY . This
is less likely than EXY .

To obtain the rate equation for this mechanism the King-Altman method is
used [7, Ch. 4]. Considering all reaction equations that occur one can find
the rate equation, in which the product P1, which is X, is produced system-
atically. For a small system it is relatively easy to compute the rate equation,
but already for a system like the random-order ternary-complex mechanism
the possibilities of the method become large and the rate equation is difficult
to obtain by hand.

For the glycolysis of Trypanosoma brucei all steps of the enzymes that be-
have with this mechanism, apart from the step from EGX · Y to EXY , are
assumed to be in equilibrium. So by this assumption there are no squared
terms in the rate equation. By using the King Altman method for the
random-order ternary-complex kinetic for two non-competing product-sub-
strate couples, the following rate equation is obtained:

r = V + ·

S1

KS1
· S2

KS2
− V −

V + ·
P1

KP1
· P2

KP2
(

1 + S1

KS1
+ P1

KP1

)

·
(

1 + S2

KS2
+ P2

KP2

)

Product inhibition by one of the products

In the glycolysis of Trypanosoma brucei for the enzyme HK there is com-
petitive product inhibition by ADP, but the other product Glc-6-P has no
effect on the rate.
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When only one of the products is added to a reaction mixture, the term in
the numerator that refers to the reverse reaction must be zero. The effect of
adding product is an increase in the denominator of the rate equation, and
thus inhibiting the forward reaction. So when there is product inhibition by
one of the two products in the mixture, the rate equation is the following:

r = V + ·

S1

KS1
· S2

KS2
(

1 + S1

KS1
+ P1

KP1

)

·
(

1 + S2

KS2

) .

So now some forms of Michaelis-Menten equations are described that can
be found in the glycolysis of Trypanosoma brucei. It is useful to have some
knowledge of this type of reaction kinetic to understand the rate equations
for Trypanosoma brucei.

3.4 Procedure of Mathematical Modelling

To understand biochemical reaction networks, researchers try to make mathe-
matical models of biochemical reaction networks, from which one can extract
relations. From chemical experiments it is possible to derive a model in the
form of a biochemical reaction network. For biochemical reaction networks
often there can be defined algebraical relations, such as moiety-conservation
relations and equilibrium relations and relations for the pools in the reaction
network.

A way to make a mathematical model is to formulate a system of differential
equations of the reaction system. To do this one first needs the rate equa-
tions of a given network of reaction equations. The rate equations consist of
input variables, which are often constant, and of state variables. The output
variables are the variables in which we are interested. These variables are
determined by a function of the state variables, the input variables, and the
time.

The mathematical model that will be formulated is called a dynamical sys-
tem. Dynamical systems are studied in mathematical system theory, and
consist usually of a set of differential equations. This set of differential equa-
tions is a function of t, x(t) and u(t), and can be either a linear or a non-
linear function. These systems consist of a collection of variables and their
interactions over time. Such systems may be schematically described by the
following figure:
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Processu y

The box is called the process and stands for the way the outputs depend on
the inputs, for example by a set of differential equations.

For input-output systems there are two types of variables, namely input
variables and output variables. The input variables can be chosen freely
and the output variables are determined by the input and the state. The
input variables are called exogenous variables in system theory and output
variables are called endogenous variables. In many applications one starts
by isolating a part of the real world and calls this the system. In this case
the input variables are the variables from the environment that influence the
system, and the output variables describe the effects of the input variables.

When the input depends on the time, t ∈ [t0,∞), the whole system depends
on time and by this there is no memory. The systems that are considered
most are systems that do not depend on time. Often the input is constant.

To derive the relation between input and output variables, some extra varia-
bles can be derived. These variables are called state variables. State variables
summarize all the information of the past to determine the future of those
state variables. States are called auxiliary variables. The state of biochem-
ical system is uniquely determined by all concentrations in the system and
through the parameters that are constant in time. The output of a system
is a function of the time t the state x(t), and the input u(t), which is mostly
constant.

The rate equations of biochemical reaction networks also depend on the
state of the system. With the help of the network one can define the states
of the system. In the case of a biochemical reaction network these are the
concentrations of the species that occur in the reactions. So a list of states
can be made. The states of the system have to be positive, since they are
concentrations.

The rate equations depend on the specific reaction kinetics. Chemical and
biochemical reaction kinetics is based on the idea that the reaction rate can
be written as a unique function of the concentrations of all species that occur
in the reactions. The rate equations are usually experimentally determined.
Usually reaction networks are dependent on the availability of enzymes, then
the rate equations depend on the enzyme concentrations. With the help of
the biochemical reaction networks a list of enzyme concentrations can be
made. The rate equations for the model of Trypanosoma brucei are based
on Michaelis-Menten kinetics. This is considered in Section 3.3.
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The vector of input variables at time t, is denoted by u = (u1(t), . . . , uk(t))
T ∈

Rk, with k ∈ Z+. The vector of states of the system is denoted by x =
(x1(t), . . . , xn(t)) ∈ Rn

+, with n ∈ Z+, and y(t) = (y1(t), . . . , yp(t))
T is the

vector of output variables, with p ∈ Z+. These output variables are the va-
riables in which we are interested. The output can be equal to one or more
of the state variables.

Now a continuous-time dynamical system can be defined as follows:

Definition 3.5 [28, p.40, (2.41)]
A continuous-time positive (dynamical) system is a dynamical system in the
form of a differential equation and output variable,

dx

dt
= f(t, x(t), u(t)),

x(t0) = x0, the state at initial time t0,

y(t) = h(t, x(t), u(t)).

For this system

T = [t0,∞) ⊂ R, the time index set,

X = Rn
+, the state set,

U = Rk
+, the input set,

Y = R
p
+, the output set,

n, k, p ∈ Z+, f : T ×X × U → TX h : T ×X × U → Y.

The functions f and h can be linear or nonlinear functions such that, if
x0 ∈ X and u : T → U are given then there exist a state and output
trajectory: x : T → X and y : T → Y , both taking values in a positive vector
space over the positive real numbers.

So the change of the state x is a function of t, x(t) and u(t) with the state
at initial time equal to x0. Also the output is a function of t, x(t) and u(t).

For biochemical reaction networks often there can be defined algebraical
relations. One reason are moiety-conservation relations. A system for reac-
tion networks in a cell often contains moiety conservation relations. These
are subgroups of metabolites which are conserved during the evolution of
a network. The sum of the concentrations of metabolites in the mass con-
servation relation is constant. For example the total concentration of the
NAD is conserved throughout the time. So the sum of NAD and NADH
is constant. Another example of a conserved moiety is the conservation of
adenine nucleotide, this means that the sum of ATP, ADP and AMP is
constant during the evolution of the system. The sum of these metabolites
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is thus a parameter of the pathway. With the help of the stoichiometric
scheme one can derive the moiety conservation relations. Other reasons of
algebraic equations are equilibrium reactions and metabolite pools. Some of
the reactions in the reaction network are considered to be in equilibrium.
For these reaction equilibrium equations can be formulated. The substrates
and products of an equilibrium reaction can be seen as a single metabolite
pool [2]. So pool relations can be formulated.

The function for the change of the states for a rational positive system for
a cell reaction network depend on the rate equations, which depend on the
states, x(t) and xex and the input functions u(t). Here xex is the vector of
external concentrations. The change of state i is the sum of all the rates
with which xi is produced times the input times the stoichiometric matrix
from xj minus the sum of the rates times the input times the stoichiometric
matrix with which xi is consumed to produce xj. The rate equations for a
rational positive system for a cell reaction network is the quotient of two
polynomials, pj = p+

j − p−j and q.

The output is a function of the states and the input functions. For a rational
positive system for a cell reaction network this is a matrix H times the rate
equations times the input functions.

Now a continuous-time positive system for a cell reaction network can be
defined by the following definition.

Definition 3.6 [28, p.40, (2.41)]
A rational positive system for a cell reaction network is defined by the fol-
lowing differential equation,

dx

dt
=

n
∑

h=1

∑

k=1

n(bi − bj)rhk(x(t))uhk(t), x(t0) = x0,

with output

y(t) = HDiag(r(x(t), xex))u(t).

The differential equation per component i ∈ Zn is

dxi

dt
=

n
∑

h=1

∑

k=1

n(bi − bj)rhki(x(t))uhki(t)

=
m

∑

j=1

[

p+
j (x(t), xex)

qj(x(t), xex)
−

p−j (x(t), xex)

qj(x(t), xex)

]

uj(t)(bi − bj)

= fi(x(t), xex, u(t)), xi(t0) = xi,0.
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with output

yi(t) =

m
∑

j=1

hijrj(x(t), xex)uj(t)

For this differential equation

T = [t0,∞), the time index set,

X = Rn
+, the state set,

Xex = Rnex
+ , the set of external concentrations,

U = Rm
+ , the input set of enzyme concentrations,

B ∈ Zn×m, the stoichiometric matrix,

bh, bk ∈ Nn = {0, 1, 2, . . .}

H ∈ Nny×m,

the matrix that determines the outputs from the rate equations,

with n,m ∈ Z+, nex, ny ∈ N, and

u : T → U, an input function,

r : X ×Xex → Rm, ∀j ∈ Zm, the rate equation,

rj(x, xex) =
p+

j (x, xex)

qj(x, xex)
−

p−j (x, xex)

qj(x, xex)
,

p+
j (x, xex)

qj(x, xex)
,
p−j (x, xex)

qj(x, xex)
∈ R+,s(x, xex),

Diag(r(x, xex)) = Diag(r1(x, xex)), . . . , (rm(x, xex)) ∈ Rm×m,

diagonal matrix,

y : T → Rny , where y represents the outflow of the system.

The chemical reaction networks inside a cell can be very large. Although it
is in principal possible to model all reactions it is not yet realistic to analyze
such a network. One often tries to understand pieces of the network, such
that by means of this one can understand the whole network of chemical
reaction equations. Model reduction is an other possible solution for this
problem.

In the following section mathematical modelling of glycolysis in Trypano-
soma brucei is considered as an example of mathematical modelling.
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3.5 Mathematical Modelling of Glycolysis in Try-

panosoma Brucei

In this section the mathematical model of Trypanosoma brucei is considered.
A mathematical model was made by Barbara Bakker [2], and contains a set
of differential equations, which depends on the rates which are also contained
in the thesis, and contains moiety equations, equilibrium equations, and
pools. These equations concern enzyme concentrations, states and outputs
and constant variables.

First, this model will be translated into a model with mathematical no-
tations, as used in dynamical system theory. Then a dynamical system is
available that consist of differential equations and algebraical equations.
However, more state variables are available then the number of differential
equations.

For the model of glycolysis of Trypanosoma brucei it is possible to reduce
the number of states in the set of differential equations, because of the avai-
lable algebraic relations between the states. After doing this, the system of
differential equations is reduced and contains only the state, for which diffe-
rential equations are available. This is done by reduction of state variables.
So after reduction of state variables the system is changed, but we shall see
by solving the system numerically in Section 4.4 that the solution of the
system is the same.

It is not completely clear if the system is easier to solve after reduction
of state variables. Actually when the states of the differential equations
are found, the other states can be easily determined with the help of the
algebraic equations from the known state variables. This holds for the model
of glycolysis of Trypanosoma brucei, but does not hold for every dynamical
system for a cell reaction network. The system cannot always be reduced to
a set of k differential equations in k unknowns.

In this section also the output variables are defined, these are the variables
that are produced, but not consumed. Actually usually the output variables
are defined as the output variables of interest. The rate equations for the
specific reaction equations are used to find the output variables. The output
variables depend on the input variables and the state variables.

In this section methods are discussed and a few results are given. Most of
the results are given in the appendix.

3.5.1 Dynamical system

In this subsection the model of glycolysis in Trypanosoma brucei of Barbara
Bakker is translated into a model with mathematical notations, as used in
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system theory. In the first place some notations, definitions and terminology
will be discussed and the enzyme concentrations and the states are derived
for the model.

Below the rate equations of all the reactions that take place in the reaction
network are considered. The rate equations depend on the states and the
input variables. Most of the reactions are catalyzed by enzymes and follow
one of the forms of the Michaelis-Menten kinetic, discussed in Section 3.3.
So the rate equations of most of the reaction equations are or the form of
one of the Michaelis-Menten equations.

After formulating the rate equations the differential equations are stated,
such as determined by Barbara Bakker. Not for all state variables a diffe-
rential equation is presented. After giving the differential equations, moiety-
conser-
vation relations, pools and equations for fast dynamics are presented. Finally
extra algebraic equations are determined by using the moiety-conservation
relations, pools and fast dynamics.

In Appendix A.3.1 one can find a short list of notations that are used in the
state variables and in the constants. These are notations for the total con-
centrations, enzyme concentrations, and external concentrations. But also
notations for in which compartment a state concentration is considered, as
well as notations for the state variables and the input variables are given.

Input variables

The model for glycolysis in Trypanosoma brucei consists of enzyme concen-
trations, which catalyze the reactions in the biochemical reaction network.
In the Michaelis Menten rate equations V + and V − contain the enzyme
concentration. Now the input variables ui, i = 1, . . . , 21 will be introduced,
which are used to adjust the enzyme concentrations, used for control analysis
in Chapter 5, or to adjust membrane transport.

The rate equations are all multiplied by the ui for the enzyme that catalyzes
the reaction. But also for example for membrane transport that is not cata-
lyzed by any enzyme. For example, glucose transport which is facilitated by
a diffusion carrier. So usually these ui, i = 1, . . . , 21 are defined as 1. Only
when we want to adjust particular concentrations, those values will differ
from 1. The input variables are given in the form of a vector u,

u =







u1
...

u21






∈ RNen

+ = R21
+ , Nen = 21.

From the glycolysis of Trypanosoma brucei, 21 input variables can be ob-
tained. For example u1 is the input variable for the transport of glucose
across the plasma membrane and is coupled to the first rate equation, r1,
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for the glucose transport across the plasma membrane. Also, u7 is the input
variable for GAPDH and is coupled to the seventh rate equation, r7. So the
rate equations and the inputs are coupled to each other by having the same
number as a subscript. Every reaction in the biochemical reaction network,
that is not assumed to be in equilibrium, belongs to an input variable and
a matching rate equation.

A list of input variables is given in the Appendix A.3.1, and a list of abbre-
viations is given in Appendix C.

State variables

The states of the biochemical reaction network for glycolysis in Trypanosoma
brucei are the concentrations of the chemical substances, S1, . . . , S39, which
are contained in the rate equations or the algebraical equations. In the model
for glycolysis of Trypanosoma brucei only the concentrations of S38 and S39

are not contained in the rate equations or in the algebraic equations.

The states of the system are defined by a vector x,

x =







x1
...

x37






∈ R37

+ , N = 37,

with xi, i = 1, . . . , 37. The state xi is the concentration of substance Si.
Actually we can say that the number of state variables of the biochemical
reaction network is equal to 37−3 = 34, because x2, x26 and x27 are excluded
since they are external concentrations.

Glycolysis of Trypanosoma brucei takes place in the glycosome, which is a
compartment within the cell. A number of states, 17 in total, are concentra-
tions of substances in the glycosome. The substrate Fru-6-P is an example
of a substance in the glycosome. Other concentrations will be in the cytosol,
like 2-PGA. Substances such as ATP, ADP and AMP are found both in the
glycosome and in the cytosol. Some substances are found in the mitochon-
drion, such as O2 and H2O. Glucose, glycerol and pyruvate outside the cell
are defined as external state variables.

Several state variables are the same in every compartment. Then the con-
centration of that substance is a total concentration and is the same in the
cytosol and the glycosome. For these states the overall concentration can
be given. This holds for Gly-3-P, DHAP, and 3-PGA. In several algebraic
equations the average concentrations over the glycosome and the cytosol is
used. One shall see that this is the case for Triose-P and N.

Several of the chemical components can pass the cell membrane and by this
move from one compartment to another compartment. State variables such
as DHAP can cross the glycosomal membrane and for example the produced
pyruvate can cross the cell membrane. Other substances, for example ATP,

33



cannot cross the membrane and stay inside the compartment where it is
produced and consumed.

In Appendix A.3.1 one can find a list of state variables, xi, i = 1, . . . , 37,
of the system, representing the concentrations of chemical substances, Si,
i = 1, . . . , 37. Further is denoted, in which compartments of the cell the
variables are contained.

By use of the notation of the input variables and the state variables the
following reaction network is obtained:

5

6

x27

19

12

x16
x6

x7
11

x15

9
10

x14

8

x12
x7

x6
17

x26

x13

7
x24

x10

x25

x5

with state variables denoted by xi, and the input variables denoted by j, in state of uj.
Figure 3.1: The reaction scheme of the model of glycolysis in bloodstream form T. brucei, 
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Rate equations

When the input and state variables of the system are known, rate equations
can be formulated for the reaction equations in the reaction network. Rate
equations are only formulated for reaction equations that are not assumed
to be in equilibrium. In the biological literature v is used to refer to a rate
equation. In this report riui(t) denotes a rate equation v. And v in [2] is
denoted by ri, i = 1, . . . , 19 in nmol min−1(mg cell protein)−1.
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The rate equations, which are formulated in [2] contain concentrations of
chemical substances, and constant variables. The concentrations are the
state variables xi, i = 1, . . . , 37. The constants that are used in the rate
equations have two indices, i and j, and are denoted by ci,j , with ci,j the
j-th constant of rate equation i. Here i = 1, . . . 19, since the system consists
of 19 rate equations in total. The index j = 1, . . . , n, n ∈ N, depends on the
amount of constants a rate equation contains, so n differs per rate equation.
When j = 1, the constant V + is denoted almost always.

In this section the type of rate equations will be described and a few of
them are given, to explain how the rate equations of Barbara Bakker are
rewritten. The other rate equations can be found in Appendix A.3.2.

The first rate equation is for the transport of glucose across the cell- and
the glycosomal membrane. First glucose enters the cytosol from outside the
cell, by a glucose transporter. After this glucose will enter the glycosome by
another glucose transporter. The carrier proteins, that span the membrane,
bind the glucose and by this undergo conformation changes. The effect of
these changes is carrying glucose across the membrane. After this the con-
formation of the protein is changed back in its original state. The glucose
transport across the membrane is described according to a 4-state model for
a diffusion carrier. It is found by experiments that the carrier is asymmet-
ric. So the kinetics of the glucose transporters can be described by the rate
equations for a asymmetric carrier.

The rate equation for glucose transport is

vglucose transport = V + [Glc]out − [Glc]in
KGlc + [Glc]out + [Glc]in + α[Glc]out[Glc]in/KGlc

.

In this equation KGlc is the Michaelis-Menten constant. Here α is a constant
that depends on the relative mobility of the loaded and the unloaded carrier
protein. The constants are experimentally obtained, all at 25 ◦C [2, p. 33].
When assuming symmetry of the carrier and from the fact that Vmax was
found twice as high for equilibrium exchange as for zero-trans influx, α was
calculated to be 0,75 ([21], [2, p. 34]).

In this equation the states are the external glucose concentration and the
intracellular glucose concentration, which is the glucose concentration in the
glycosome. The rate equation is written in Michaelis-Menten form. The rate
equation with the notation, which is used in this report is

r1 = c1,1
c1,2(x2 − x1)

1 + x2c1,2 + x1c1,2 + c1,3x1x2c
2
1,2

,
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with

r1 = vgltr,
x2 = [Glc]ex = S1,
x1 = [Glc]g = P1,

c1,1 = V + = 106.2 nmol(min)−1(mg cell protein)−1,

c1,2 = 1
K1,1

= 1
KGlc

= 1
2(mM)−1,

c1,3 = α = 0.75.

So vgltr is denoted by r1. The states, glucose concentration in the glycosome
and the external glucose concentration are denoted by, respectively, x1 and
x2. Further, j = 1, 2, 3 in this equation, so for the constants c1,1, c1,2, c1,3 are
obtained, with c1,1 = V +, and c1,3 = α. For the constants also the notation
of [2] is denoted.

The second rate equation is the rate equation for the reaction that is cataly-
zed by the enzyme hexokinase. Glucose in the glycosome is phosphorylated
into glucose 6-phospate. The kinetics of HK can be described by a Michaelis-
Menten type equation for two substrates, with competitive product inhibi-
tion by ADP. The second product glucose-6-phosphate has no effect on the
rate. The rate equation is

vHK = V +

[ATP ]g

KATP
·

[Glc]in
KGlc

(

1 +
[ATP ]g

KATP
+

[ADP ]g

KADP

)

·
(

1 +
[Glc]in
KGlc

) .

Rewritten the following is obtained for r2:

r2 = c2,1
c2,2x6x1c2,3

(1 + x6c2,2 + x7c2,4)(1 + x1c2,3)
,

with

r2 = vHK,
x6 = [ATP]g = S1,
x1 = [Glc]g = S2,
x7 = [ADP]g = P1,
x3 = [Glc-6-P]g = P2,

c2,1 = V + = 625 nmol(min)−1(mg cell protein)−1,

c2,2 = 1
k2,6

= 1
KATPg

= 1
0.116 = 8.6207 (mM)−1,

c2,3 = 1
k2,1

= 1
KGlcg

= 1
0.1 = 10 (mM)−1,

c2,4 = 1
k2,7

= 1
KADPg

= 1
0.126 = 7.9365 (mM)−1.

For this rate equation v2 = r2 and j = 1, . . . , 4, so four constants are con-
sidered. The first constant, c1,1, denotes V +. The other three constants are
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denoted for the inverses of the Michaelis-Menten constants KATPg , KGlcg ,
and KADPg . These constants are respectively c2,2, c2,3, and c2,4. The equation
involves the states x6, x1, x7, and x3.

The third reaction is the reaction, catalyzed by the enzyme PGI, from Glc-
6-P to Fru-6-P. This reaction is a very fast reaction and is assumed to be
in equilibrium. This is the same for the reactions 6, 9 and 10, which belong
together, 20 and 21 which are respectively catalyzed by TIM, PGM, ENO
and glycosomal AK. The kinetics of the transport of 3-PGA, Gly-3-P and
DHAP are unknown, so these steps where assumed to be in equilibrium as
well.

The fourth and the eleventh reaction rates involve a cooperative dependence
on one of the concentrations. The fourth reaction is catalyzed by the enzyme
PFK, this exhibits cooperative dependence of Fru-6-P. The eleventh reaction
equation is catalyzed by PYK and the rate depends cooperatively on the
concentration of PEP. The rate equation of the fourth reaction equation is

vPFK = V +

(

[Fru-6-P]
Km,Fru6P

)n

·

(

[ATP]
Km,ATP

)

(

1 +

(

[Fru-6-P]
Km,Fru6P

)n)

·

(

1 +
[ATP]

Km,ATP

)

and this is rewritten as:

r4 = c4,1
(c4,2x4)

n(c4,3x6)

(1 + (c4,2x4)n) (1 + c4,3x6)
,

with

r4 = vPFK,
x4 = [Fru-6-P]g = S1,

x6 = [ATP]g = S2,

x5 = [Fru-1,6-BP]g = P1,

x7 = [ADP]g = P2,

c4,1 = V + = 780 nmol(min)−1(mg cell protein.)−1,

c4,2 = 1
k4,4

= 1
Km,Fru6Pg

= 1
0.82 = 1.2195 (mM)−1,

c4,3 = 1
k4,6

= 1
Km,ATPg

= 1
0.026 = 38.4615 (mM)−1,

n = 1.2,

So for this equation vPFK = r4 and the state variables that are contained in
r4 are x4, x6, x5 and x7. The number of constants in this equation is three.
Again the first constant represents V +, and the last two constant denotes,
respectively, the inverses of the Michaelis-Menten constants of Km,Fru6Pg and
Km,ATPg .
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Now a few examples have been considered of reformulating the rate equa-
tions. The rate equations of the further reactions that are discussed below
can be found in the appendix, for these the same method is used.

In the fifth reaction equation the enzyme ALD works according to the so
called uni-bi mechanism. Glyceraldehyde 3-phosphate dissociates from the
enzyme before DHAP does. The reaction rate from GA-3-Pg to 1,3-BPGAg,
which is catalyzed by GAPDH, is r7 and the rate equations of the reactions
that are catalyzed by PGK, GDH and GK, are, respectively, r8, r13 and r17.

The rate equations of pyruvate that is transported across the plasma mem-
brane and reaction 15, which is catalyzed by GPO are both described by
irreversible Michaelis-Menten equations. These rate equations, r12 and r15,
are also found in the appendix. The relation of ATP utilization is assumed to
be close to linear and the rate equation corresponds to a Michaelis-Menten
reaction, with dominant product inhibition, that is far from equilibrium [2].
The rate equation for ATP utilization is r18.

Since the rate equations are known now, the differential equations can be
discussed.

Differential equations
The process of glycolysis of Trypanosoma brucei is described by a set of
ten differential equations and a set of algebraic equations, consisting of the
moiety-conservation relations, pools and relations for the fast dynamics. In
fact it is also described by the algebraic equations that can be obtained by
these relations. In this part of the section the set of differential equations is
discussed.

The process is described by only ten differential equations. This because
several reactions reach equilibrium very fast and are assumed to be in equi-
librium. For other processes, for example the transport over the membrane
of 3-PGA, Gly-3-P and DHAP, nothing is known about their kinetics [2]. So
these steps are also assumed to be in equilibrium. For the substances that
are assumed to be in equilibrium, pools exist and there exists a differential
equation of the pool.

The differential equations, which describe the time-dependent behavior of
the glycolysis of Trypanosoma brucei are denoted by ẋi(t) = dxi

dt
, where

ẋi(t) is often denoted by ẋi. The differential equations consist of the rate
equations, and are divided by the associated compartmental volume to get
the derivative of the state variables in mM min−1. This dependent on the
compartment concerced. So the differential equation for a particular state
consists of the production rate of that state minus the consumption rate of
that state, to produce an other state variable, divided by the compartmental
volume.

First the differential equations can be written as a sum of rates after which
the rate equations can be inserted. So then the ten differential equations
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contain most of the 37 state variables. A few of the state variables only
come up in the algebraical equations. Also all the values for the constant
variables are filled in. These are the values as given in [2] and are also found
together with the rate equations in the appendix.

There are a few constants that are used more often. These are the constants
for the total volume, the glycosomal volume and the volume of the cytosol.
The glycosomal volume is denoted by cg and the volume of the cytosol is
denoted by cc. The total volume is the sum of both the cytosolic and the
glycosomal volumes. These volumes are denoted by

cg = Vg = volume glycosome = 0.2451 µl(mg)−1,
cc = Vc = volume cytosol = 5.4549 µl(mg)−1,
ctot = Vtot = total volume cytosol + total volume glycosome

= 5.7 µl(mg)−1.

These constant are used in the differential equations used in inverse form,
these are denoted by an extra 1 in the index. Thus we have as extra constants
ctot1, cg1, and cc1, which are, respectively, 1/cg, 1/cc, and 1/ctot. The values of
the constants are rounded to four decimals. In Maple, which is the program
that is used for calculations, the values are not round.

The first differential equation describes the change in time of glucose in the
glycosome. This is the rate in which glucose enters the glycosome minus the
rate of phosphorylation by the enzyme HK in Glc-6-P, divided by the total
cell volume. For the change of the glucose concentration in the glycosome
the following differential equation is considered [2, p.37, (2.23)]:

d[Glc]in
dt

=
vglucose transport − vHK

Vtot

ẋ1 = ctot1(r1u1 − r2u2) =

= 9.3158
(x2 − x1) u1

(1 + 0.5x2 + 0.5x1 + 0.1875x1x2)

−9450.5106
x6x1u2

(1 + 8.6207x6 + 7.9365x7) (1 + 10x1)

x1 = [Glc]g
r1u1 = vglucose transport

r2u2 = vHK

ctot1 =
1

ctot
=

1

Vtot
=

1

5.7
= 0.1754 (µl/mg)−1.

Assuming that the reaction between Glc-6-P and Fru-6-P is in equilibrium,
these substances are considered tpgether as a Hexose-P pool. So a differen-
tial equation exists for this pool. The enzyme HK facilitates production of
Glc-6-P from glucose in the glycosome and by PFK, Fru-6-P is consumed
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to produce Fru-1,6-BP. The following differential equation is found for the
Hexose-P pool [2, p.37, (2.24)]:

d[hexose-P]g
dt

=
vGlucose transport − vHK

Vg

ẋ30 = cg1(r2u2 − r4u4) =

= 219825.8276
x6x1u2

(1 + 8.6207x6 + 7.9365x7) (1 + 10x1)

−155310.6798
x1.2

4 x6u4
(

1 + 1.2689x1.2
4

)

(1 + 38.4615x6)

x30 = [hexose-P]g
r2u2 = vHK

r4u4 = vPFK

cg1 =
1

cg
=

1

Vg
=

1

0.2451
= 4.0799 (µl/mg)−1.

The other differential equations are also be calculated out and can be found
in the appendix. The third differential equation is for the change in Fru-1,6-
BP. The fourth differential equation is for the concentration of the Triose-P
pool,

[Triose-P] =
[DHAP]cVc + [DHAP]gVg + [GA-3-P]gVg

Vtot
.

We use here the assumption that the reactions between [DHAP]c and [DHAP]g
and between [DHAP]g and [GA-3-P]g are at equilibrium. The fifth differen-
tial equation is for 1,3-BPGA, since also the reactions,

3-PGAg ←→ 3-PGAc
PGM
←→ 2-PGAc

ENO
←→ PEPc

are assumed to be in equilibrium. So a pool consists for these states, namely

[N] ≡
[3-PGA](Vg + Vc) + [2-PGA]cVc + [PEP]cVc

Vtot

and a differential equation consists for this pool. The seventh differential
equation is for the pyruvate concentration in the cytosol and the eight is
for the NADH concentration in the glycosome. The ninth and the tenth
differential equations are respectively for the pools of high energy phosphates
in the glycosome and in the cytosol. These pools are,

Pg ≡ 2[ATP]g + [ADP]g

and

Pc ≡ 2[ATP]c + [ADP]c.
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Finally the set of differential equations is the following:

ẋ1 = ctot1(r1u1 − r2u2) =
vGlucose transport−vHK

Vtot

ẋ30 = cg1(r2u2 − r4u4) =
vHK−vPFK

Vg

ẋ5 = cg1(r4u4 − r5u5) =
vHK−vPFK

Vg

ẋ31 = ctot1(2r5u5 − r7u7 − r13u13 + r15u15) =
2vALD−vGAPDH−vGDH+vGPO

Vtot

ẋ12 = cg1(r7u7 − r8u8) =
vGAPDH−vPGK

Vg

ẋ35 = ctot1(r8u8 − r11u11) =
vPGK−vPYK

Vtot

ẋ16 = cc1(r11u11 − r12u12) =
vPYK−vPyruvate transport

Vc

ẋ25 = cg1(r7u7 − r13u13) =
v[GAPDH]−vGDH

Vg

ẋ36 = cg1(−r2u2 − r4u4 + u8r8 + r17u17) =
−vHK−vPFK+vPGK+vGK

Vg

ẋ37 = cc1(r11u11 − r19u19) =
vPYK−vATP utilization

Vc

It is remarkable that the biochemical reaction network can be modelled by
these ten differential equations. But recall that several reactions are assumed
to be in equilibrium. For example nothing is known about the kinetics of
the transport of 3-PGA, Gly-3-P and DHAP. So these transports are as-
sumed to be in equilibrium. In the appendix one can find the complete set
of differential equations with all the states and constants filled in.

In this part of the section the set of differential equations is discussed. In the
following parts respectively the moiety equations, pools and fast dynamics
and algebraic equations will be discussed.

Algebraic equations

Now the algebraic equations for the model will be discussed. As already
mentioned the algebraic equations consist of moiety-conservation relations,
fast dynamics and pools. The pools of the model were already used to de-
rive the set of differential equations. Further, other algebraic equations are
obtained by the moiety-conservation relations and fast dynamics.

Moiety conservations are subgroups of metabolites which are conserved du-
ring the evolution of a network. The sum of the concentrations of metabolites
in the mass conservation relation is constant. In this model four moiety-
conservation relations are considered [2]. The moiety equations consist of
the state variables, the constants cc and cg, and the constants c1, . . . , c4,
which are the constant values of the sums of metabolite concentrations.

There are moiety-conservation relations for ATP, ADP and AMP in the gly-
cosol and in the cytosol, both with a sum of 3.9 mM . Also the concentration
of NAD+ is conserved throughout the time and by this the sum of NADH
and NAD+ is constant, 4 mM . The fourth moiety-conservation relation is a
relation for organic phosphate.
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As one can find in the biochemical reaction network the moiety-conservation
relation for organic phosphate is a relation between the substances Glc-6-Pg,
Fru-6-Pg, Fru-1,6-Pg, DHAPg, GA-3-Pg, DHAPc, Gly-3-Pc, Gly-3-Pg, 1,3-
BPGAg, 3-PGAg, ATPg and ADPg. It consists of the states x11, x21, x9, x10,
x12, x6, and x7. The states are multiplied with the compartment constants,
since some are found in the cytosol and others in the glycosome. Also the
constant c4, which is 120 mM is multiplied with cg. The states x5 and x6

are multiplied by a factor of two, since they contain two phosphate groups,
which both are transferred to other substances. So the moiety-equation is
equal to

c4cg = x11cg + x21cc + x9cg + x20cc + x3cg + x4cg

+2x5cg + x10cg + x12cg + 2x6cg + x7cg.

The other moiety equations can be found in Appendix A.3.4.

Other reasons for the algebraic equations are equilibrium reactions and
metabolite pools. Some of the reactions in the reaction network are con-
sidered to be in equilibrium. For these reactions equilibrium equations can
be formulated. The substrates and products of an equilibrium reaction can
be seen as a single metabolite pool [2]. So pool relations can be formulated.

The substances Gly-3-P, DHAP and 3-PGA where assumed to be in equi-
librium across the membrane. So the concentrations in the cytosol are as-
sumed to be equal to the concentrations of these species in the glycosome.
Now state variables are introduced for these substances, which is a concen-
tration in both compartments. So x28, x29 and x33 are respectively state
variables for [Gly-3-P], [DHAP] and for [3-PGA]. One can find this relation
in Appendix A.3.6.

Some reactions reach equilibrium very fast and are assumed to be in equi-
librium. This is the case for five reactions in the network, namely for the
reaction (3) from Glc-6-P to Fru-6-P, in the glycosome, catalyzed by PGI.
Also the reaction catalyzed by TIM (6) is assumed to be in equilibrium.
This is also the case for the reaction from 3-PGA in the cytosol to PEP in
the cytosol. This occurs in two steps by the enzymes PGM (9) and ENO
(10). Finally the reactions from two ADP into one ATP and one AMP is
also assumed to be in equilibrium.

For these five reactions equilibrium equations are derived in [2]. An equilib-
rium equation consists of the state variables in a specific reaction equation
and of an equilibrium constant. This equilibrium constant is denoted by ceq,i,
with i ∈ N the number of the enzyme. The right hand side of an equilibrium
equation consist of the product of the state variables on the right hand side
of the reaction equation, divided by the state variables on the left hand side.
The left hand side of an equilibrium equation is the equilibrium constant.
So the relation between substances on both sides of the reactions is linear.
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An example of an equilibrium equation is the reaction catalyzed by PGI [2,
p.39, (2.33)],

Glc-6-Pg
PGI
←→ Fru-6-Pg,

x3
u3←→ x4.

The equilibrium equation by this reaction is

[Fru-6-P]g
[Glc-6-P]g

= Keq,PGI,

x4

x3
= ceq,3,

x4 = [Fru-6-P]g,

x3 = [Glc-6-P]g,

ceq,3 = Keq,PGI = 0.29.

The other equilibrium equations can be found in Appendix A.3.6.

The model contains five pools, namely a pool of the hexose-P concentration
in the glycosome, a pool of the triose-phospate concentration in the glyco-
some, a N pool and two pools of high energy phosphates, Pg, and Pc, which
consist of ATP and ADP in the glycosome and in the cytosol.

The pools consist of the state variables and the glycosomal, the cytosolic and
the total cell volume, cg, cc and ctot. New states that are introduced are x30,
x31, x35, x36, and x37, which stand respectively for [Hexose-P], [Triose-P],
[N], [P]g and [P]c.

An example is the sum of hexose phosphates in the glycosome, [2, p.37,
(2.16)],

[hexose-P]g ≡ [Glc-6-P]g + [Fru-6-P]g,

x30 ≡ x3 + x4,

x30 = [hexose-P]g,

x3 = [Glc-6-P]g,

x4 = [Fru-6-P]g.

The notation of the other pools can be found in the appendix.

With the help of the moiety-conservation relations, pools and the fast dy-
namics, algebraic equations can be found, describing relations between some
of the state variables. By this way algebraic relations can be found between
Hexose-P, x30, and Glc-6-P, x3, in the glycosome.
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The following relation is obtained between these x30 and x3, [2, p.37, (2.16)]
and [2, p.39,(2.33)]:

[hexose-P]g
1 + Keq,PGI

[2,(2.16)]
=

[Glc-6-P]g + [Fru-6-P]g
1 + Keq,PGI

=

[2,(2.33)]
=

[Glc-6-P]g + [Fru-6-P]g

1 +
[Fru-6-P]

g

[Glc-6-P]
g

=

=
[Glc-6-P]2g + [Glc-6-P]g · [Fru-6-P]g

[Glc-6-P]g + [Fru-6-P]g
=

= [Glc-6-P]g,

this gives

x30

1 + ceq,3
= x3.

Two other algebraic relations that consist are those between [Triose-P] and
[DHAP] and between [N] and [3-PGA]. So between x31 and x29 and between
x35 and x33. These calculation can be found in Appendix A.3.7

In the Appendix B one can find a list of all equations that are considered in
the mathematical model of glycolysis of Trypanosoma brucei. The list con-
tains the rate equations, differential equations, moiety equations, equilibria,
pools, equilibria equations and the derived algebraic equations.

3.5.2 Reduction of state variables

For the model of glycolysis in Trypanasoma brucei a model of ten differential
equations and a set of algebraic equations is available now. We are interested
in a model of ten differential equations and with, matching, ten unknown
state variables. To determine such a system, the state variables have to
be reduced in a set of state variables, in which all states are expressed as a
relation of the ten states of interest, with the help of the algebraic equations.
After this a reduced system can be made.

So in this section the set of 25 of the total 37 state variables,

{x3, x4, x6, x7, x8, x9, x10, x11, x14, x15, x17, x18, x19,

x20, x21, x22, x23, x24, x26, x27, x28, x29, x32, x33, x34} ,

will be written as a relation of the state variables in the set,

{x1, x30, x5, x31, x12, x35, x16, x25, x36, x37} .
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These ten state variables are respectively concentrations for Glcg, Hexose-Pg,
Fru-1,6-BPg, Triose-P, 1,3-BPGAg, N, Pyruvatec, NADHg, Pg, and Pc. The
states x2 and x13 are exceptions, because they are assumed to be respectively
5 and 0, [2]. Here x2 is the external glucose concentration and x13 is the
concentration glycerol in the glycosome.

When elimination is done, we shall see that most of the relations between
the states are linear relations of the ten state variables in the system, except
x6, x7, x8, x17, x18, and x19. The latter variables are respectively the con-
centrations ATP, ADP, and AMP in the glycosome and in the cytosol. Since
the algebraic relations between these states leads to quadratic equations for
x6 and x17, depending of respectively x36 and x37, which are the high energy
phosphates in the glycosome and in the cytosol. Because of these equations
x6 is depending on x36 with a nonlinear relation and x7 is depending of x37

with the same relation. Since x7 and x8 depend on x6, the relation between
these states and x36 is also nonlinear, so also the relations between x18 and
x19, and x37. As one can find in the appendix, these relations are

x6 = 2.5391 + 0.5000x36 − 0.6510

√

(3.9 + 0.768x36)
2 − 1.3578x2

36,

x7 = 0.2 · 10−9x36 − 5.0781 + 1.3021

√

(3.9 + 0.768x36)
2 − 1.3578x2

36,

x8 = 6.4391 − 0.5000x36 − 0.6510

√

(3.9 + 0.768x36)
2 − 1.3578x2

36,

x17 = 2.5391 + 0.5000x37 − 0.6510

√

(3.9 + 0.768x37)
2 − 1.3578x2

37,

x18 = 0.2 · 10−9x37 − 5.0781 + 1.302
√

(3.9 + 0.768x37)2 − 1.3578x2
37,

x19 = 6.4391 − 0.5000x37 − 0.6510
√

(3.9 + 0.768x37)2 − 1.358x2
37.

As one can see these relations contain the square root of (3.9+0.768x36)
2−

1.3578x2
36 or the square root of (3.9 + 0.768x37)

2 − 1.3578x2
37. We shall see

when checking positivity that these states are positive for x36 and x37 con-
tained in a specific set.

Determination of the other expressions of state variables can be found in
the appendix. One can find a list of the state variables and their expressions
in Appendix A.3.8 as well.

The following subsection is about the system of differential equations after
the reduction of state variables.

3.5.3 The system of differential equations after reduction of

state variables

In the last subsection the set of state variables has been reduced to a set of
only ten state variables. The other state variables can be expressed in these
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ten variables. In this subsection, the expressions are used to simplify in the
set of differential equations. The result is a set of ten differential equations
with ten unknown state variables, namely the variables in the set
{x1, x30, x5, x31, x12, x35, x16, x25, x36, x37}.

So the set of state variables in the system of differential equations is reduced.
On the other hand some of the individual differential equations became
rather complex, when these expressions were calculated. For example the
differential equations for the states x31 and x36 are complex.

The computer program Maple is used for determining the set of differential
equations after reducing the state variables. All the expressions of the state
variables, the rate equations, and the differential equations are calculated
with Maple. In this way the set of differential equations after reduction of
state variables is obtained. Also the constants in the system of differential
equation are inserted. Here the constants are rounded to four decimals. For
calculations in Maple the real values of the constants are used. For some
expressions that are contained in the differential equations an function is
introduced. By this S, S1, c5,3, and c11,2 are introduced, this to simplify the
complexity of the system.

An example of a differential equation after reduction of state variables is
the differential equation for glucose in the glycosome, x1. The differential
equations for x1 is

dx1

dt
= 9.3158

(5− x1)u1

(3.5 + 1.4375x1)

−9452.5106
(2.5391 + 0.5000x36 − 0.6510 · S) x1u2

(−17.4141 + 4.3103x36 + 4.7216 · S) (1 + 10x1)
,

with

S =

√

(3.9 + 0.768x36)
2 − 1.3578x2

36.

So the state x2 is assumed to be 5 and the states x6 and x7 are expressed
in x36. The variable S denotes the square root. One can find the other
differential equations in the appendix.

Finally to complete the dynamical model, the output variables of the model
can be considered. This is done in the following subsection.

3.5.4 Determination of output variables

Finally the output variables of the dynamical system will be discussed. In
this report these outputs are the state variables in the system which are pro-
duced during glycolysis in Trypanosoma brucei, but which are not consumed
and also the state variables of interest are considered as output variables.
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The output variables of the system are defined by a vector y, which is a
vector in R6

+,

y =







y1
...

y6,







with yi, i = 1, . . . , 6. In this vector the output variables all correspond with
a specific state variable, where the state variable for ATP is split up in two
output variables.

In this model the state variables which are denoted as output variables are
pyruvate outside the cell, H2O in the mitochondrion, ATP in the glycosome
and in the cytosol and the extern concentration of glycerol. Actually ATP
is the state variable of interest, and it is also produced in the cytosol. So
both ATP produced and ATP consumed in the glycosome are considered as
output variables. So now we have for yi, i = 1, . . . 6,

y1 = x6(1) = [ATP]g produced,

y2 = x6(2) = [ATP]g consumed,

y3 = x13 = [Glycerol]g,

y4 = x16 = [Pyruvate]c,
y5 = x17 = [ATP]c,
y6 = x22 = [H2O].

The output variables are obtained by using the rate equations, with the
help of the network of reaction equations. When an output variable is only
produced, the variable is the sum of the production rates times the corre-
sponding inputs. When it is only consumed, x6(2), it is the sum of the rate
equations times −1.

So the output variables are functions of the rate equations. In the case of
glycolysis in Trypanosoma brucei it are functions of r11, r15, r17, r8, r2,
and r4. So this afford that indeed y = HDiag(r(x(t), xex))u(t), with u(t) a
constant. For glycolysis of Trypanosoma brucei we found that

y1 = r17u17 + r8u8,

y2 = −r2u2 − r4u4,

y3 = r17u17,

y4 = r11u11,

y5 = r11u11,

y6 = r15u15.

Thus the entries, of the matrix H, h1,17, h1,18, h3,17, h4,11, h5,11, and h6,16

are equal to 1 and h2 and h4 are equal to -1. The other entries of the matrix
H are equal to zero.
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As an example y1 can be considered. First y1 will be given in general formula,
after this the rate equations will be filled in and finally x6(1) will be given
after reduction of state variables. Now the following is found for y1:

x6(1) = r17u17 + r8u8 =

= c17,1
(x11c17,3x7c17,4 − c17,2x13c17,5x6c17,6)u17

(1 + x11c17,3 + x13c17,5)(1 + x7c17,4 + x6c17,6)

+c8,1
(x12c8,3x7c8,4 − c8,2x14c8,5x6c8,6)u8

(1 + x12c8,3 + x14c8,5)(1 + x7c8,4 + x6c8,6)
=

= 199.9967
(1.6342x11x7 − 7324.5907x13x6)u17

(1 + 0.1961x11 + 8.3333x7)(1 + 8.3333x13 + 5.2632x6)

+639.9894
(200x12x7 − 0.0617x14x6)u8

(1 + 20x12 + 0.6173x14)(1 + 10x7 + 3.4483x6)

=
639.9894 · 200x12 (−5.0781 + 1.3021 · S) u8

(1 + 20x12 + 0.2596x35) (−41.0259 + 1.7241x36 + 10.7759 · S)

−
639.9894 · 0.0260x35 (2.5391 + 0.5000x36 − 0.6510 · S)u8

(1 + 20x12 + 0.2596x35) (−41.0259 + 1.7241x36 + 10.7759 · S)

+
(5.1600 − 1.0000x31 − 0.0430x30 − 0.0860x5 − 0.0430x12 − 0.0430x36)

(2.0118 − 0.1961x31 − 0.0084x30 − 0.0169x5 − 0.0084x12 − 0.0084x36)

·
199.9967 (−5.0781 + 1.3021 · S)u17

(−27.9542 + 2.6316x36 + 7.4242 · S)
.

Bu reaction 17 and reaction 8 ATP is produced in the glycosome, respectively
the reaction of Gly-3-P to Glycerol and the reaction of 1,3-BPGA to 3-PGA.

One can find the expressions of the other output variables in appendix A.3.10,
with the help of the rate equations before and after reduction of state va-
riables.

We have explained, in this chapter, how to make a dynamical system for
a biochemical reaction network. First a biochemical model has to be made
and second a mathematical model has to be made. This is explained by the
example of glycolysis in Trypanosoma brucei. In the following chapter the
system properties positivity of dynamical systems of biochemical reaction
networks and steady state of such systems will be discussed. For the model
of glycolysis in Trypanosoma brucei it will be checked that the system is
positive and a steady state will be determined numerically.
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Chapter 4

Dynamical System

Properties

In the last chapter dynamical systems for biochemical reaction networks are
considered. These systems consist of a set of differential equations and a set
of algebraic equations. The variables in the system are the input, the state
and the output variables.

A system of differential equations and algebraic equations has dynamical
system properties. These dynamical system properties are properties that
differ for particular systems. Dynamical system properties can be verified
by analysis of the equations of the dynamical system and can be expressed
in formulas. Examples of dynamical system properties are positivity of the
system, observability, controllability, periodic solutions, and steady state
properties.

In this chapter positivity of the system will be checked and questions about
steady state will be considered. Since states of systems for biochemical reac-
tion networks are concentrations, these state variables have to be positive.
This is discussed in Appendix A.4. In this chapter definitions and theorems
about positivity in general are presented. After this positivity is considered
for biochemical reaction networks. And we shall discuss how to determine
positivity of a dynamical system for biochemical reaction networks in gen-
eral.

In Section 4.2 positivity of the model of glycolysis of Trypanosoma brucei is
checked as an example of a biochemical reaction network. In this section the
methods of determining positivity for the model of glycolysis for Trypano-
soma brucei is discussed. We will also start in this section with determining
positivity, this will be continued in Appendix A.4.

Often one is mainly interested to know the value of the output variables
under steady state conditions, but the values of the state variables under
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these conditions are of interest to. This is why considering steady state
properties is important. The steady state is considered in Section 4.4.

Important questions that can be asked, about steady states, are questions
about whether a steady state exists and if it exists whether it is unique.
Another question can be whether the steady state of a system, if it exist
and if it is stable, it is asymptotically stable and whether it is globally
asymptotically stable. The articles, [23], and [10] are used to discuss these
phenomenons. A method to determine a set of steady states is explained
in this section. We will also discuss uniqueness and stability of the steady
state.

In this chapter system properties for biochemical reaction networks are con-
sidered. In Section 4.6 steady state values are determined for the model of
glycolysis of Trypanosoma brucei as an example. We shall determine the
steady state values numerically. We will discuss if there is a steady state,
which will be reached from every state.

In the first section of this chapter positivity is considered and in the sec-
ond section positivity for the model of glycolysis of Trypanosoma brucei
is considered. In the last two sections the steady state for the example of
Trypanosoma brucei is considered.

4.1 Positive systems for biochemical reaction net-

works

One of the properties of a dynamical system is positivity. In this section
of positivity of dynamical systems will be discussed, which is useful for
dynamical systems of biochemical reaction networks.

Positivity of a dynamical system means that all state variables of the system
are positive, which means, with our definitions, larger than or equal to zero.
For a dynamical system of a biochemical reaction network this is an impor-
tant system property. Since the states are all concentrations, they have to
be larger than or equal to zero, for the complete period t ∈ [t0,∞), which is
a continuous subset of the real numbers.

So for every t ∈ [t0,∞) the state vector x is a positive vector, x ∈ Rn
+.

The input vector u is also a positive vector, u ∈ Rk
+, since negative enzyme

concentrations are impossible. Also the output, y of the system, which is
often a vector of concentrations of the state variables of interest, has to be
positive, y ∈ R

p
+, because it is a vector of concentrations.

Thus when the system has positive input variables, and the initial value, for
the state of the system is also positive, then both the state vector, x, and
the output vector, y, have to be positive for t ∈ [t0,∞). The definition of
positivity of a dynamical system follows:
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Definition 4.1 [28, p.19, (2.1.1)]
A continuous-time positive dynamical system is a dynamical system in the
form of a differential equation,

ẋ(t) = f(t, x(t), u(t)), x(t0) = x0,

y(t) = h(t, x(t), u(t)),

f : [t0,∞)× Rn
+ × Rk

+ → Rn
+, h : [t0,∞)× Rn

+ × Rk
+ → R

p
+, n, k, p ∈ Z+,

such that, if x0 ∈ Rn
+ and u : [t0,∞) → Rk

+ then there exist a state and
output trajectory: x : [t0,∞)→ R

p
+ and y : [t0,∞)→ R

p
+, both taking values

in a positive vector space over the positive real numbers.

So a dynamical system of a biochemical reaction network has to be a positive
system. To prove positivity of a dynamical system one has to prove that the
positive orthant, Rn

+, is a positive invariant subset, also called a forward
invariant subset. A subset is called invariant if whenever the initial value,
x = x0, is contained in the subset at initial time, t = t0, then the state
trajectory will stay in this subset. So x(t) is contained in this subset for all
t ∈ [t0,∞). Now the positive orthant is invariant, when x0 ∈ Rn

+ at t = t0
imply that x(t) ∈ Rn

+, ∀t ∈ [t0,∞).

For the trajectory to stay inside a specific subset, a state on the boundary
has to stay either on the boundary or has to move, from the boundary, into
the interior of the subspace. For the positive orthant to be invariant the set
of differential equations has to be positive for a state at the boundary of
the positive orthant, dxi

dt
≥ 0, when xi = 0. A state is at the boundary of

the positive orthant if one of the components of the state vector is equal to
zero, {∃i ∈ Zn|xi = 0}.

Now a definition of time-invariant continuous-time real nonlinear systems is
given. After this a theorem for positive invariance of the positive orthant.

Definition 4.2 [28, p.20, (2.1.2)]
Consider an autonomous time-invariant continuous-time real nonlinear sys-
tem with representation

ẋ(t) = f(x(t)), x(t0) = x0.

The subset X ⊆ Rn is said to be positively invariant for this system if for
all x0 ∈ X the state trajectory satisfies that x(t) ∈ X for all t ∈ [t0,∞).

Theorem 4.3 Consider the nonlinear continuous system, not necessarily
positive,

ẋ(t) = f(x(t)), x(t0) = x0.

The positive orthant is a positively invariant subset if and only if for all
i ∈ Zn and for all x ∈ Rn

+ with xi = 0 it is true that fi(x) ≥ 0.
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It is possible for a system to have a state vector, which is strictly positive.
This is the case if for every state on the boundary, with xi = 0, dxi

dt
> 0.

A nonlinear positive system is called strictly positive if the interior of the
positive orthant is positive invariant. When the system is restricted by a
under boundary, s ∈ Rn

s+, the system is called boundary positive, with under
boundary, if all xi ≥ si, ∀i ∈ Zn. The system is called boundary positive,
with upper boundary, if all si ≥ xi, ∀i ∈ Zn.

The following definitions and theorem are definitions for strict positivity
of a nonlinear real system, a theorem of a nonlinear positive system and
the definition of bounded positivity, with an under boundary and an upper
boundary of a nonlinear system.

Definition 4.4 [28, p.21, (2.1.4)]
A nonlinear positive system,

ẋ(t) = f(x(t)), x(t0) = x0, X = Rn
+,

is called strictly positive if int(Rn
+) is a positively invariant subset of this

system: ∀x0 ∈ Rn
+. So if

∀x0 ∈ int(Rn
+), ∀t ∈ T, x(t) ∈ int(Rn

+).

Theorem 4.5 [28, p.21, (2.1.5)]
A nonlinear real system

ẋ(t) = f(x(t)), x(t0) = x0, X = Rn,

is strictly positive if and only if for all i ∈ Zn and for all x ∈ Rn
+ with xi = 0,

fi(x) > 0.

Definition 4.6 [28, p.21, (2.1.6)]
A nonlinear real system

ẋ(t) = f(x(t)), x(t0) = x0, X = Rn,

is called bounded positive, with under boundary, if there exist a strictly pos-
itive state s ∈ Rn

+s such that the subset

X(s) = {x ∈ Rn
+ | ∀i ∈ Zn, xi ≥ si}

is positively invariant.
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Definition 4.7 A nonlinear real system

ẋ(t) = f(x(t)), x(t0) = x0, X = Rn,

is called bounded positive, with upper boundary, if there exist a strictly pos-
itive state s ∈ Rn

+s such that the subset

X(s) = {x ∈ Rn
+ | ∀i ∈ Zn, si ≥ xi}

is positively invariant.

So when a nonlinear continuous-time dynamical system is considered one
can check whether this system is positive, strictly positive or whether it is
bounded positive.

In the next section it will be proved that the the model of glycolysis for Try-
panosoma brucei is a continuous-time positive system. Positive invariance of
the positive orthant will be checked for this model. The claim for the states,
without differential equation, to be larger than zero, leads to some upper
boundaries. So we will finally find a subset of the positive orthant, which is
positive invariant, the system will be boundary positive.

4.2 Positivity of the model for Trypanosoma brucei

In this section positivity of the model for the example Trypanosoma brucei
will be checked. The method, described in Appendix A.4, for checking posi-
tivity of a dynamical system for biochemical reaction networks, will be used
in this section. All calculations and determinations in this section are done
with the help of Maple. The values are all rounded to four decimals.

The system of glycolysis of Trypanosoma brucei is positive if all state va-
riables are contained in the positive orthant. So the positive orthant has
to be positive invariant. For the ten differential equations, first dxi

dt
is con-

sidered in case xi = 0, ∀i ∈ {1, 30, 5, 31, 12, 35, 16, 25, 36, 37}. If this is the
case xi = 0 is an under boundary for the system. When it happens that the
state xi becomes zero, it will stay zero or it will increase and become greater
than zero. For all ten differential equations in the system positivity of the
matching state will be checked.

The other states, which are expressed in the ten state variables, for which
differential equations exist, also have to be positive. When checking positi-
vity of these state variables, some upper boundaries for x36, x37 and x25 will
arise. When a state will reach a particular upper boundary the matching
differential equation has to be less or equal to zero. Then the state will stay
at the boundary or it will decrease to a lower value. When checking positi-
vity of these state variables also a restriction will arise for x11, x18, and x21.
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Checking positivity for the other state variables will be done after checking
positivity for the state variables for which a differential equation exist.

First positivity will be checked for the state x1. When x1 is assumed to be
zero, the differential equation for x1 has to be larger or equal to zero. The
differential equation for x1 is

dx1

dt
= 9.3158

x2 u1

1.0 + 0.5x2
.

The concentration of glucose outside the cell, x2, is assumed to be 5 mM ,
so x2 is a positive concentration. Also the input variables ui,
∀i ∈ {1, 30, 5, 31, 12, 35, 16, 25, 36, 37}, are larger or equal to zero, so dx1

dt
≥ 0.

This means that the state x1 is positive.

When for example the differential equation for x31 is considered, it will be
seen that it is sure that dx31

dt
≥ 0 if c53 ≥ 0. This is the case when the

upper boundary for x36 is used, since c53 ≥ 0 if x36 ∈ (−2.0173, 9.8175).
The differential equation for x31 is

dx31

dt
=

64.7368 (c53 x5 − 1184.0796x9 x10) u5

1 + c53 x5 + x10(14.9254 + 10.2041x5c53 + 995.0249x9) + 66.6667x9

−257.8947
(14.8148x10 x24 − 335.0000x12 x25) u7

(1 + 6.6667x10 + 10x12) (1 + 2.2222x24 + 50x25)

−74.5614
(78.4314x9 x25 − 0.0182x11 x24)u13

(1 + 1.1765x9 + 0.1563x11) (1 + 66.6667x25 + 1.6667x24)

+37.9773
x21 u15

1 + 0.5882x21
,

with

c53 =
1

0.0282 + 0.0054x36 − 0.0025
√

(3.9 + 0.768x36)
2 − 1.3578x2

36

.
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The state variable x31 does not occur explicitly in dx31

dt
, but since

x9 = 0.9981x31 and x10 = 0.0449x31 the following is obtained for dx31

dt
when

x31 = 0:

dx31

dt
= 64.7368

c53 x5 u5

1.0 + c53 x5

+86394.7369
x12 x25 u7

(1.0 + 10x12) (1 + 2.2222x24 + 50x25)

+1.3592
x11 x24 u13

(1.0 + 0.1563x11) (1 + 66.6667x25 + 1.6667x24)

+37.9773
x21 u15

1 + 0.5882x21
.

All factors in this differential equation have a positive sign, which means
that dx31

dt
≥ 0 when x31 = 0. So x31 will be a positive state variable.

For the states, x30, x5, x12, x35, x16, x25, x36, and x37 positivity will be
checked in the appendix.

Now we will check whether the other state variables are positive, and which
restrictions will be found. When the expressions between the state variables
are considered, it will be seen directly that when x30, x5, x12, x35, x16, x25,
x36, and x37 are positive most other state variables are positive. The states
that are also positive in this case are x3, x4, x9, x10, x14, x15, x20, and x29.
The states which have to be considered, because of restrictions, are x6, x7

and x8, which depend on x36, x11, x21, and x28, which are the same, x17,
x18, and x19, which depend on x37, and x24, which depend on x25.

When the expressions for x6, x7, and x8 are considered, it is found that
x36 ∈ (0, 7.8000) has to hold. Thus when x36 = 7.8000, dx36

dt
is less than or

equal to zero. When x36 = 7.8000 it is found that x6 = 3.9, x7 = 0, and
x8 = 0. The following is then obtained for dx36

dt
:

dx36

dt
= −24763.2481

x1 u2

1 + 10x1

−4011.3354
x4

1.2u4

1 + 1.2689x4
1.2

−43.5081
x14u8

1 + 20x12 + 0.6173x14

−0.1083 · 107 x13u17

1 + 0.1961x11 + 8.3333x13
.

From this one can conclude that dx36

dt
≤ 0, which means that x36 ∈ (0, 7.8000)

is necessary for x6, x7, and x8 to be positive state variables.
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At the same way one can find that x37 has to be in (0, 7.8000). This is the
case, because c11,2 ≥ 0 if x37 ∈ (−0.5992, 9.8173) and by this also when
x37 = 7.8000. To check whether the differential equation for x37 is less or
equal to zero, both terms in the equation are considered, this is done in
Appendix A.4. It can be seen that the numerator of the first term is equal
to zero, which means that the whole term is zero. So the second term of the
differential equation has to be zero. In the appendix one can see that this is
indeed the case.

One can also find in Appendix A.4 that dx25

dt
≤ 0 if x25 = 4. So x24 is also a

positive state, since x24 = 4− x25.

The only variables that have to be considered are x11, x21, and x28, which
are the same and can be expressed as

x11 = x21 = x28 = 5.1600 − x31 − 0.0430x30 − 0.0860x5

−0.0430x12 − 0.0430x36 =

5.1600 − 0.0430
( x31

0.0430
+ x30 + 2x5 + x12 + x36

)

.

Now first a function f(x31(t), x30(t), x5(t), x12(t), x36(t)), denoted by f , will
be defined as:

f(x31(t), x30(t), x5(t), x12(t), x36(t)) =

x31(t)

0.0430
+ x30(t) + 2x5(t) + x12(t) + x36(t)

When x11 is equal to zero, f has to be less than or equal to 120. So df
dt

has
to be less than or equal to zero, if x11 is equal to 120. In Appendix A.4 one
can find that this is indeed the case.

Now it can be concluded that the dynamical system for glycolysis of Trypa-
nosoma brucei is a positive system. Also the output variables are positive,
since they are in fact several of the state variables. In this section the me-
thods of determination are discussed and a few determinations are done.
Most of the determinations and calculations can be found in Appendix A.4.

4.3 Steady state

In the last two sections positivity is discussed and checked for glycolysis in
Trypanosoma brucei. In this section the steady state property of a non-linear
positive dynamical system will be discussed. First the concept of steady state
and of equilibrium state will be explained, after this several definitions of
the concepts will be given. Then something will be said about the difference
between steady state and equilibrium state. Most of the definitions are taken
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from, [28]. In this section also a few methods to compute or to determine a
steady state will be discussed shortly.

Questions that arise are: does a steady state exist and if it exists, is it unique,
and is it stable? If a a stable steady state exists is it asymptotically stable
or globally asymptotically stable? At this moment it is impossible to answer
all these questions for biochemical reaction networks with rate equations as
defined in this report. First definitions for the above steady state properties
will be provided, after which some ideas of these concepts will be discussed.
Most of the ideas will come from the articles [23], [10] from E.D. Sontag and
M. Feinberg.

In Section 4.6 the steady state will be determined numerically for the model
of glycolysis in Trypanosoma brucei. The computer program Matlab is used
to determine this steady state, by determining the state trajectory numeri-
cally, until a steady state is reached. This is done under aerobic and under
anaerobic conditions. The steady state is determined numerically, since no
method is available, at the moment, to calculate it analytically. Before de-
termining the steady state for the model of glycolysis in Trypanosoma brucei
the method in Matlab will be explained first.

4.4 Steady state properties of a dynamical system

The phenomenon of steady state will be explained first. For a time-invariant
positive system with constant input variable, us, a steady state is a state,
in which a systems state trajectory will remain, when it is initiated in this
state or when it reaches this state. So the state vector does not change when
the system is in steady state. By this the differential equation for the state,
xs in steady state, is equal to zero, dxs

dt
= f(x(t), us) = 0.

A steady state can be reached for the system when the input is the same for
all times, this is called a steady input. In this case also the output becomes
constant, ys, then the system consists of steady input and steady output.
When the input variables change, a new steady state will be reached after a
while and when the input variables are depending on time, the system will
never reach a steady state.

In the case that a system of differential equations is a system without any
input variables, a state for which dxe

dt
= f(x(t)) = 0, is called an equilibrium

state. This is the state in which the state trajectory will remain, when it is
initialized at this state or when it reaches this state.

The following definition is a definition of an equilibrium state and a definition
of a steady state of a positive system, which can be used for systems for
biochemical reaction networks.
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Definition 4.8 [28]

1. Consider the system

ẋ(t) = f(x(t)), x(t0) = x0.

An equilibrium state of this system is a state xe ∈ Rn
+ such that the

state trajectory will remain at this value when initialized with it; or,
equivalently,

0 = f(xe).

2. Consider the system

ẋ(t) = f(x(t), u(t)), x(t0) = x0.

A steady state of this system for a fixed steady input us ∈ Rm
+ is a state

xs ∈ Rn
+ such that when the system is initialized at this value and the

input function is identical to the steady input value, u(t) = us for all
t ∈ [t0,∞), then the state trajectory will remain at this value forever;
or, equivalently, if

0 = f(xs, us).

So for the rational positive system as in Chapter 3.2, that is, for a cell
reaction network a steady state is defined as follows:

Definition 4.9 [28] Consider the rational positive system,

dx

dt
= BDiag (r (x(t), xex))u(t), x(t0) = x0,

y(t) = HDiag(r(x(t), xex))u(t).

A steady state of the system associated with the external concentration vector
xex,s ∈ Rnex

+ , and constant input u(t) = us ∈ Rm
+ for all t ∈ [t0,∞), is a

vector xs ∈ Rn
+ which is a solution of the steady state equation

0 = BDiag(r(xs, xex,s))us.

The steady outflow rate corresponding to this steady state is then defined as,

zs = HDiag(r(xs, xex,s))us ∈ Rnz
+
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It has to be remarked that the use of terms differs in mathematics and
biology. A steady state and equilibrium state in mathematics, in this case
control and system theory, is not the same as the corresponding terms in
biology. An equilibrium state in biology for a biochemical reaction refers to
the situation where the rate of the reaction is the same in both directions.
When the system is in steady state, the pathway flux through the enzyme
equals the rate at which the enzyme catalyzes the reaction [21]. So in steady
state the rates will be constant but the bio-chemical substances can still
change in concentration.

Several methods are available to calculate a steady state. One of these me-
thods is simulation of the continuous time system, which will be discussed
in the next section. In Section 4.6 the state trajectory will be determined,
for the model for Trypanosoma brucei, until a steady state will be reached.

Another method is solving the system 0 = f(x(t), u(t)), for example by
Maple, Mathematica or Matlab. To do this, rational equations can be re-
duced to polynomial equations, this method is discussed below when ex-
istence of a steady state is discussed. Another method is a Newton-like
recursion method. This method is based on finding the roots of a function
f(x). These are the values of x for which f(x) = 0. First one has to make an
initial guess for the value of the root, denoted by x0. If this is not a root of
the equation, f(x0 6= 0), this guess can be improved, with xi = xi−1−

f(xi)
f ′(xi)

,

for i = 1, 2, . . .. One can stop when f(xi) is sufficient close to zero [5].

Now that it is known what is meant by steady state, existence and unique-
ness of a steady state can be discussed, as well as the questions about stabil-
ity, asymptotical and globally asymptotical stability. Before discussing these
questions we will give some explanations about these concepts.

If a steady state exists then the equation f(x, us) = 0 has at least one
solution. A steady state is unique if this equation has exactly one solution.
So the following definition can be given for existence and uniqueness of a
steady state:

Definition 4.10 Consider the system with steady input value u(t) = us ∈
R+

n , ∀t ∈ [t0,∞),

ẋ(t) = f(x(t), u(t)), x(t0) = x0.

A steady state exists for this system if the equation

0 = f(xs, us)

has a solution, xs ∈ mathbbRm
+ . The steady state is unique if this equation

has precisely one solution.
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A method to check whether a steady state exists to solve 0 = f(xs, us), for
xs ∈ Rn

+ when us ∈ Rm
+ is known. Recall that f(xs, us) is a function that

consists of differences between rate equations, which are rational polynomial
functions. A polynomial in n variables with positive coefficients is denoted
by

p(x) =
∑

k∈Nn

cp(k)x
k(j)
j .

One can rewrite the terms of the differential equations in such a way that
they have the same denominator. So the following equation

p1 − p2

q1
−

p3 − p4

q2
= 0

has to be solved. Here p1, p2, p3, p4, q1, and q2 are polynomials that are
contained in the rate equations. Then

p1−p2

q1
− p3−p4

q2
= 0 ⇔

(q2(p1−p2)−q1(p3−p4)
q1q2

= 0 ⇔

(q2p1 + q1p4)− (q2p2 + q1p3) = 0

For small problems it is possible to solve such an equation. When the de-
gree of the polynomial becomes high, the problem of finding the roots of a
polynomial becomes very difficult quickly [15].

For example, for the model of glycolysis of Trypanosoma brucei several nu-
merators become polynomials of a degree of four or higher. Already then it
would be a lot of work to solve this problems with an algorithm.

In [28] one can find an algorithm for computation of a steady state, which
is based on first transforming the stoichiometric matrix, by row operations,
and after this finding the roots of the numerator, when all terms where
brought under the same denominator. In this paper also an algorithm is
described for computing a steady state of a continuous-time linear positive
system, in this case the matrix has to be irreducible.

This algorithm is based on first computing a permutation matrix, P , in
such a way that the matrix PAP T is in Frobenius form, see [4]. After this a
reduced system is obtained and can be solved. The question one can ask is:
whether it is possible to extend this algorithm to a system that consists of
rational positive rate equations? This question is still an open question.

For the model of glycolysis in Trypanosoma brucei the graph is not irre-
ducible, one can find the graph of this system of differential equations in
the Appendix A.5.1. The graph of a dynamical system is described by the
following definition.
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Definition 4.11 The graph of a dynamical system,

ẋ = f(x(t), u(t)), x(t0) = x0

y(t) = h(x(t), u(t)),

is defined by a set of vertices V, also called nodes and a set of lines, the edges
E, G:=(V,E). The set of vertices consists of the state and output variables.
The edge (i, k) is a directed edge from node k to node i, k → i, if ẋi depends
on xk, or hi(x(t), u(t)) depends on xk.

The graph is irreducible if and only if the graph is strongly connected, which
means that one can travel from every node to every other node of the graph.
A graph is a network of nodes and vertices, which will be explained in
Section 5.3 about control in more detail.

One can easily check that for the graph of the model of glycolysis in Trypa-
nosoma brucei it is not possible to travel from every node in the graph to
every other node in the graph. The graph consists of a directed connection
of two strongly connected subgraphs.

Next, stability, asymptotic stability and global asymptotic stability will be
discussed. A steady state for a dynamical system is stable if all trajectories
nearby stay close to the steady state. So when the initial value of x, x0 at
time t0, is chosen close to the steady state value, the state x(t) stays close
to this value ∀t ∈ [t0,∞). The following definition is a definition of stability
of a steady state.

Definition 4.12 [28] Consider the system

ẋ(t) = f(x(t), u(t)), x(t0) = x0,

y(t) = h(x(t), u(t)).

A steady state, 0 = f(xs, us) and ys = h(xs, us), is stable if

∀ε ∈ (0,∞) ∃δ ∈ (0,∞) such that

‖x0 − xs‖ < δ ⇒ ‖x(t)− x0‖ < ε ∀t ∈ [t0,∞).

A steady state is asymptotically stable if the steady state is stable and it
is locally attractive. So there exists a neighborhood of the steady state for
which the state trajectory when started inside this neighborhood will reach
the steady state as a limit. A steady state is called globally asymptotically
stable if every solution, for any choice of initial value in the domain, con-
verges to the steady state.
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Definition 4.13 [28] Consider the system

ẋ(t) = f(x(t), u(t)), x(t0) = x0,

y(t) = h(x(t), u(t)).

1. A steady state, 0 = f(xs, us) and ys = h(xs, us), is asymptotically
stable if it is stable and if

∃δ ∈ (0,∞) such that if ‖x(0)−xs‖ ≤ δ then lim
t→∞

x(t) = xs ∀x0 ∈ Rn.

2. A steady state, 0 = f(xs, us) and ys = h(xs, us), is globally asymptot-
ically stable if

lim
t→∞

x(t) = xs ∀x0 ∈ Rn.

For a biochemical reaction system x0 has to be at least in Rn
+. For the model

of glycolysis in Trypanosoma brucei the domain of the state variables, is
determined in Section 4.2.

The class of systems which are discussed in this paper, are rational posi-
tive systems for biochemical reaction networks. At this moment no concrete
method to calculate stability, asymptotically stability and globally stability
are found. Below some results from the article [23], by E.D. Sontag [10], by
M. Feinberg, and [28] are discussed.

In [23] results for existence of a unique equilibrium, asymptotical stability,
global asymptotic stability of this equilibrium are determined for biochemi-
cal reaction networks. These results are restricted to systems of differential
equations with mass action kinetics,

ẋ =

m
∑

i=1

m
∑

j=1

aijx
b1j

1 x
b2j

2 . . . x
bnj
n (bi − bj).

In this equation A = (aij) is the matrix that consists of the rate constants
and B is the matrix with consists of the reaction vectors, as described in
Chapter 3. The matrix A has to be irreducible and the matrix B has to be
positive. In [23] a theorem is given which explains, for a positive class S, a
unique equilibrium exists, that this is asymptotically stable and whether it
is globally asymptotically stable [23, p.1032]. What is meant by a positive
class S, is described in this article. The theorem is proved in detail. An
open problem is the problem of extending the theory for the above system
to systems that occur using Michaelis-Menten reaction kinetics.

In [10], by M. Feinberg, the Deficiency zero and Deficiency one Theorems
are discussed. The kinetics that is used for this paper is mass action kinetics.
The deficiency zero theorem is also discussed in other articles of M. Feinberg

62



and F.J.M Horn, see [8], [9], [11], and [14]. Before giving these theorems first
theory from [10] will be described.

A reaction network has rank s if there exists a linearly independent set of s
reaction vectors for the network and there exists no linearly independent set
of s + 1 reaction vectors. The reaction vectors are of the form described in
Chapter 3. So the rank of a network is the number of elements in the largest
set of reaction vectors for the network, which is independent.

A linkage class is the set of complexes in a separate part of the network.
So the number of linkage classes is the number of separated parts of which
the network form. The number of linkage classes is denoted by l, while the
number of complexes in the network is given by n.

For each reaction network the deficiency, denoted by δ, can be calculated,
which is δ = n−l−s. Positive dependence of the reaction vectors is necessary
for the existence of a positive steady state and is, in fact, sufficient to ensure
the existence of rate constants for which the corresponding mass action
equations admit a positive steady state.

Most of the results of the Deficiency zero Theorem and the Deficiency one
Theorem holds for the system

ċ =
∑

R

Ki→j(c)(yj − yi), c ∈ RN
+ ,

in which Ki→j are the rate equations and R denotes the set of reactions in
the network. So the sum is taken of over all reactions yi → yj. For the results
the rate equations are mostly of mass action kinetics. For a few results it is
not necessarily that the rate equations are of mass action kinetics.

The Deficiency zero theorem tells that for a reaction network, not necessarily
mass action, when the network is weakly reversible, the differential equations
for the corresponding reaction system cannot admit a positive steady state.
If the network is not weakly reversible, the differential equations cannot ad-
mit a cyclic trajectory along which all species concentrations are positive.
Now when the network is weakly reversible then, for mass action kinetics,
the differential equations for the corresponding reaction system have the
following properties: there exists within each positive stoichiometric com-
patibility class precisely one steady state, this steady state is asymptotically
stable, and there is no nontrivial cyclic trajectory along which all species
concentrations are positive.

The Deficiency one theorem considers a mass action system, of which the cor-
responding network consists of l linkage classes, each containing one terminal
strong linkage class. Suppose that the deficiency of the network and the de-
ficiencies of the individual linkage classes satisfy the following conditions: i)
δθ ≤ 1, θ = 1, 2, . . . , l; ii)

∑l
θ=1 δθ = δ. Then, no matter what positive values

the rate constants take, the corresponding differential equations can admit
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no more than one steady state within a positive stoichiometric compatibil-
ity class. If the network is weakly reversible, the differential equations admit
precisely one steady state in each positive stoichiometric compatibility class.

For the model of glycolysis in Trypanosoma brucei, as given in Appendix A.2,
the deficiency is equal to zero, since the number of complexes is equal to
42, the number of linkage classes is 19 and the rank of the reaction network
is equal to 23. The network of reaction equations as given in this appendix
is not weakly reversibly. This means that the equations cannot admit a
cyclic trajectory along which all species concentrations are positive. This
part of the Deficiency zero Theorem holds for a reaction network, which is
not necessarily for mass action kinetics.

The third part of the Deficiency zero Theorem and the Deficiency one theo-
rem holds for reaction networks, which are of mass action kinetics. A ques-
tion that can be asked is: how to extend this result for all reaction networks,
not necessarily mass action kinetics? In particular how to extend to reaction
network, of Michaelis-Menten reaction kinetics.

In [28], results are available to check stability for linear systems. Also some
results are described, which make use of Lyaponov functions to determine if
an equilibrium state of zero is stable, asymptotically stable.

4.5 Numeric determination of the steady state

In the following Section the steady states of the model of glycolysis in Trypa-
nosoma brucei will be determined numerically, under aerobic and anaerobic
conditions as well. This is done since no other practical method exists to
determine the steady state analytical. A steady state of a dynamical system
can be determined numerically with the help of Matlab, this will be de-
scribed in this Section. The Matlab program will be given and the method
used by Matlab will be discussed.

To determine a steady state in Matlab two files have to be made, one file
consisting of the system of differential equations, and one file consisting of
the program that solves the system and the program for plotting the state
trajectory. The solver that is mostly used, and will be used to solve the model
for glycolysis in Trypanosoma brucei, is ODE45. This solver solves non-stiff
differential equations, with a medium-order method. This method is based
on an explicit Rung-Kutta formula. This is a one-step solver to compute
y(tn). This method uses the solution of the time point immediately before,
y(tn−1). The ODE45 solver is the best function for a variety of problems [27].

The Runge-Kutta method is an improved version of Euler’s method. For a
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differential equation dy
dt

= f(y(t)) it holds that,

tk+1 = tk + ∆t

yk+1 = yk + f(tk, yk)∆t.

To calculate yk+1 from yk the step that has to be taken in the Runge-Kutta
method is

yk+1 = yk +

(

mk + 2nk + 2qk + pk

6

)

∆t,

in which mk, nk, qk, and pk are four slopes that are given by the function
f(x(t)). A weighted average is taken to calculate these slopes, where the
slopes from t̃ are weighted twice as heavy as the other slopes. To calculate
these slopes intermediate variables are used. The slopes and the intermediate
variables used in this method are

mk = f(tk, yk),

nk = f(t̃, ỹk), t̃ = tk + ∆t
2 , ỹk = yk + mk

∆t
2 ,

qk = f(t̃, ŷk), ŷk = yk + nk
∆t
2 ,

pk = f(tk+1, ȳk), ȳk = yk + qk∆t.

So the Runge-Kutta method will also go halfway along the t-axis, while
the Euler method does not. One can find the above description about the
Runge-Kutta method in more detail in [5].

Now a system is said to be stiff when the solution of a system of differential
equations contains components which change at significant different rates
for given changes in the dependent variable. Whether a procedure that is
applied to solve these systems has success depends on the eigenvalues of and
in particular the ratio of the smallest and the largest eigenvalues [17].

To obtain this ratio, for a set of differential equations ẋ(t) = f(x(t)) the

derivative has to be taken with respect to x, df(x)
dx

. Next the value has to be
inserted of the state at which one wants to obtain the derivative. Afterwards
the eigenvalues have to be calculated, from which the eigenratio can be
calculated as

|λmax|

|λmin|
,

with λmax and λmin, respectively, the largest and the smallest eigenvalue of
the matrix described above.

Now to determine a steady state numerically with Matlab, first a function is
needed that contains the right hand sides of the set of differential equations.
This function can be made in a Matlab file. One have to define this function
with ‘function’ and has to give it a name. So the function is the following:
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function F=‘function name’(t,y)

‘Set of differential equations and algebraical equations’

The name of the file is the same as the name of the function and will be used
in the second file, for solving the system. For the example of Trypanosoma
brucei y, will be denoted by x, since y is used as output vector.

In the second file one solves the system of differential equations given in the
first file. The output of the solver is a column vector of time points, called
T , and array with solutions, called Y . In Y each row corresponds to the
solution at the corresponding time in the corresponding row in T . The code
to solve the system is the following:

[t,y] = ‘name solver’(‘function name’,‘tspan’,‘y0’,‘options’)

The name of the solver used in the following section is ODE45, but in Matlab
one can find a number of other solvers.

As one can see in the function which solves the system a horizon has to be
specified. This is the integration interval, [t0, tf ], t0 is the initial time and tf
is the final time. The solver uses t0 as initial time and integrates from this
time to the final time. The solver returns a solution for every integration
step, when one specified only the initial and the final time in this interval.
When one specifies more time points, the solver will give only the solutions
evaluated at the given time points. It can happen that a solver does not
necessarily step precisely to a time point, which is given in the horizon.
The solutions produced at the specified time points are of the same order
of accuracy as the solutions computed at the internal time points. The time
values must be in order, this order can be smaller of larger. The tspan can
be given by

tSpan=[‘value t initial’ ‘value t final’];

One also has to specify the initial conditions for the set of differential equa-
tions, this is y0. This is a n vector of initial values at t0, with n ∈ N the
number of unknown variables, also the number of differential equations.

yInitial=[‘y_1(0)’;...;‘y_n(0)’];

With the values in options, arguments can be given, such as for example
for the relative error tolerance, ‘RelTol’ and for the absolute error tolerance
‘AbsTol’, one can find these in the Matlab manual. With the help of odeplot
one can plot the solution of the solver, the state trajectory. One can tell
from which trajectory, column, one wants to obtain a plot, and which part
of the trajectory, columns.
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plot(t,y(‘row’,‘column’))

In the next section the above method will be used to determine the steady
state for the model of glycolysis in Trypanasoma brucei, both under aerobic
and under anaerobic conditions.

4.6 Steady state for the model of Trypanosoma

brucei

In this section the steady state for the model of glycolysis in Trypanosoma
brucei will be determined numerically. First the system of differential equa-
tions is converted from Maple to Matlab, this can be copied easily. The
method described above is used to determine the steady state. The solver
which is used in Matlab is ODE45, for non-stiff systems of differential equa-
tions.

As described in the above section, two Matlab files are obtained. The first
file consists of a function called ‘trypbruc’. This function first contains a
list of input variables, with their values. Afterwards the set of differential
equations is given in this function. With dxi the differential equation dxi

dt

is meant, for i ∈ {1, 30, 5, 31, 12, 35, 16, 25, 36, 37}. Then the vector F is the
vector of differential equations of the system for glycolysis in Trypanosoma
brucei. This function can be found in Appendix A.5.2. The name of the file
has to be the ‘function name’.m. So the name of this file is ‘trypbruc.m’.

In Appendix A.5.2 the program which determines the steady state is given.
First the time set is defined as [tInitial, tF inal] in minutes. Then the initial
value for the state variables has to be defined. This is the value at t =
0 and can be taken randomly in the domain of the system. Further the
function name has to be given and options for the absolute and the relative
tolerance. After this the method ‘ode45’ is applied to determine the steady
state trajectory for the state variables, with given function, tSpan, Initial
state values, and options. After this the steady state trajectory are plotted.
To plot the commands subplot and plot are used. Finally this program gives
the values of the state variables and the output variables at the final t value.

For the model of glycolysis in Trypanosoma brucei two different conditions
are discussed. Glycolysis will take place under aerobic and under anaerobic
conditions. Under aerobic conditions Vmax for the enzyme GK is assumed
to be zero, this means that the reaction from Gly-3-P into DHAP does not
occur, see Figure 3.1. In the model in this report this results in u17 to be
zero. Under anaerobic conditions the reaction catalyzed by GPO does not
occur, Vmax is equal to zero for this enzyme. So in this report u15 will be
put to zero in this case in state of Vmax.
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Below a steady state will be determined for aerobic and anaerobic conditions,
respectively. It will be seen that different steady state vectors will be reached
for both cases.

As stated in the introduction of this section for aerobic conditions u17 is
put to zero. The other input variables are equal to one, since the steady
state of the complete model without adjustments is used. In Section 5.4,
adjustments are applied on input variables to control the output of ATP.

The steady state has been determined, for several initial states. It is seen
that for all possibilities tried the same steady state will be reached. So we
conjecture that there exists a unique steady state, but we cannot prove this.
When initial values are taken close to steady state, it is obtained that the
system will reach steady state quicker than when initial values are taken far
from steady state, this is as expected.

In Appendix A.5.2 results are denoted, in the form of figures, in which
one can see how the state trajectories of the state variables will reach
steady state. Figures of state trajectories are given for two different fi-
nal times, namely 1 minute and 10 minutes. So one can see how a steady
state will be reached. In the appendix one can find figures in which steady
state is determined for the vector of initial values which is the 1 vector,
x0 = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]. Determinations of steady state with other ini-
tial values will not be given in the appendix of this report.

After one minute almost all states are at steady state or close to steady state
and after 10 minutes all state variables except x16 have reached their steady
state values. After 45 minutes also x16 has reached steady state.

Since under anaerobic conditions the reaction from Gly-3-P cannot take
place, since oxygen is needed for this reaction, u15 is assumed to be zero.
Under this condition Gly-3-P is converted into glycerol [2]. In Appendix ??
figures are plotted for the state trajectory, with initial value
x0 = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1], under anaerobic conditions. This is done for
t ∈ [0, 1] and for t ∈ [0, 5] minutes. Already within two minutes a steady
state is reached, which is much quicker than under aerobic conditions.

By use of the vector of initial values of x0 = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1] the eigen-
ratio is equal to 1789.0947 for the aerobic case, for the anaerobic case the
eigenratio is equal to 247.7314. So under aerobic conditions the eigenratio
is much higher than under anaerobic conditions, for this initial vector. This
because of the difference between the largest and the smallest eigenvalue is
large under aerobic conditions. This can be the reason, that it takes more
time before the system reached steady state under aerobic conditions. Ac-
tually the method to determine the steady state works, despite the high
eigenratio, which means that the system is probably stiff.

The steady state values that were found are very close to the steady state
values determined, also numerically in [2] from which one can conclude that
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the model is converted correctly. The relative difference is 0.0049, this is the
Euclidean norm of the difference of both results divided by the results in
this report. The relative difference under anaerobic conditions is 0.0306.

Sensitivity of the system with respect to the parameters can also be a prob-
lem. A system is called sensitive when a large change in steady state occurs,
while the parameters have a small change. One is interested in dx(t)

dpk
|xs . This

is not checked in this report.

In Table 4.1 one can find the results of the variables in steady state, for both
the aerobic condition and the anaerobic condition. Here one can see that
x6 = 0.7817, x17 = 2.8010, x1 = 0.0561, and x16 = 21.4393, under aerobic
conditions. So in steady state the concentration of ATP in the glycosome
is much smaller than the concentration in the cytosol. Also in relation to
the concentration of ADP the concentration of ATP in the glycosome is
much smaller than in the cytosol. The concentration of glucose inside the
glycosome is low, namely 0.0561 mM .

Under anaerobic conditions x6 = 0.4071, x17 = 2.0329, x1 = 0.1023, and
x16 = 1.5760. The concentration of glucose inside the glycosome, under
anaerobic conditions, is about twice the concentration under aerobic condi-
tions. So there is an increase of the glucose uptake from outside the cell. The
concentration of ATP in the glycosome is almost the half of the concentration
under aerobic conditions, this is not the case with the concentration of ATP
in the cytosol under anaerobic conditions. But for both the relation ATP-
ADP is lower under anaerobic conditions than under aerobic conditions. The
concentration of pyruvate is much smaller under anaerobic conditions than
under aerobic conditions. This because under aerobic conditions glucose was
converted into pyruvate completely, while under anaerobic conditions both
pyruvate and glycerol where produced, in equimolar amounts [2].
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Table 4.1: the steady state concentrations under aerobic and anaerobic
conditions

State Steady state Steady state
variable concentration (mM) concentration (mM)

aerobic anaerobic

x1 0.0561 0.1023

x6 0.7817 0.4071

x7 1.6251 1.3913

x16 21.4393 1.5760

x17 2.8010 2.0329

x18 2.8010 1.4254

x36 3.1884 2.2056

x37 6.5570 5.4912

In this chapter dynamical system properties are discussed. First positivity
of a rational positive system is discussed. In Section 4.2 positivity is ob-
tained for the system of glycolysis in Trypanosoma brucei. Afterwards the
steady state property is discussed in Section 4.4. In this section first the
concept is explained, after this several methods to compute steady states
are discussed. Also in this section questions about stability, asymptotical
stability, and global asymptotical stability of a steady state are discussed.
For this discussion several articles are used. Finally in Section 4.5 a method
to determine a steady state trajectory of the state numerically by Matlab
is described. In Section 4.6 this method is applied to the model of glyco-
lysis in Trypanosoma brucei. Different results are obtained for aerobic and
anaerobic conditions.

We saw that almost the same results are reached as in [2], which means that
the model is converted correctly.
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Chapter 5

Control of Dynamical

Systems

This chapter deals with control of dynamical systems. Motivations for this
subject are problems that arise in drug design, food processing, waste water
treatment, and other biotechnology. Control theory can be used in this con-
text. The problem is how to develop effective medicines and to improve food
production. In this chapter we successively discuss the motivation in more
detail, the problems, and the approaches. Finally one of these approaches is
discussed in more detail.

5.1 Motivation

In this section control of dynamical systems for biochemical reaction net-
works will be motivated. There are several areas in which control is useful.
Two of these areas are the area of developing medicines and the area of
biotechnology.

Medicines or drugs are synthesized in a process referred to as drug design.
A good drug has the desired effect combined with as little side effects as
possible. To achieve this objective control theory can be used. The question
is how to determine the input to reach a particular output. Medicines are
developed in the pharmaceutical industry by several companies. Examples
of companies that develop medicines are Duphar, in Weesp, and Orgenon,
in Oss, in the Netherlands.

The approach used for drug design is to determine chemical substances that
inhibit one or more enzymes in a virus, parasite, bacterium or a micro-
organism with the goal disabling this organism. It is difficult to choose tar-
get enzymes that will inhibit the organism but not the host in which the
organism is located. Furthermore, one cannot always predict how inhibiting
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one enzyme effects the complete network. In the next section approaches of
control of biochemical models for biochemical reaction networks, especially
control for drug design, will be discussed.

Another area where control is useful is that of food production in biotech-
nology. For example one can think on yeast, which is used for brewing beer
and for bread dough. Control of the circumstances is desirable to obtain
optimal growth of biomass and to work most efficiently to reduce costs, [26].
One wants to control the production by influencing the micro-organism to
increase the production rate. An example of a company that works with this
kind of food production is Gist Brocades, in Delft, the Netherlands.

An idea is to make mathematical models for these problems, and to ap-
ply control theory to these models. For drug design this approach is called
network-based drug design or model-based drug design. Problems are, how
to determine medicines which work effectively and, for food production, how
to control the models in such a way that the amount of biomass grows opti-
mally. To apply control theory to these problems one has to define the goals
first. These are the so called control objectives.

The general problem is therefore how to influence a biochemical reaction
network to achieve the desired control objectives. An example of a control
objective is putting particular outflows zero by changing the input trajectory.
In Section 5.3 this will be explained and in Section 5.4 this will be applied
to the model of glycolysis in Trypanosoma brucei. Another control objective
is changing the input trajectory, to increase particular outflows. This is not
discussed in this paper.

5.2 Problems and approaches

In this section we want to explain problems to control a specific output, by
controlling the input vector. This goal is to obtain a specific output variable
or for a specific output variable to become zero by putting one or more
input variables equal to zero. The lather control problem can be used for
drug design.

After discussing a few problems four approaches will be discussed to solve
the control problem for drug design. Also the advantages and disadvantages
of these four approaches will be described. The approaches that will be
discussed in this section are: 1) the method of simulation of the steady state
when putting one or a combination of several input variables equal to zero,
randomly; 2) metabolic control theory; 3) control design via abstraction and
graph algorithms; 4) control theory for zeroing outputs.

The next section concerns rational drug design. We want to focus on the
approach to control design that uses graph algorithms, because this approach
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is applied in this paper to the model of glycolysis in Trypanosoma brucei.

The problems discussed in the last section are problems of control of bio-
chemical reaction systems. One is interested to know how to adjust the input
trajectory, to determine a particular output variable. So actually what we
want is to control the output variables by changing the input variables. We
want to develop an efficient method to control the output, an algorithm
called a control law which tells us how to control the output. We need to
determine an input trajectory, such that one or several control objectives,
which are the outputs to be controlled, are satisfied.

As mentioned above Rational drug design, for finding medicines against a
virus, parasite, bacterium or a micro-organism, is in overall based on dis-
abling the organism. To do this one wants to inhibit one or more enzymes
in the virus. The input trajectory can be a trajectory, which depends on the
state variables and the output variables, which are time dependent. While
in the problem for drug design discussed in this report one or more of the
input variables are set to zero, and by this these variables do not depend
on time. So for the first problem u(t) = g(x(t), y(t)) is obtained and for the
second problem ui(t) ≡ 0, for some i ∈ 1, . . . n, ∀t ∈ [t0,∞).

In this section four of methods for rational drug design will be discussed. One
of these methods will be used for the example glycolysis in Trypanosoma
brucei in this report. For this reason the next section will focus on this
method. However we will discuss the four approaches to rational drug design
first.

1) The first approach is the method of simulation. To apply this method one
has to put one or more input variables to zero and then simulate the output
trajectory for example with Matlab, Maple or Mathematica. Then one can
conclude from the simulation what is happening with the output variables
of interest. In fact this is simply a method of trial and error.

When the number of different input variables is equal to m ∈ N, first one
can start to put one of the input variables equal to zero. After this one can
do the same for two input variables. So when u ∈ Rm

+ then 2m possibilities
arise and this is practically to complex for huge dynamical systems. For
small dynamical systems this method is easy to use, since for ui = 0, for
some i ∈ 1, . . . n, ∀t ∈ [t0,∞) it is easy to determine the steady state of such
a system and the steady outflows as well.

A disadvantage of this method is that it is unclear how to select {ui =
0, i ∈ I ⊂ Zm}. For this reason the amount of possibilities rises very quickly,
since it is equal to 2m. A method mentioned later, uses a way to determine
I ⊆ Zm more efficiently and uses simulation afterwards to check verification
of the control objective. This way of working saves computation time, but
also makes use of the same simulation method.
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2) A second method to control specific output variables for drug design is
metabolic control theory. Metabolic control theory is based on the question
which step in the biochemical reaction network limits the steady state flux.
The idea of metabolic control theory is to see whether the change of activity
of an enzyme i has an effect on the steady state flux. The flux when the
system is in state is called J .

So suppose changes in an external parameter of the system provide a change
in a local rate vi. When the enzyme is isolated, what is then the correspond-
ing effect on the system flux J , when the enzyme is present in the whole
system, [7]? In metabolic control theory one wants to understand regulation
of metabolic networks by the genetic network.

The results of metabolic control analysis gives information about the effect
on the flux by inhibition of an individual enzyme. Enzymes are not isolated
in the reaction system: they interact through the metabolite concentrations.
So inhibition of an enzyme in a pathway may result in an increase of the
concentration of its substrates and/or a decrease of the concentration of its
products.

Next metabolic control theory will be described. The information about
metabolic control is obtained from the mini review ‘Metabolic control anal-
ysis of glycolysis in trypanosomes as an approach to improve selectivity and
effectiveness of drugs’ by B. Bakker et all [3], and from chapter 12 of the
book ’Fundamentals of Enzyme Kinetic’ by Athel Cornish-Bowden [7]. Af-
terwards advantages and disadvantages of this method will be discussed.
Finally results of metabolic control theory on the model of glycolysis in
Trypanosoma brucei will be discussed briefly.

Metabolic control analysis is one of the methods to analyze the behavior of
metabolic systems. Metabolic control theory was first published by Kacser
and Burns (1973) and Heinrich and Rapoport (1974). The flux control co-
efficient is used to determine the effect of the state flux, due to a change of
enzyme activity of a particular enzyme rate. The rate of an enzyme is a local
property of the system because it refers to an enzyme which is isolated from
the reaction network. The fluxes of the system in steady state and metabolic
concentrations in networks are called system properties [7].

The flux control coefficient, denoted by CJ
i of an enzyme i is defined as the

relative change of the enzyme activity, ri, that is responsible for this change
in flux at constant activities of all other enzymes.

These definitions of a flux control coefficient now allow for a precise state-
ment of the circumstances in which an enzyme could be said to catalyze the
rate-limiting step of a pathway. Such a description would be reasonable if
any variation in the activity of the enzyme produced a proportional varia-
tion in the flux through the pathway and in terms of equations this would
mean that such an enzyme had CJ

i = 1. Mathematically the flux control
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coefficient is described as follows:

CJ
i =

(

∂ lnJ
∂ ln p

)

ss
∂ ln vi

∂ ln p

=
v

J
·

(

∂J
∂p

)

ss
∂vi

∂p

.

In this equation p is a parameter, which for example can be an inhibitor
concentration, which affects the activity of enzyme i specifically. The partial
differentials are taken for the flux and for the rate of the reaction catalyzed
by enzyme i with respect to p.

When an enzyme has a flux control coefficient equal to 1, this enzyme is
the rate limiting factor for the whole reaction network. If an enzyme has a
flux control coefficient of 0, the rate for the reaction that is catalyzed by
this enzyme is not rate limiting at all. For reaction networks it is possible
to find the control coefficient experimentally. Values that are possible are
values between 0 and 1.

In an ideal pathway for biochemical reactions the sum of the flux control
coefficients of all enzymes is equal to 1:

∑m
i=1 CJ

i = 1, here m ∈ N is the
total number of enzymes. So when one of the enzymes has a high flux control
coefficient, the others must have low control coefficients and vice versa, [3].

The theory above describes the use of metabolic control theory to answer
the question which enzymes is the most effective to reach a specific output
variable. So metabolic control theory can be used as an approach to rational
drug design. This method is easy to compute and it is an effective method at
steady state values. To use this method one calculates the derivative of the
flux in steady state with respect to p. This means that ∂J

∂p
is calculated in

(us, xs, ys). So this metabolic control coefficient is a local criterium that holds
only in a small neighborhood of (us, xs, ys). At different steady state values
the Jacobians can be different. To overcome this, the Jacobians have to be
computed at several steady state values. This requires more computations,
which means additional work.

In her thesis B. Bakker has asked the question: what controls glycolysis in
Trypanosoma brucei. In Section 5.3 we will discuss this question for the third
method, the following method to be described. In Section 5.4 this method
will described for the glycolysis in Trypanosoma brucei.

3) The third approach to rational drug design is the approach applied as an
example on the model of glycolysis in Trypanosoma brucei. In this section
this method is discussed briefly.

The method of control design by abstraction and graph algorithms, makes
use of the graph of the biochemical network associated to the dynamical
system. The next section describes how the graph of the network is deter-
mined. This will be done with the help of the reaction network and the rate
equations belonging to this network.
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The nodes of the graph are the state variables of the system and the outflow
variables. The problem of rational drug design is equivalent to determining
a cut set in the graph. A cut set is a set of edges such that when removed
from the graph, no path from inflow to outflow exists. So after having the
graph, first the cut set method is used to delete edges corresponding with
the inputs that have to become zero.

After applying the cut set method, one has to check if there still exists a
path from inflow to outflow. This method can be used to determine which
input variable, or variables one has to put to zero for zeroing the outflow.
The outflow is zero when there does not exist a path from inflow to outflow.
The simulation method described above can be used to check whether the
outflow variables indeed become zero.

Now the possibilities to put input variables zero are less for simulation, then
when this method is used from the beginning. This method is useful because
the abstraction of the graph, in this case the graph, is easy to compute. It
is also useful that there are algorithms available for computing cut sets.
An algorithm for computing cut sets is discussed in the following section.
Another advantage of this method is that it does not depend on numerical
values of parameters, which are not always estimated correctly or reliably.

A disadvantages of this method is the fact that the graph has to be defined
by the modeler. This can be difficult when the system is large. In this case
the graph can be divided into subgraphs. But even then the modeler has to
define the subgraphs and implement them in a computer program like Maple,
this method is very laborious. Another disadvantage of this approach is the
computational complexity of algorithms for finding a cut set.

4) The fourth approach described in this paper is the method of mathema-
tical control theory for zeroing outputs. Assume that the following dynamical
system exists:

ẋ = f(x(t), u(t)),

z(t) = h(x(t), u(t)).

This method is based on zeroing specific outflow variables to solve the fol-
lowing equation:

0 = h(x(t), g(x(t))),

where g(x(t)) is the input function, which depends on the state vector of
the system. So one has to search for a state vector, x, for which the output
function, h, becomes zero.

Actually, the systems discussed in this paper, are rational positive systems.
At this moment there is no control and system theory available. There exist
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contributions to control of bilinear, polynomial systems, and linear positive
systems in the area of control and system theory. This should be seen in
contrast to metabolic control theory, where methods are available to control
specific objectives of a rational positive system.

In article [23] of Eduardo D. Sontag, several results are explained for reg-
ularity under assumption of a particular hypothesis, denoted by Hk. These
results are given for dynamical systems of chemical networks, restricting the
attention of ‘mass action kinetics’,

ẋ =

m
∑

i=1

m
∑

j=1

aijx
b1j

1 x
b2j

2 . . . x
bnj
n (bi − bj).

In that article it is remarked that most of the results in thaat article can be
applied to Michaelis-Menten kind reactions of the form:

r = V +
[S]
Ks

1 + [S]
Ks

.

But to extend this method to Michaelis-Menten rate equations consisting
of more than one substrate is difficult as it is mostly not possible to write
the set of differential equations in the form above. One has to think about
a way to extend the theory in this article to dynamical systems of chemical
networks to Michaelis-Menten reaction kinetics. We do not know whether
this is possible at the moment. So the approach of using system theory to
zeroing the output is not possible at the moment. Theory in the area of
control theory has to be developed for this problem.

In this section four of the approaches to rational drug design have been dis-
cussed. The method in this paper for the glycolysis in Trypanosoma brucei
is the third method: control design via abstraction and application graph al-
gorithm. In the next section control to rational drug design will be described
in more detail.

5.3 Control for rational drug design

In this section the graph theoretic method for control to rational drug design
will be discussed in more detail. In the next section this method will be
applied to the model of glycolysis in Trypanosoma brucei. This method
makes use of the graph of the biochemical network. Afterwards the cut set
method is applied to this graph. This method is described below in this
section. If a cut set has been determined then it can be verified that there
does not exist a path between inflow and outflow. Finally results will be
checked with the help of simulation of a new steady state.
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The problem for which the following procedure is an approach is the problem
of rational drug design described in Section 5.2. The control objective is to
zero one or more particular output variables. The problem is which input
variables to put to zero, to zero pre specified output variables. So the goal
is to control the output variables by changing the input variables.

First a graph will be described for the biochemical network of interest. A
graph is a set of objects, which are called vertices and edges. The vertices
are connected by arrows which are called edges, which can be directed or
undirected. A graph can now be described by a set of vertices, denoted by
V and a set of unordered or ordered pairs of distinct edges, denoted by E.
Usually the sets E and V are finite sets. An undirected graph G can be
described by the pair G := (V,E). A directed graph G is an ordered pair
G := (V,E) with V a set of vertices and E a set of ordered pairs of vertices,
which are called directed edges. An edge e = (x, y) is directed from node x
to node y [12]. The following two examples are examples of an undirected
and of a directed graph.

Example 5.1 This is an example of a directed graph. The edges between
the vertices do not have any direction. The set of vertices V and the set of
edges E are

V = {1, 2, 3, 4, 5, 6},

E = {{1, 2}, {1, 5}, {2, 3}, {2, 5}, {3, 4}, {4, 5}, {4, 6}}.

Figure 5.2: an example of a undirected graph.
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Example 5.2 The graph below is an example of a directed graph. Between
some vertices there is an edge in both directions. The sets of vertices V and
the set of edges E are

V = {1, 2, 3, 4, 5, 6},

E = {{3, 2}, {2, 1}, {5, 2}, {3, 4}, {4, 3}, {1, 5}, {5, 1}, {4, 5}, {6, 4}}.

Figure 5.2: an example of a directed graph.
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A dynamical system of a biochemical reaction network can be converted in
a graph. The graph of the system

ẋ(t) = B ·Diag(r(x(t), xex(t))u(t),

y(t) = H ·Diag(r(x(t), xex(t))u(t),

as used in this approach will be explained now. The nodes of the graph are
the state variables of the system, the complexes of state variables and the
outflow variables.

A edge from one reaction complex, i, to another, complex j exists if there
exists a biochemical reaction which consumes complex i and produces com-
plex j, i→ j. There exists a dotted edge from a state or output variable to
a complex if the state or output variable is one of the substrates or products
in the complex. Furthermore a dotted edge exists if a complex is produced
and after this one of the products will be a consumer for a next reaction
there is an edge from the complete complex to that particular product.

So edge (i, k), k → i exists if either there exists a reaction from complex k to
complex i, or k is part of complex i and the complex is consumed or i is part
of the complex k and i is consumed after production of the complex k. Here
i, k ∈ I, which is the set of nodes. The edges in the graph are labelled by ui,
i = 1, . . . , 21, the input variables of the reactions catalyzed by the enzymes.
The graph described above is different from the graph of the system, which
is described in Section 4.4.

If a path in the graph exists from the inflow to an output variable of interest
it is possible to produce this output variable. When there does not exist a
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path from the inflow to the output variable the output variable will be zero.
So when a particular input variable is put to zero some edges will be deleted.
The question is which inputs to put to zero for zeroing a particular output.
We will see below that this problem is equivalent to determining a cut set
in the graph.

For the example of glycolysis in Trypanosoma brucei this is not so useful,
because for this example the problem can be solved directly from the graph
as will shown below in Section 5.4. Actually, solving the problem directly
from the graph means checking all possibilities. When the model is large
this takes a lot of computation time. But the computation time for checking
if a path exists is less than the time it takes to simulate every possibility.

Now the cut set method will be described.

Definition 5.3 An edge-colored directed graph is a tuple (V,E,C) con-
sisting a set of vertices, V, a set of directed edges E ⊆ V × V , and a set of
colors C = {c1, . . . , cp}. Each edge is assigned a color of the set C and by
Ei the set of edges having color ci ∈ C is denoted. For any subset I ⊆ C
denote EI = ∪i∈IEi. If v0, v1 ∈ V and if there exists a path from vertex v0

to vertex v1 in the graph, then call I ⊆ C a colored cut-set if in the new
graph (V,E\EI , C) there does not exist a path from v0 to v1.

Note that the graph of a reaction scheme can be considered as an edge-
colored directed graph where the colors correspond to the different enzyme
concentrations or, equivalently, the input components ui for i ∈ I ⊆ Zm.

Problem 5.4 The minimal colored cut-set problem.
Consider an edge-colored directed graph (V,E,C) and two vertices v0, v1 ∈
V for which there exists a path from vertex v0 to vertex v1 in the graph.
Determine for these vertices a colored cut-set I ∗ ⊆ C such that for any
other colored cut-set I ⊆ C for the same vertices the following inequality
holds: |I∗| ≤ |I|. Here |I| denotes the size of the cut-set I ⊆ C.

The problem above is a generalization of the minimum cut-set and the mini-
mum multi-cut-set problem discussed in [1, 4.1.3]. In a multi-cut-set problem
there are not two initial and terminal vertices but two subsets of vertices: one
for the initial and one for the terminal vertices. From the above mentioned
association of the graph of a reaction network with an edge-colored directed
graph it follows that instances of the main problem can be converted into
instances of Problem 5.4. The minimal sensor selection problem and a prob-
lem for communicating decentralized diagnoses can also be converted in the
latter problem, see [19].

For the following discussion the reader has to be informed about the theory
of computation and complexity as developed in mathematics and computer
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science. Logicians and computer scientists specify the computation of prob-
lems in terms of a Turing machine. A problem is then termed decidable if any
instance of the problem when programmed on a Turing machine will halt af-
ter a finite number of steps. See the book [22] for the full story. If a problem
is decidable then it is of interest to know how the computation time depends
on the problem parameters. The time is specified in terms of the order of the
steps needed and classified in terms of classes. One such class is dtime(t(n))
which refers to the a time of order O(t(n)) on a deterministic Turing ma-
chine. Recall that one writes that f(n) ∈ O(g(n)) where f, g : N → R+ if
there exist c, n0 ∈ Z such that for all ngeqn0, f(n) < g(n). Below the case of

dtime(npolylog n) is used where polylog n stands for logk(n) for a k ∈ Z+.
For example, for k = 2, polylog n = log log n.

Definition 5.5 Consider a minimization problem P , optimal solution map
S∗ : P → R, and an approximation algorithm A : P → R.
Call A an r-approximate algorithm, with r ∈ Q, if

A(p)

S∗(p)
≤ r, ∀p ∈ P.

For concepts and theory on approximation and on the computation of com-
binatorial optimization problems see the book [1].

Theorem 5.6 Problem 5.4 admits no 2log1−ε n approximations for any ε ∈

(0,∞) unless NP ⊆ dtime(npolylogn).

See [18] for the proof of this theorem. It is believed that the inclusion relation
of the theorem does not hold but currently there is no proof for this. The
lower bound is considered to be a very poor lower bound. For algorithms
to approximate the solution of a minimal colored cut-set problem, see the
paper [20].

The conclusion of the discussion above is that the problem of determining
a subset of enzymes to inhibit so as to cut the production of a particular
chemical compound is of very high complexity. But for particular instances
of the problem the computation may not be that large as is the case for the
example of Trypanosoma brucei.

The method described above is a method to find a subset of the input
variables, which have to be put to zero, to zero the output variable of interest.
This method will be checked by the method of simulation. Put in the Matlab
program described in Section 4.4 these particular input variables equal to
zero and determine the state trajectory numerically, until a steady state is
reached.

In the next section control design for glycolysis in Trypanosoma brucei will
be discussed. The results of this method will also be compared with the
results of metabolic control theory.
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5.4 Control design for glycolysis in Trypanosoma

brucei

As has been mentioned, Trypanosoma brucei is a unicellular, eukaryotic par-
asite. It causes the African sleeping disease. Most people that suffer from
this disease will die if the infection is untreated. When Trypanosomes live
in the bloodstream of humans its supply of ATP depends on glycolysis only.
So when glycolysis cannot take place, Trypanosoma brucei do not have any
energy supply. Because of this, the pathway of glycolysis can be important
for rational drug design. The purpose of this section is zeroing the ATP con-
centration in the glycosome and the ATP concentration in the cytosol. The
idea is to do this by zeroing one or more input variables. So the problem is
which input variable, or variables to put zero to zero the ATP concentrations
under aerobic and anaerobic conditions.

To reach this objective the graph theoretical method will be used. First a
graph of the system has to be made. Using the above described method. In
Maple a program will be used which determines if there exists a path from
a given starting point to a given end point. In this paper we determine if a
path from glucose outside the cell to ATP in the glycosome or to ATP in
the cytosol exists. In the Maple program, input variables can be adjusted to
zero. This can be done by hand or by trying all combinations using another
program, denoted in the appendix. This way one or more input variables can
be set to zero. After putting input variables equal to zero, one can determine
if there still exists a path still exists from glucose to ATP. In this paper we
will see that it is enough for the model of glycolysis in Trypanosoma brucei
to do this for only one or two input variables. The program will also give
the existing path from glucose to ATP in the glycosome or to ATP in the
cytosol.

When it is known that there does not exist a path from glucose to ATP in the
glycosome and in the cytosol, the steady state will be determined numerically
with Matlab. Here the same method is used as in Section 4.5. After plotting
the state trajectory it is checked whether the concentration of ATP in the
glycosome and in the cytosol becomes zero. We will see what happens with
the concentration of glucose in the cytosol and the concentration of pyruvate,
for example.

The edges of the reaction equations are labelled by the input variables in
such a way that when these particular input variables are put to zero, the
edges have to be deleted. This can be done with a Maple program. For the
glycolysis of Trypanosoma brucei it is not very difficult to determine the
graph, but for very large systems this can be a problem.

The graph obtained for this method consists of 52 complexes, which are the
nodes, consisting of 30 species in total. The number of edges is 117. An edge
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can be labelled by more than one input variable. Below a part of the first
part of the graph will be described shortly. One can find the list of nodes
and the list of edges in Appendix A.6.1 In this appendix also the complete
graph is given.

Glucose outside the cell is transported to the inside of the glycosome from
the glycosome outside the cell. Thus an edge exists from S2, which is glu-
cose outside the cell to S1, which is glucose inside the cell. These edges are
labelled by the input variable u1, which belongs to a glucose transporter. So
when u1 is zero no path exists between S2 and S1. The following reaction
is the reaction of glucose in the glycosome with ATP to Glc-6-P and ADP,
catalyzed by the enzyme hexokinase. First dotted edges from S1 and S6 to
S1 are added, since the products S1 and S6 is used as substrates for the
complex S1 + S6. Afterwards an edge is added from the complex S1 + S6 to
the complex S3 + S7. This edge and this dotted edge are labelled by input
variable u2, which belongs to hexokinase.

Below the Maple programs to determine whether a path in this graph exists
between glucose and ATP will be described. First the program in general
and after that the program for the model of Trypanosoma brucei will be
described. One can find the program in Appendix A.6.2.

In Maple, the ‘networks’ and ‘linalg’ packages are used. The package net-
works is needed for using graph theory and the linalg package is used for
linear algebra. First a function is made, which is called ‘PathExists’, with
parameters G, the graph, v1 the begin node and v2 the end node. In this
function first the set of different sets of components of the graph will be
made. So a set of sets, denoted by C will be returned. A path from v1 to v2

exists when both nodes are in the same component set, denoted by c. With
the command ‘member’ it can be checked if v1 ∈ c. The function ‘PathExists‘
is the same for every graph.

In the next function, the main function, the graph of the system as defined
in this section has to be adjusted in the case that one or several input
variables are set to zero. Before doing this the graph has to be defined.
The input vector is the parameter of this function, denoted by U . So this
vector has to be given by applying the function. Then, with the help of if-
statements, the graph is adjusted. In these statements it is specified which
edge or edges have to be deleted when a particular input variable is equal
to zero. After changing the graph a shortest path tree T can be made of the
new graph, the command ‘shortpathtree’ is used for this. Finally for T is
checked if there exists a path from v1 to v2. When a path exists, this path
will be determined and printed. Otherwise it will be printed that no path
exists.

A graph can be defined with the command ‘new(Gf)’, where Gf is the
name of the graph. In the model of Trypanosoma brucei, this can be cho-
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sen freely. With the command ‘addvertex(,Gf)’ vertices can be added. For
the model of glycolysis in Trypanosoma brucei there are 52 vertices. By
‘addedge([],names=[],Gf)’ edges can be added, 116 in the case of Trypano-
soma brucei. If wanted, one can specify names for the edges. The list of
vertices and edges of the appendix is used to define the graph in Maple.

Finally the functions ‘FindPath’ are determined. First FindPath1 is a func-
tion, that sets one of the input variables equal to zero and then determines
if a path exists. Then it returns a vector k, with ki = 0 if no path exists if
ui = 0 and ki = 1 if there still exists a path if ui = 0. In the example of
Trypanosoma brucei i = 1, . . . , 21 ∈ {1, 2, . . . , 21}.

In FindPath2 combinations of two input variables will be set to zero. When
ki = 0 for a particular i it means that when ui = 0 no path exists from the
input node to the output node. This means that for every combination of
two input variables set to zero that contains this particular ui, the result
will be that no path exists. So only combinations are taken for which both
ki and kj , i, j ∈ {1, . . . , 21}. This way combinations of input variables to be
put zero are found.

This can also be done for three or more combinations. These functions are
not given in the appendix, since for the model of glycolysis in Trypanosoma
brucei it produces no extra combinations of ui to put to zero. Actually,
for this method the amount of possibilities can become large. So for large
systems it is better to use the cut set method described in the last section.

Now the method described above is applied under aerobic and under an-
aerobic conditions. First u17 is assumed to be zero and afterwards u15 is
assumed zero. For the model of glycolysis in Trypanosoma brucei 21 input
variables are available. First one of the input variables is put to zero, and
subsequently this two or more input variables are put to zero.

Under aerobic conditions, where besides u17 only one of the input variables
u1, u2, u3, u4, u5, u7 or u8 is put to zero or combinations of variables,
consisting of one of these variables, no path exists from glucose to ATP in
the glycosome. This can also be seen in the graph directly, since the graph
of this particular system is synoptic. When combinations of two enzymes
are put to zero, which do contain one of the above input variables, no extra
possibilities occur. When u1, u2, u3, u4, u5, u7, u8, u9, u10, or u11 are equal
to zero no path exists from glucose to ATP in the cytosol. Thus when u1,
u2, u3, u4, u5, u7 or u8 are zero, there exists no path to both ATP in the
glycosome and ATP in the cytosol.

For the anaerobic case, u15 = 0 is set to zero. Now when u1, u2, u3, u4 or
u5 is set to zero, no path exists from glucose in the glycosome to glucose in
the cytosol. For combinations of setting to zero different input variables no
path exists from glucose to ATP in the glycosome when both u6 and u7 are
equal to zero or when both u8 and u9 are zero. When u1, u2, u3, u4, u5, u7,
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u8, u9, u10, or u11 is zero no path exists from glucose to ATP in the cytosol.
So when u1, u2, u3, u4 or u5 is zero no path exists for glucose to ATP in the
glycosome and ATP in the cytosol.

It is expected that for these input variables or combinations of two input
variables, when they are set to zero, no path exists and the steady state of
ATP in the glycosome and the steady state for ATP in the cytosol. To check
this the steady state is determined numerically with the help of Matlab. The
method of Section 4.5 is used to compute this.

Under aerobic conditions the steady state variables will be determined for
the case that u1 is zero, so the glucose transport from inside to outside the
cell and vice-versa is blocked. For the case that u4 is equal to zero, the
reaction from Fru-6-P and ATP to Fru-1,6-BP and ADP is blocked. For the
anaerobic case the steady state will be determined for the case that u1 is set
to zero and for the case that both u6 and u7 are zero. Since no rate equation
exists for the reaction catalyzed by TIM, only u7 has to be set zero, besides
u15. The initial vector is chosen as [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]. It is also an idea
to choose this vector as a vector of state variables, when one is interested in
how the steady state is changes.

The steady state values are given in Tables A.6.2 and A.6.3. The following
two tables are tables of the output variables of interest and state variables
that are involved in the reaction that is blocked.
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Table 5.1: the steady state concentrations under aerobic conditions.

State steady state Steady state Steady state
variable conc. (mM) conc. (mM) conc. (mM)

aerobic aerobic (u1 = 0) aerobic (u4 = 0)

x1 0.0561 0.0000 4.9994

x3 0.4411 0.0000 93.0232

x4 0.1279 0.0000 26.9767

x5 25.7975 14.8155 0.0000

x6 0.7817 3.9000 0.0000

x7 1.6251 0.0000 0.0000

x12 0.0280 108.2661 0.0000

x16 21.4393 0.0000 0.0000

x17 2.8010 0.0000 0.0000

x18 2.8010 0.0001 0.0000

x36 3.1884 7.8000 0.0000

x37 6.5570 0.0000 0.0000

Under aerobic conditions, when u1 is zero, it took some minutes until a
steady state was reached. In this case x1, which is the concentration of glu-
cose in the cell, became zero. This is expected, since the glucose transporter
is inhibited by putting x1 equal to zero. The differential equation dx

dt
will

depend only on input variable u2 now. The only reaction which takes place
with glucose as its product is the reaction from glucose to Glc-6-P. In the
case that only u1 is zero, x3 and x4 also become zero. A strong decrease in
x5 is obtained, from 25.7975 mM to 0.0843 mM . So putting u1 zero does
not only effect x1 but the other reactions too.

The steady state variable that is obtained for x12 is unusually high, while
the steady state values of x14, x15, and x16 are lower when u1 = 0 as before,
so accumulation of x12 takes place. I can not directly explain this result,
since dx12

dt
consists of u7 and u8 and not of u1. However, it may be explained

biologically. This point has to be discussed with biologists. It can be seen
that when u1 is zero, the steady state of the output variables x6 become 3.9
mM and the steady state for x17 became zero. This is as expected from the
graph theoretical point of view, since x36 became 7.8 mM and x37 became
zero. So the output variable x6 will not become zero.

When besides u17 only u4 is set to zero x1 will become almost 5 mM . This
is almost the same as the glucose concentration outside the cell in steady
state. Accumulation of x3 and x4, which are the Glc-6-P and the Fru-6-
P concentrations respectively, can be obtained. This is as expected since
Fru-1,6-BP production is inhibited. The output concentrations x6 and x17

became zero, which is what we want. In steady state the concentration of
pyruvate in the cytosol will becomes zero, so no pyruvate is available. Also,
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most of the other state variables became zero.

Table 5.2: the steady state concentrations under anaerobic conditions.

State steady state Steady state Steady state
variable conc. (mM) conc. (mM) conc. (mM)

anaerobic anaerobic (u1 = 0) anaerobic (u7 = 0)

x1 0.1024 0.0000 4.9987

x5 2.3466 0.8670 14.6774

x6 0.4071 3.9000 0.0000

x7 1.3913 0.0000 0.0020

x10 0.0275 0.0233 0.1731

x12 0.0097 0.5463 0.0000

x16 1.5760 0.0000 0.0000

x17 2.0329 0.0000 0.0000

x18 1.4252 0.0192 0.0000

x36 2.2056 7.8000 0.0002

x37 5.4912 0.0193 0.0000

Under anaerobic conditions when, besides u15 also u1 is set to zero, the
glucose concentration in the glycosome will become zero, which is expected.
The output concentration x6, which is ATP in the glycosome, will become
3.9 mM while x17 became 0. So the output x6 will not become zero. Now
when u7 is set to zero, an increase in the concentration of GA-3-P in the
cytosol, x10 is found while a decrease is found for the concentration of 1,3-
BPGA, x12, this as expected. Furthermore, the output variables x6 and x17

will both become zero. Also, the concentration of pyruvate in the cytosol is
zero in steady state.

Above we discussed the graph theoretical method to control the output
variable ATP. Afterwards simulation was used to check whether the ATP
concentration became zero indeed. In several cases this was the case. How-
ever, when u1 is set to zero the steady state concentration for ATP in the
glycosome became 3.9 mM . Also, some for me unexpected results occurred.
Further research is needed to understand these results. It is useful to discuss
this with biologists.

Actually it is more plausible for drug design to inhibit more enzymes, en-
tirely of partly. One also has to consider the glycolysis of the host of Trypa-
nosoma brucei and concentrate at the differences. So for the results above it
is necessary to compare the results with results of glycolysis in humans and
to discuss the results with biologists. Mathematically, every possibility to
put input variables zero is possible, but biologically this is not the case. We
have seen in this chapter that further research is also needed for the other
methods which can be used to calculate or determine the steady state of a
rational positive system.
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Another area of research for drug design is changing input variables to in-
crease the output variables or to reach a particular value for one or more
output variables. I did not discuss this problem in this report. An idea is to
solve this problem with the same kind of methods as the problem of zeroing
one or more output variables.
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Chapter 6

Conclusions

This chapter discusses the results and the main question of this report
shortly. Furthermore several questions are mentioned. The aim of the project
is development of control theory for biochemical reaction networks. For the
model of glycolysis in Trypanosoma brucei development of control theory
with respect to drug design is of special interest. For this purpose we want
to set one or several input variables equal to zero, such that the output
variable ATP will become zero. The main ideas have been mentioned in
Chapter 5. Before discussing the main questions first a dynamical system is
formulated in Chapter 3, and the system properties, positivity of the system
and steady state of the system are discussed in Chapter 4.

In this report the model of glycolysis from [2] is converted to a dynamical
system, as defined in system theory in Chapter 3. The biochemical model
consists of 19 classes of reaction equations, 32 chemical species, and the
number of complexes is 42. Reaction vectors are determined for these com-
plexes, as defined in [10] by M. Feinberg. The dynamic system consists of
21 input variables, 37 state variables and 6 output variables. Most of the
state variables are concentrations in the glycosome and in the cytosol, but
there are also several state variables which consist in the mitochondrion or
which are external concentrations. The complete system consists of 10 diffe-
rential equations, including rate equations and a set of algebraic equations,
which are moiety-conservation relations, equations for pools of species, and
equilibrium equations.

For the model of glycolysis in Trypanosoma brucei all the state variables
are expressed in the ten state variables, for which a differential equation is
obtained. After this the system of differential equations can be rewritten
in a system of ten differential equations, with ten unknown state variables.
Finally, the output variables are discussed. These are the concentrations of
species which are produced, but not consumed, and of the species of interest.
The last are for the model of glycolysis ATP in the glycosome and ATP in
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the cytosol.

It is not completely clear whether the system is easier to solve after reduction
of state variables. Actually, when the states of the differential equations
are found, the other states can be easily determined with the help of the
algebraic equations from the known state variables. This holds for the model
of glycolysis of Trypanosoma brucei, but does not hold for every dynamical
system for a cell reaction network. The system cannot always be reduced to
a set of k differential equations in k unknowns.

In Chapter 4 two dynamical system properties are discussed, positivity of
the system and the property of steady state. First the condition positi-
vity is explained. Afterwards this is checked for the model of glycolysis in
Trypanosoma brucei. It turned out that the state set of the dynamical sys-
tem obtained for this model is positive, but also consists of several upper
boundaries. The state variables x36 and x37, which stand for [P]g and [P]c,
respectively, have to be in (0, 7.8000) both, since x6, x7, x8, x17, x18, and
x19 have to be positive. The state variable x25 has to be less than or equal
to 4, for x24 to be positive. The sum x31

0.0430 +x30 +2x5 +x12 +x36 has to be
less or equal to 120, for x11, x21, and x28 to be positive. It turned out that
this is the case.

In Section 4.3 the property steady state is explained first. Several methods
are discussed to determine a steady state. These methods are solving the
equation f(x, u) = 0, determining the steady state numerically with the help
of computer programs as Maple, Matlab, or Mathematica, using a Newton-
like recursion method and finding the roots of the system in an algebraic
way. Most of the methods work very well for linear systems, but for nonli-
near systems, such as the system for glycolysis in Trypanosoma brucei it is
difficult.

For the method to determine the roots of the system, the differential equa-
tions had to be converted in equations with one denominator the numerators
became very large and difficult to solve. For the example of glycolysis of Try-
panosoma brucei the trajectories of the states are determined numerically,
until a steady state is reached. The same steady state values are found as
in [2], but to determine the whole state trajectories with the computer pro-
gram Matlab took more time than expected for several choices of initial
values.

Further in this section the phenomenons stability, asymptotical stability, and
global asymptotic stability were discussed. For rational positive systems no
direct solution exist to determine this phenomenons for positive rational
systems, but theory is available about methods for linear systems and for
systems of biochemical reaction networks, which consist of mass-action ki-
netics, in state of Michaelis-Menten reaction kinetics.

One of the methods for a linear system makes use of irreducibility of the
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graph of a linear positive system, [30]. Apart from the fact that the system
for glycolysis in Trypanosoma brucei is not linear, the graph of the system is
not irreducible as well. In [23] and [10], by respectively, E.D. Sontag and M.
Feinberg, results were shown for systems of biochemical reaction kinetics,
consisting of mass-action kinetics. In [10] the Deficiency zero and Deficiency
one Theorems are formulated. In this report it is checked that the deficiency
of the biochemical network for glycolysis in Trypanosoma brucei is of defi-
ciency zero. An idea for further research, can be to extend the results in these
articles to positive rational systems, or to prove whether this is possible.

Finally in Chapter 5, control of dynamical systems is discussed. Motivations
of control of dynamical systems can be found in the area of biotechnology and
in the area of drug design. In this report we focussed on control of dynamical
system, with respect to drug design. The main research question is how: to
control one or several of the output variables by controlling one or more
input variables? First four approaches to solve this question are discussed.
These are: 1) the method of simulation of the steady state, when putting
random one or combinations of input variables equal to zero; 2) metabolic
control theory; 3) control design via abstraction and graph algorithms; 4)
control theory for zeroing outputs. The third method is explained in detail,
the other methods are mentioned shortly.

The first method is a good method to determine a steady state, since it is
relatively easy to simulate a steady state when one or more input variables
are changed, but the number of possibilities to put one of several input
variables zero is large. For the second method metabolic control coefficients
have to be calculated. This is relatively easy. Since the control coefficients
hold in the neighborhood of a steady state, the Jacobian can be different at
different steady state values. The third method is applied on the model of
glycolysis of Trypanosoma brucei in Section 5.4. One of the disadvantages of
this method is the fact that the graph has to be defined by the modeler. This
can be difficult when the system becomes large. Another disadvantage is the
complexity of the cut set algorithm, which is explained in Section 5.3. The
fourth approach is the approach of control theory for drug design. Several
results are available for linear positive systems or for dynamical systems for
biochemical reaction networks consisting of mass-action kinetics. To discuss
this last result [23] is used.

In Section 5.3 control design via abstraction and graph algorithms is dis-
cussed in more detail The aim is zeroing one or more output variables by
zeroing one or more input variables. In this section the cut set method ex-
plained.

This method is in Section 5.4 applied on the system of glycolysis in Try-
panosoma brucei. First a graph of the system has to be made, how to do
this is explained in this section. Afterwards one or several of the input va-
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riables are put to zero and determined if a path exists between the chosen
input and output variables. It turned out that it is enough to do this for
putting only one input variable equal to zero or two input variables. The
results under aerobic conditions are different from the result of anaerobic
conditions. When no path exist from input variable to output variable simu-
lation is used to check whether indeed the ATP concentration became zero.
In several cases this was the case. But when u1 is set to zero the steady
state concentration for ATP in the glycosome became 3.9 mM . Also some
unexpected results occur. Further research is needed to understand these
results. It is useful to discuss this with biologists.

As a conclusion several input variables are found, for which the ATP con-
centration becomes zero, when putting one of these input variables zero. It
is known now which input variables to put zero, to zero the output variable
ATP. But one cannot always conclude this directly by only using the graph
theoretical method, simulation has to be used also.

To give a correct answer on the main question more research is needed,
namely for the results of control of ATP it is necessary to compare these
results with results of glycolysis in host cells. In the area of control more
research and discussions with biologists are needed. Another area of research
for drug design is changing input variables to increase the output variables,
or to reach a particular value for one or more output variables. I did not
discuss this problem in the report. An idea to solve this problem is to use
the same kind of methods as the problem of zeroing one or more output
variables.
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Appendix A

Glycolysis of Trypanosoma

Brucei

A.1 Introduction

In this appendix of my report, ‘Modelling and Control, of Glycolysis in
Trypanosoma brucei’, the results of the model of glycolysis in Trypanosoma
brucei are given. These results are explained in the report itself, in which I
refer to this appendix.

The main problem of my research is development of control theory for bio-
chemical reaction networks, in particular due to rational drug design.

In Section A.2 the biochemical model is formulated for glycolysis in Trypa-
nosoma brucei. The mathematical model, such as used in dynamical system
theory is determined in Section A.3. In this section first notations are de-
noted, afterwards the differential equations, and the algebraic equations are
discussed. After this reduction of state variables is applied and the system
after reduction of state variables is denoted. Finally the output variables are
determined.

In the following two sections, respectively, the system property positivity
is checked and the steady state is determined for the dynamical system of
glycolysis in Trypanosoma brucei. This is done in Section A.4. In Section A.5
first the graph of the system will be determined in Subsection A.5.1. In
Subsection A.5.2 the steady state will be determined numerically. First the
Matlab programs are denoted in this subsection and afterwards the steady
state results are denoted in tables and figures, for both the aerobic case and
the anaerobic case.

The last section, Section A.6 is about control of the output variable ATP.
A graph theoretical method is applied for zeroing the ATP concentration.
In Subsection A.6.1 the graph, as used for the method, is formulated, and
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in Subsection A.6.2 the Maple program is denoted for the graph theoretic
approach, which is discussed in my report. In Subsection A.6.3 results of
determining the steady state numerically, after setting several input variables
equal to zero, are denoted in two tables, one for the steady state under
aerobic conditions, and one for the steady state under anaerobic conditions.

In Section B a list of all equations of which the dynamical system for glyco-
lysis in Trypanosoma brucei consists is denoted, and in Section C a list of
abbreviations is denoted.
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A.2 Biochemical model

In Chapter 3 a biochemical model is made for glycolysis in Trypanosoma
brucei, this is done in Section 3.2. The model consist of a network of bio-
chemical reaction equations. The molecules that occur in the network are
the species, and the complexes are the total of molecules that occur on both
side of a biochemical reactions.

The following network of biochemical reaction equations is considered for
the glycolysis in Trypanosoma brucei:

1. Glcex ←→ Glcc ←→ Glcg

2. Glcg + ATPg −→ Glc-6-Pg + ADPg

3. Glc-6-Pg ←→ Fru-6-Pg

4. Fru-6-Pg + ATPg −→ Fru-1,6-BPg + ADPg

5. Fru-1,6-BPg ←→ DHAPg + GA-3-Pg

6. DHAPg ←→ GA-3-Pg

7. GA-3-Pg + NAD+
g ←→ 1,3-BPGAg + NADHg

8. 1,3-BPGAg + ADPg ←→ 3-PGAg + ATPg

9. 3-PGAg ←→ 3-PGAc ←→ 2-PGAc ←→ PEPc

10. PEPc + ADPc −→ Pyruvatec + ATPc

11. Pyruvatec −→ Pyruvateex

12. DHAPg + NADHg ←→ Gly-3-Pg + NAD+
g

13. DHAPc + Gly-3-Pg ←→ DHAPg + Gly-3-Pc

14. Gly-3-Pc + 1
2 O2m ←→ DHAPc + H2Om

15. Gly-3-Pg + ADPg ←→ Glycerolg + ATPg

16. Glycerolg ←→ Glycerolc ←→ Glycerolex

17. ATPc ←→ ADPc + Pc

18. 2 ADPg ←→ ATPg + AMPg

19. 2 ADPc ←→ ATPc + AMPc
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The chemical species considered in [2] are:

S1 = Glcg S21 = Gly-3-Pc

S2 = Glcex S22 = H2Om

S3 = Glc-6-Pg S23 = O2m

S4 = Fru-6-Pg S24 = NAD+
g

S5 = Fru-1,6-BPg S25 = NADHg

S6 = ATPg S26 = Glycerolex
S7 = ADPg S27 = Pyruvateex

S8 = AMPg S28 = Gly-3-P
S9 = DHAPg S29 = DHAP
S10 = GA-3-Pg S30 = Hexose-Pg

S11 = Gly-3-Pg S31 = Triose-P

S12 = 1,3-BPGAg S32 = 3-PGAc

S13 = Glycerolg S33 = 3-PGA

S14 = 3-PGAg S34 = 2-PGAc

S15 = PEPc S35 = N
S16 = Pyruvatec S36 = Pg

S17 = ATPc S37 = Pc

S18 = ADPc S38 = Glcc

S19 = AMPc S39 = Glycerolc
S20 = DHAPc

Now the network of biochemical reaction networks can be rewritten as fol-
lows:

1. S2 ←→ S38 ←→ S1

2. S2 + S6 −→ S3 + S7

3. S3 ←→ S4

4. S4 + S6 −→ S5 + S7

5. S5 ←→ S9 + S10

6. S9 ←→ S10

7. S10 + S24 ←→ S12 + S25

8. S12 + S7 ←→ S14 + S6

9. S14 ←→ S32 ←→ S34 ←→ S15

10. S15 + S18 −→ S16 + S17

11. S16 −→ S27
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12. S9 + S25 ←→ S11 + S24

13. S20 + S11 ←→ S9 + S21

14. S21 + 1
2S23 ←→ S20 + S22

15. S11 + S7 ←→ S13 + S6

16. S13 ←→ S39 ←→ S26

17. S17 ←→ S18 + S37

18. 2S7 ←→ S6 + S8

19. 2S18 ←→ S17 + S19

The set of species considered in this network is

S = {S1, . . . , S27, S32, S34, S37, S38, S39}.

The number of species, n, is equal to 32 in the example of Trypanosoma
brucei.

The set of complexes for this network is

C = {S2, S38, S1, S2 + S6, S3 + S7, S3, S4, S4 + S6, S5 + S7,

S5, S9 + S10, S9, S10, S10 + S24, S12 + S25, S12 + S7,

S14 + S6, S14, S32, S34, S15, S15 + S18, S16 + S17,

S16, S27, S9 + S25, S11 + S24, S20 + S11, S9 + S21,

S21 +
1

2
S23, S20 + S22, S11 + S7, S13 + S6, S13,

S39, S26, S17, S18 + S37, 2S7, S6 + S8, 2S18, S17 + S19}.

The number of complexes, m, is equal to 42 for the glycolysis in Trypano-
soma brucei.

There are in total 42 reaction equation considered for this example. From
these equations 19 of them are reversible, this gives 38 reaction equations,
and 4 of the equations are irreversible. The number of different parts of
the network is 19, these parts are called linkage classes, as described in
Section 3.1.

As discussed in Section 3.2 the reaction vectors of this network can be de-
termined. The stoichiometric coefficient of all the species, that plays a role
in the specific reaction is denoted in the reaction vector. For each reaction
equation a reaction vector is obtained. Note that when the reaction equation
is reversible the reaction vectors are dependent. With bi the reaction vector
of reaction i is denoted for i = 1, . . . , 42.
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Reaction vectors:

b1 = e38 − e2

b2 = e2 − e38

b3 = e1 − e38

b4 = e38 − e1

b5 = e7 + e3 − e2 − e6

b6 = e4 − e3

b7 = e3 − e4

b8 = e7 + e5 − e4 − e6

b9 = e9 + e10 − e5

b10 = −e9 − e10 + e5

b11 = e10 − e9

b12 = e9 − e10

b13 = e10 + e24 − e12 − e25

b14 = −e10 − e24 + e12 + e25

b15 = e14 + e6 − e12 − e7

b16 = e12 + e7 − e14 − e6

b17 = e32 − e14

b18 = e14 − e32

b19 = e34 − e32

b20 = e32 − e34
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Reaction vectors continued:

b21 = e15 − e34

b22 = e34 − e15

b23 = e16 + e17 − e15 − e18

b24 = e27 − e16

b25 = e11 + e24 − e9 − e25

b26 = e9 + e25 − e24 − e11

b27 = e21 + e9 − e11 − e20

b28 = e11 + e20 − e9 − e21

b29 = e20 + e22 −
1

2
e23 − e21

b30 =
1

2
e23 + e21 − e20 − e22

b31 = e13 + e6 − e7 − e11

b32 = e11 + e7 − e6 − e13

b33 = e39 − e13

b34 = e13 − e39

b35 = e26 − e39

b36 = e39 − e26

b37 = e18 + e37 − e17

b38 = e17 − e18 − e37

b39 = e6 + e8 − 2e7

b40 = 2e7 − e6 − e8

b41 = e17 + e19 − 2e18

b42 = 2e18 − e19 − e17

The deficiency of the network as discussed in [10], of M. Feinberg, and in
Section 4.4, is equal to zero, since the number of complexes is equal to 42,
the number of linkage classes is 19 and the rank of the reaction network is
equal to 23.
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A.3 Mathematical model

In this section the mathematical model of the biochemical reaction network
of Trypanosoma brucei will be formulated. First several notations will be
given. After this the rate equations, the differential equations and the alge-
braic equations are defined. The dynamical system is a reformulated system
of the mathematical model in [2].

A.3.1 Notations, definitions, terminology

List of notations used in the equations:

t = total,

en = enzyme,

ex = extern,

g = glycosomal,

c = cytosolic,

m = mytochondrial,

ui = input variable belonging to rate i, ui : T → R+ ∀i ∈ Z21,

xi = concentration of chemical substrance i,

u =







u1
...

u21






∈ RNen

+ = R21
+ , Nen = 21, and

x =







x1
...

x37






∈ R37

+ , N = 37.
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List of functions which represent the input variables, represent the enzyme
concentrations:

u1 = Transport of glucose across the plasma membrane.
u2 = HK
u3 = PGI
u4 = PFK
u5 = ALD
u6 = TIM
u7 = GAPDH
u8 = PGK
u9 = PGM
u10 = ENO
u11 = PYK
u12 = Pyruvate transport across the plasma membrane.
u13 = GDH
u14 = Transport of Gly-3-P across the glycosomal membrane.
u15 = GPO
u16 = Transport of DHAP across the glycosomal membrane.
u17 = GK
u18 = Transport of glycerol across the glycosomal membrane

and the plasma membrane.
u19 = ATP utilization.
u20 = Glycosomal AK.
u21 = Cytosolic AK.
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List of functions which represent the states of the system, in particular, the
concentrations of chemical substances:

x1 = [Glc]g x20 = [DHAP]c
x2 = [Glc]ex x21 = [Gly-3-P]c
x3 = [Glc-6-P]g x22 = [H2O]m
x4 = [Fru-6-P]g x23 = [O2]m
x5 = [Fru-1,6-BP]g x24 = [NAD+]g
x6 = [ATP]g x25 = [NADH]g
x7 = [ADP]g x26 = [Glycerol]ex
x8 = [AMP]g x27 = [Pyruvate]ex
x9 = [DHAP]g x28 = [Gly-3-P]

x10 = [GA-3-P]g x29 = [DHAP]

x11 = [Gly-3-P]g x30 = [Hexose-P]g
x12 = [1,3-BPGA]g x31 = [Triose-P]

x13 = [Glycerol]g x32 = [3-PGA]c
x14 = [3-PGA]g x33 = [3-PGA]

x15 = [PEP]c x34 = [2-PGA]c
x16 = [Pyruvate]c x35 = [N]
x17 = [ATP]c x36 = [P]g
x18 = [ADP]c x37 = [P]c
x19 = [AMP]c

List of concentrations in

• the glycosome:
x1, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x24, x25, x30 and x36;

• the cytosol:
x15, x16, x17, x18, x19, x20, x21, x32, x34 and x37;

• the mytochondrion:
x22 and x23;

• extern:
x2, x26 and x27;

• overall (in glycosome, cytosol and total):
x28, x29 and x33;

• average concentration over glycosome and cytosol:
x31 and x35.

Number of state variables of the biochemical reaction network:
37 − 3 = 34. Here x2, x26 and x27 are exclude, because they are external
concentrations.
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A.3.2 Rate equations

In this subsection the rate equations for the reaction network are denoted.
Most of the rate equations are of Michaelis-Menten kinetic. For several re-
action equations no rate equation is available, because these equations are
assumed to be in equilibrium. The rate equations are denoted by ri, for i ∈
{1, 2, 4, 5, 7, 8, 11, 12, 13, 15, 17, 19}, where ri corresponds with the input va-
riable ui. In this report the enzyme rate v in nmol min−1(mg cell protein)−1

is denoted by riui(t), v = riui(t).

The following constants are used for the total, the glycosomal, and the cy-
tosolic volume:

ctot = Vtot = total cell volume = 5.7 µl(mg)−1

cg = Vg = volume glycosome = 0.2451 µl(mg)−1

cc = Vc = volume cytosol = 5.4549 µl(mg)−1.

The other constants are denoted by ci,j, is the j-th constant in rate equation
ri. The constants ki,l is the constant of specie Sl in rate equation ri.

1. Glucose accross the cell- and the glycosomal membrane, by glucose
carriers, [2, p.34, (2.11)],

r1 = c1,1
c1,2(x2 − x1)

1 + x2c1,2 + x1c1,2 + c1,3x1x2c2
1,2

, (A.1)

with

r1 = vgltr,
x2 = [Glc]ex = S1,
x1 = [Glc]g = P1,

c1,1 = V + = 106.2 nmol(min)−1(mg cell protein)−1,

c1,2 = 1
K1,1

= 1
Kglc

= 1
2(mM)−1,

c1,3 = α = 0.75.
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2. The kinetics of HK is described by a Michaelis-Menten type equation
for two sustrates, [2, p.33, (2.9)],

Glcg + ATPg
HK
−→ Glc-6-Pg + ADPg,

r2 = c2,1
c2,2x6x1c2,3

(1 + x6c2,2 + x7c2,4)(1 + x1c2,3)
, (A.2)

with

r2 = vHK,
x6 = [ATP]g = S1,
x1 = [Glc]g = S2,
x7 = [ADP]g = P1,
x3 = [Glc-6-P]g = P2,

c2,1 = V + = 625 nmol(min)−1(mg cell protein)−1,

c2,2 = 1
k2,6

= 1
KATPg

= 1
0.116 = 8.6207 (mM)−1,

c2,3 = 1
k2,1

= 1
KGlucg

= 1
0.1 = 10 (mM)−1,

c2,4 = 1
k2,7

= 1
KADPg

= 1
0.126 = 7.9365 (mM)−1.

3. The reaction between Glc-6-P and Fru-6-P catalyzed by the enzyme
PGI is assumed to be in equilibrium,

Glc-6-P
PGI
←→ Fru-6-P,

with

u3 = PGI,
x3 = [Glc-6-P]g,

x4 = [Fru-6-P]g.

The equilibrium constant will be given in Subsection A.3.6.
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4. The reaction equation catalyzed by PFK, it exhibits a cooperativity
dependence on the concentration of Fru-6-P, [2, p.35, (2.12)],

Fru-6-Pg + ATPg
PFK
−→ Fru-1,6-BPg + ADPg,

r4 = c4,1
(c4,2x4)

n(c4,3x6)

(1 + (c4,2x4)n) (1 + c4,3x6)
, (A.3)

with

r4 = vPFK,
x4 = [Fru-6-P]g = S1,
x6 = [ATP]g = S2,
x5 = [Fru-1,6-BP]g = P1,
x7 = [ADP]g = P2,

c4,1 = V + = 780 nmol(min)−1(mg cell protein.)−1,

c4,2 = 1
k4,4

= 1
Km,Fru6Pg

= 1
0.82 = 1.2195 (mM)−1,

c4,3 = 1
k4,6

= 1
Km,ATPg

= 1
0.026 = 38.4615 (mM)−1,

n = 1.2.

5. The enzyme ALD works according to an ordered uni-bi mechanism,
[2, p.35, (2.14)],

Fru-1,6-BPg
ALD
←→ DHAPg + GA-3-Pg, (A.4)

r5 = c5,1,
(c5,3x5 − c5,2c5,4c5,5x9x10)

(1 + x5(c5,3 + x10c5,3c5,6) + x10c5,5(1 + x9c5,4) + x9c5,4)
,

with

r5 = vALD,
x5 = [Fru-1,6-BP]g = S1,
x9 = [DHAP]g = P1,
x10 = [GA-3-P]g = P2,

c5,1 = V + = 184.5 nmol(min)−1(mg cell protein.)−1,

c5,2 = V −

V + = 1.19,
c5,3 = 1

k5,5
= 1

Km,Fru1,6BPg

= 1

(9·10−3(1+ x6
0.68

+
x7

1.51
+

x8
3.65 ))

(mM)−1,

c5,4 = 1
k5,9

= 1
Km,DHAPg

= 1
0.015 = 66.6667 (mM)−1,

c5,5 = 1
k5,10m

= 1
Km,GA3Pg

= 1
0.067 = 14.9254 (mM)−1,

c5,6 = 1
k5,10i

= 1
Ki,GA3Pg

= 1
0.098 = 10.2041 (mM)−1.

105



6. Nothing is known about the kinetics of DHAP catalyzed by TIM, so
the reaction from DHAP to GA-3-P is assumed to be in equilibrium,

DHAP
TIM
←→ GA-3-p,

with

u6 = TIM,
x9 = [DHAP]g,

x10 = [GA-3-P]g.

7. The reaction catalyzed by GAPDH is described by the Michaelis-
Menten equation for two non-competing product-substrate couples,
[2, p.33, (2.10)],

GA-3-Pg + NAD+
g

GAPDH
←→ NADHg + 1,3-BPGAg,

r7 = c7,1
(x10c7,3x24c7,4 − c7,2x12c7,5x25c7,6)

(1 + x10c7,3 + x12c7,5)(1 + x24c7,4 + x25c7,6)
, (A.5)

with

r7 = vGAPDH,
x10 = [GA-3-P]g = S1,
x24 = [NAD+]g = S2,
x12 = [1,3-BPGA]g = P1,
x25 = [NADH]g = P2,

c7,1 = V + = 1470 nmol(min)−1(mg cell protein)−1,

c7,2 = V −

V + = 0.67,

c7,3 = 1
k7,10

= 1
KGA-3-Pg

= 1
0.15 = 6.6667 (mM)−1,

c7,4 = 1
k7,24

= 1
K

NAD+
g

= 1
0.45 = 2.2222 (mM)−1,

c7,5 = 1
k7,12

= 1
K1,3-BPGAg

= 1
0.1 = 10 (mM)−1,

c7,6 = 1
k7,25

= 1
KNADHg

= 1
0.02 = 50 (mM)−1.
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8. The reaction catalyzed by PGK is described by the Michaelis-Menten
equation for two non-competing product-substrate couples, [2, p.33,
(2.10)],

1,3-BPGAg + ADPg
PGK
←→ 3-PGAg + ATPg,

r8 = c8,1
(x12c8,3x7c8,4 − c8,2x14c8,5x6c8,6)

(1 + x12c8,3 + x14c8,5)(1 + x7c8,4 + x6c8,6)
, (A.6)

with

r8 = vPGK,
x12 = [1,3-BPGA]g = S1,

x7 = [ADP]g = S2,
x14 = [3-PGA]g = P1,
x6 = [ATP]g = P2,

c8,1 = V + = 640 nmol(min)−1(mg cell protein.)−1,

c8,2 = V −

V + = 0.029,

c8,3 = 1
k8,12

= 1
K1,3BPGAg

= 1
0.05 = 20 (mM)−1,

c8,4 = 1
k8,7

= 1
KADPg

= 1
0.1 = 10 (mM)−1,

c8,5 = 1
k8,14

= 1
K3PGAg

= 1
1.62 = 0.6173 (mM)−1,

c8,6 = 1
k8,6

= 1
KATPg

= 1
0.29 = 3.4483 (mM)−1.

9. Transport of 3-PGA across the glycosomal membrame, catalyzed by
PGM is assumed to be in equilibrium,

3-PGAg ←→ 3-PGAc
PGM
←→ 2-PGAc,

with

u9 = PGM,
x14 = [3-PGA]g,

x32 = [3-PGA]c,
x34 = [2-PGA]c.

10. The reaction of 2-PGAc in PEPc catalyzed by ENO is also assumed
to be in equilibrium,

2-PGAc
ENO
←→ PEPc,

with

u10 = ENO,
x34 = [2-PGA]c,
x15 = [PEP]c.
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11. The reaction equation catalyzed by PYK, consist of a cooperativity
dependence of PEP, [2, p.35, (2.13)],

PEPc + ADPc
PYK
−→ pyruvatec + ATPc,

r11 = c11,1
(c11,2x15)

n(c11,3x18)

(1 + (c11,2x15)n) (1 + c11,3x18)
, (A.7)

with

r11 = vPYK,
x15 = [PEP]c = S1,
x18 = [ADP]c = S2,
x16 = [Pyruvate]c = P1,
x17 = [ATP]c = P2,

c11,1 = V + = 2.6 · 103 nmol(min)−1(mg cell protein.)−1,

c11,2 = 1
k11,15

= 1

(0.34(1+ x17
0.57

+
x18
0.64 ))

(mM)−1,

c11,3 = 1
k11,18

= 1
0.114 = 8.7719 (mM)−1,

n = 2.5.

12. Pyruvate across the plasma membrane, by a pyruvate transporter,
[2, p.33, (2.8)],

r12 = c12,1
c12,2x16

1 + c12,2x16
, (A.8)

with

r12 = vPytr,
x16 = [pyruvate]c = S1,

c12,1 = V + = 160 nmol(min)−1(mg cell protein.)−1,

c12,2 = 1
k15,16

= 1
KPyrc

= 1
1.96 = 0.5102 (mM)−1.

13. The reaction kinetics of the reaction catalyzed by GDH is a reversible
Michaelis-Menten kinetic for two non-competing product-substrate cou-
ples, [2, p.33, (2.10)],

DHAPg + NADHg
GDH
←→ gly-3-Pg + NAD+

g , (A.9)

r13 = c13,1
x9c13,3x25c13,4 − c13,2x11c13,5x24c13,6

(1 + x9c13,3 + x11c13,5)(1 + x25c13,4 + x24c13,6)
,
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with

r13 = vGDH,
x9 = [DHAP]g = S1,
x25 = [NADH]g = S2,
x11 = [Gly-3-P]g = P1,
x24 = [NAD+]g = P2,

c13,1 = V + = 425 nmol(min)−1(mg cell protein.)−1,

c13,2 = V −

V + = 0.07,

c13,3 = 1
k8,9

= 1
KDHAPg

= 1
0.85 = 1.1765 (mM)−1,

c13,4 = 1
k8,25

= 1
KNADHg

= 1
0.015 = 66.6667 (mM)−1,

c13,5 = 1
k8,11

= 1
KGly-3-Pg

= 1
6.4 = 0.1563 (mM)−1,

c13,6 = 1
k8,24

= 1
K

NAD+
g

= 1
0.6 = 1.6667 (mM)−1.

14. The transport of Gly-3-P across the glycosomal membrane is assumed
to be in equilibrium,

Gly-3-P←→ Gly-3-P,

u14 = Transporter of Gly-3-P,
x11 = [Gly-3-P]g,

x21 = [Gly-3-P]c.

15. The reaction catalyzed by GPO is of irreversible Michaelis-Menten
reaction kinetic [2, p.33, (2.8)],

Gly-3-Pc + 0.5O2m
GPO
−→ H2Om + DHAPc,

r15 = c15,1
c15,2x21

1 + c15,2x21
, (A.10)

with

r15 = vGPO,
x21 = [Gly-3-P]c,
x20 = [DHAP]c,
x22 = [H2O]m,
x23 = [O2]m,

c15,1 = V + = 368 or 0 nmol(min)−1(mg cell protein.)−1,

c15,2 = 1
k15,21

= 1
KGly-3-Pc

= 1
1.7 = 0.5882 (mM)−1.

Under aerobic conditions V + is 368 nmol(min)−1 (mg cell protein)−1

and under anaerobic conditions 0 nmol(min)−1 (mg cell protein)−1.
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16. Transport of DHAP across the glycosomal membrane, is assumed to
be in equilibrium,

DHAPg ←→ DHAPc,

u16 = Transporter of DHAP,
x9 = [DHAP]g,

x20 = [DHAP]c.

17. The reaction catalyzed by GK is of reversible Michaelis-Menten kinetic
for two non-competing product-substrate couples, [2, p.33, (2.10)],

gly-3-Pg + ADPg
GK
←→ glycerolg + ATPg,

r17 =
c17,1(x11c17,3x7c17,4 − c17,2x13c17,5x6c17,6)

(1 + x11c17,3 + x13c17,5)(1 + x7c17,4 + x6c17,6)
, (A.11)

with

r17 = vGK ,
x11 = [Gly-3-P]g = S1,
x7 = [ADP]g = S2,
x13 = [Glycerol]g = P1,
x6 = [ATP]g = P2,

c17,1 = V + = 0 or 200 nmol(min)−1(mg cell protein)−1,

c17,2 = V −

V + = 167,

c17,3 = 1
k17,11

= 1
KGly3Pg

= 1
5.1 = 0.1961 (mM)−1,

c17,4 = 1
k17,7

= 1
KADPg

= 1
0.12 = 8.3333 (mM)−1,

c17,5 = 1
k17,13

= 1
KGlycg

= 1
0.12 = 8.3333 (mM)−1,

c17,6 = 1
k17,6

= 1
KATPg

= 1
0.19 = 5.2632 (mM)−1.

Under aerobic conditions V + is 0 nmol(min)−1 (mg cell protein)−1 and
under anaerobic conditions 200 nmol(min)−1 (mg cell protein)−1.

18. Transport of glycerol across the glycosomal membrane and the plasma
membrane,

glycerolg ←→ glycerolc ←→ glycerolex,

with

u18 = Transporter of glycerol,
x13 = [glycerol]g,

x26 = [glycerol]ex,
x38 = [glycerol]c.
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19. The reaction of ATP in the glycosome into ADP in the glycosome, by
ATP utilization [2, p.36, (2.15)],

ATPc
ATP utilization

←→ ADPc,

r19 = c19,1
x17

x18
, (A.12)

with

x17 = [ATP]c = S1,
x18 = [ADP]c = P1,

c19,1 = k = 50 nmol(min)−1(mg cell protein)−1.

20. The reaction of 2ADP into ATP and AMP in the glycosome is cata-
lyzed by Glycosomal AK, [2],

2ADPg ←→ ATPg + AMPg,

with

x6 = [ATP]g,

x7 = [ADP]g,

x8 = [AMP]g.

21. The reaction of 2ADP into ATP and AMP in the cytosol is catalyzed
by Cytosolic AK, [2],

2ADPc ←→ ATPc + AMPc,

with

x17 = [ATP]c,
x18 = [ADP]c,
x19 = [AMP]c.
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A.3.3 Differential equations

The following set of differential equations describes the time-dependent be-
haviour of glycolysis [2, p.37,38 (2.23-2.32)]. By definition: ẋi(t) = dxi

dt
, where

ẋi(t) is often denoted by ẋi.

1.

d[Glc]in
dt

=
vglucose transport − vHK

Vtot

ẋ1 = ctot1(r1u1 − r2u2) = (A.13)

= 9.3158
(x2 − x1) u1

(1 + 0.5x2 + 0.5x1 + 0.1875x1x2)

−9450.5106
x6x1u2

(1 + 8.6207x6 + 7.9365x7) (1 + 10x1)

x1 = [Glc]g
r1u1 = vglucose transport

r2u2 = vHK

ctot1 =
1

ctot
=

1

Vtot
=

1

5.7
= 0.1754 (µl/mg)−1

2.

d[hexose-P]g
dt

=
vGlucose transport − vHK

Vg

ẋ30 = cg1(r2u2 − r4u4) = (A.14)

= 219825.8276
x6x1u2

(1 + 8.6207x6 + 7.9365x7) (1 + 10x1)

−155310.6798
x1.2

4 x6u4
(

1 + 1.2689x1.2
4

)

(1 + 38.4615x6)

x30 = [hexose-P]g
r2u2 = vHK

r4u4 = vPFK

cg1 =
1

cg

=
1

Vg

=
1

0.2451
= 4.0799 (µl/mg)−1
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3.

d[Fru-1,6-BP]g
dt

=
vPFK − vALD

Vg

ẋ5 = cg1(r4u4 − r5u5) = (A.15)

= 155310.6798
x1.2

4 x6u4
(

1 + 1.2689x1.2
4

)

(1 + 38.4615x6)

−752.7540 (c53x5 − 1184.0796x9x10)u5

1 + c53x5 + 14.9254x10 + 66.6667x9 + 10.2041x5x10c53 + 995.0249x9x10

c53 =
1

0.009 + 0.0132x6 + 0.0060x7 + 0.0025x8

x5 = [Fru-1,6-BP]g
r4u4 = vPFK

r5u5 = vALD

cg1 = 4.0799 (µl/mg)−1

4.

d[Triose-P]

dt
=

2vALD − vGAPDH − vGDH + vGPO

Vtot

ẋ31 = ctot1(2r5u5 − r7u7 − r13u13 + r15u15) = (A.16)

=
64.7368 (c53x5 − 1184.0796x9x10) u5

1 + c53x5 + 14.9254x10 + 66.6667x9 + 10.2041x5x10c53 + 995.0249x9x10

−257.8947
(14.8148x10x24 − 335.00x12x25) u7

(1 + 6.6667x10 + 10x12) (1 + 2.2222x24 + 50x25)

−74.5614
(78.4314x9x25 − 0.0182x11x24) u13

(1 + 1.1765x9 + 0.1563x11) (1 + 66.6667x25 + 1.6667x24)

+37.9773
x21u15

1 + 0.5882x21

x31 = [triose-P]

r5u5 = vALD

r7u7 = vGAPDH

r13u13 = vGDH

r15u15 = vGPO

ctot1 = 0.1754 (µl/mg)−1
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5.

d[1,3-BPGA]g
dt

=
vGAPDH − vPGK

Vg

ẋ12 = cg1(r7u7 − r8u8) = (A.17)

= 5997.5520
(14.8148x10x24 − 335.00x12x25)u7

(1 + 6.6667x10 + 10x12) (1 + 2.2222x24 + 50x25)

−2611.1791
(200x12x7 − 0.0617x14x6) u8

(1 + 20x12 + 0.6173x14) (1 + 10x7 + 3.4483x6)

x12 = [1,3-BPGA]g
r7u7 = vGAPDH

r8u8 = vPGK

cg1 = 4.0799 (µl/mg)−1

6.

d[N]

dt
=

vPGK − vPYK

Vtot

ẋ35 = ctot1(r8u8 − r11u11) (A.18)

= 112.2807
(200x12x7 − 0.0617x14x6) u8

(1 + 20x12 + 0.6173x14) (1 + 10x7 + 3.4483x6)

−4001.2311

(

x15

0.34+0.5965x17+0.5313x18

)2.5
x18u11

(

1 +
(

x15

0.34+0.5965x17+0.5313x18

)2.5
)

(1 + 8.7719x18)

x35 = [N]

r8u8 = vPGK

r11u11 = vPYK

ctot1 = 0.1754 (µl/mg)−1
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7.

d[Pyr]c
dt

=
vPYK − vPyruvate transport

Vc

ẋ16 = cc1(r11u11 − r12u12) = (A.19)

= 4181.0148

(

x15

0.34+0.5965x17+0.5313x18

)2.5
x18u11

(

1 +
(

x15

0.34+0.5965x17+0.5313x18

)2.5
)

(1 + 8.7719x18)

−14.9650
x16u12

1 + 0.5102x16

x16 = [Pyruvate]c
r11u11 = vPYK

r12u12 = vPyruvate transport

cc1 =
1

cc1
=

1

Vc1
=

1

5.4549
= 0.1833 (µl/mg)−1

8.

d[NADH]g
dt

=
vGAPDH − vGDH

Vg

ẋ25 = cg1(r7u7 − r13u13) = (A.20)

= 5997.5520
(14.8148x10x24 − 335.00x12x25)u7

(1 + 6.6667x10 + 10x12) (1 + 2.2222x24 + 50x25)

−1733.9861
(78.4314x9x25 − 0.0182x11x24) u13

(1 + 1.1765x9 + 0.1563x11) (1 + 66.6667x25 + 1.6667x24)

x25 = [NADH]g
r7u7 = vGAPDH

r13u13 = vGDH

cg1 = 4.0799 (µl/mg)−1
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9.

dPg

dt
=
−vHK − vPFK + vPGK + vGK

Vg

ẋ36 = cg1(−r2u2 − r4u4 + u8r8 + r17u17) = (A.21)

= −219825.8276
x6x1u2

(1 + 8.621x6 + 7.9365x7) (1 + 10x1)

−155310.6798
x1.2

4 x6u4
(

1 + 1.2689x1.2
4

)

(1 + 38.4615x6)

+2611.1791
(200x12x7 − 0.0617x14x6) u8

(1 + 20x12 + 0.6173x14) (1 + 10x7 + 3.4483x6)

+815.9935
(1.6340x11x7 − 7324.5614x13x6)u17

(1 + 0.1961x11 + 8.3333x7) (1 + 8.3333x13 + 5.2632x6)

x36 = [P]g
r2u2 = vHK

r4u4 = vPFK

r8u8 = vPGK

r17u17 = vGK

cg1 = 4.0799 (µl/mg)−1

10.

dPc

dt
=

vPYK − vATP utilization

Vc

ẋ37 = cc1(r11u11 − r19u19) = (A.22)

= 4181.0148

(

x15

0.34+0.5965x17+0.5313x18

)2.5
x18u11

(

1 +
(

x15

0.34+0.5965x17+0.5313x18

)2.5
)

(1 + 8.7719x18)

−9.1661
x17u19

x18

x37 = [P]c
r11u11 = vPYK

r19u19 = vATP utilization

cc1 = 0.1833 (µl/mg)−1
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A.3.4 Moiety-conservation relations

For the model of glycolysis in Trypanosoma brucei four moiety relations can
be obtained, with the help of the reaction scheme [2, p.30, (2.1-2.4)]. The
following list is a list of moiety equations:

1.

[ATP]g + [ADP]g + [AMP]g = c1

x6 + x7 + x8 = c1 (A.23)

x6 = [ATP]g
x7 = [ADP]g
x8 = [AMP]g
c1 = 3.9 mM

2.

[ATP]c + [ADP]c + [AMP]c = c2

x17 + x18 + x19 = c2 (A.24)

x17 = [ATP]c
x18 = [ADP]c
x19 = [AMP]c
c2 = 3.9 mM

3.

[NADH]g + [NAD]+g = c3

x25 + x24 = c3 (A.25)

x25 = [NADH]g
x24 = [NAD]+g
c3 = 4 mM

4.

c4Vg = [Gly-3-P]gVg + [Gly-3-P]cVc + [DHAP]gVg +

+ [DHAP]cVc + [Glc-6-P]gVg + [Fru-6-P]gVg +

+2 [Fru-1,6-BP]gVg + [GA-3-P]gVg + [1,3-BPGA]gVg +

2 [ATP]gVg + [ADP]gVg

c4cg = x11cg + x21cc + x9cg + x20cc + x3cg + x4cg +

+2x5cg + x10cg + x12cg + 2x6cg + x7cg
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x11 = [Gly-3-P]g
x21 = [Gly-3-P]c
x9 = [DHAP]g
x20 = [DHAP]c
x3 = [Glc-6-P]g
x4 = [Fru-6-P]g
x5 = [Fru-1,6-BP]g
x10 = [GA-3-P]g
x12 = [1,3-BPGA]g
x6 = [ATP]g
x7 = [ADP]g
cg = Vg = 0.2451
cc = Vc = 5.4549
c4 = 120 mM

Since Gly-3-P and DHAP were assumed to be in equilibrium across the
glycosomal membrane, this equation is simplified to, [2, p.30, (2.5)]:

c4 = ([Gly-3-P] + [DHAP])

(

1 +
Vc

Vg

)

+ [Glc-6-P]g

+ [Fru-6-P]g + 2 [Fru-1,6-BP]g + [GA-3-P]g
+ [1,3-BPGA]g + 2 [ATP]g + [ADP]g

c4 = (x28 + x29) (1 + cq) + x3 + x4 (A.26)

+2x5 + x10 + x12 + 2x6 + x7

x28 = [Gly-3-P]

x29 = [DHAP]

cq =
cc

cg
=

Vc

Vg
= 22.2558

c4 = 120 mM

Hereby the following equalities hold, [2, p.30, (2.6), (2.7), and (2.19)]:

[Gly-3-P] ≡ [Gly-3-P]g = [Gly-3-P]c
x28 ≡ x11 = x21 (A.27)

x28 = [Gly-3-P]

x11 = [Gly-3-P]g
x21 = [Gly-3-P]c,
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[DHAP] ≡ [DHAP]g = [DHAP]c
x29 ≡ x9 = x20 (A.28)

x29 = [DHAP]

x9 = [DHAP]g
x20 = [DHAP]c,

and

[3-PGA] ≡ [3-PGA]g = [3-PGA]c
x33 ≡ x14 = x32 (A.29)

x33 = [3-PGA]

x14 = [3-PGA]g
x32 = [3-PGA]c.

A.3.5 Pools

If a reaction is assumed to be in equilibrium, its substrates and its products
will be treated as a single metabolite pool. The model of glycolysis in Trypa-
nosoma brucei consists of in total 5 metabolite pools, [2, p.37, (2.16-2.20)].
The following equations are the metabolite pools:

1. The sum of hexose phosphates in the glycosome is:

[hexose-P]g ≡ [Glc-6-P]g + [Fru-6-P]g
x30 ≡ x3 + x4 (A.30)

x30 = [hexose-P]g
x3 = [Glc-6-P]g
x4 = [Fru-6-P]g
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2. The sum of triose phosphate is:

[triose-P] ≡
[DHAP]cVc + [DHAP]gVg + [GA-3-P]gVg

Vtot

[2,p.37,(2.16)]
=

=
[DHAP](Vc + Vg) + [GA-3-P]gVg

(Vg + Vc)
=

=
[DHAP]

(

1 + Vc

Vg

)

+ [GA-3-P]g
(

1 + Vc

Vg

)

x31 ≡
x29 (1 + cq) + x10

(1 + cq)
(A.31)

x31 = [Triose-P]

x20 = [DHAP]c
x9 = [DHAP]g

x10 = [GA-3-P]g
x29 = [DHAP]

cq =
cc

cg

=
Vc

Vg

= 22.2558

3. A pool [N] is defined by:

[N] ≡
[3-PGA](Vg + Vc) + [2-PGA]cVc + [PEP]cVc

Vtot
=

=
[3-PGA]

(

1 + Vc

Vg

)

+ [2-PGA]c
Vc

Vg
+ [PEP]c

Vc

Vg
(

1 + Vc

Vg

) ,

here [2, p.37, (2.19)] is used.

x35 ≡
x33(1 + cq) + x34cq + x15cq

(1 + cq)
(A.32)

x35 = [N]

x33 = [3-PGA]

x34 = [2-PGA]c
x15 = [PEP]c
cq = 22.2558

120



4. Finally two variables Pg and Pc, denoting the sums of high energy
phosphates in the glycosome and the cytosol, respectively, were de-
fined:

[P]g ≡ 2[ATP]g + [ADP]g
x36 ≡ 2x6 + x7 (A.33)

x36 = [P]g
x6 = [ATP]g
x7 = [ADP]g

5.

[P]c ≡ 2[ATP]c + [ADP]c
x37 ≡ 2x17 + x18 (A.34)

x37 = [P]c
x17 = [ATP]c
x18 = [ADP]c

A.3.6 Fast dynamics

The transport of metabolites across the glycosomal membrane was assumed
to be driven only by concentration gradients of these metabolites and con-
sequently the corresponding equilibrium constants were 1. The individual
metabolite concentrations were calculated from the equilibrium pools as fol-
lows:

1. [2, p.39, (2.33)]

Glc-6-Pg
PGI
←→ Fru-6-Pg,

x3
u3←→ x4,

with equilibrium equation,

[Fru-6-P]g
[Glc-6-P]g

= Keq,PGI,

x4

x3
= ceq,3, (A.35)

x4 = [Fru-6-P]g,

x3 = [Glc-6-P]g,

ceq,3 = Keq,PGI = 0.29.
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2. [2, p.39, (2.35)]

DHAPc
acr. membr.
←→ DHAPg

TIM
←→ GA-3-Pg,

with equilibrium equation,

[GA-3-P]g
[DHAP]g

= Keq,TIM,

x10

x9
= ceq,6, (A.36)

x10 = [GA-3-P]g,

x9 = [DHAP]g,

ceq,6 = Keq,TIM = 0.045.

3. [2, p.39, (2.37) and (2,38)]

3-PGAg ←→ 3-PGAc
PGM
←→ 2-PGAc

ENO
←→ PEPc

The equilibrium equations of PGM and ENO are:

[2-PGA]c
[3-PGA]c

= Keq,PGM,

and

[PEP]c
[2-PGA]c

= Keq,ENO.

This leads to

x34

x32
= ceq,9, (A.37)

and

x15

x34
= ceq,10, (A.38)

with

x34 = [2-PGA]c,

x32 = [3-PGA]c,

x15 = [PEP]c,

ceq,9 = Keq,PGM = 0.187,

ceq,10 = Keq,ENO = 6.7.
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4. [2, p.40, (2.40)]

2[ADP]g ←→ [ATP]g + [AMP]g

The equilibrium equation for 2ADP, ATP, and AMP in the glycosome
is

[AMP]g[ATP]g

[ADP]2g
= Keq,AK,

x8x6

(x7)2
= ceq,20, (A.39)

x6 = [ATP]g,

x7 = [ADP]g,

x8 = [AMP]g,

ceq,20 = Keq,AK = 0.442.

5.

2[ADP]c ←→ [ATP]c + [AMP]c

The equilibrium equation for 2ADP, ATP, and AMP in the cytosol is

[AMP]c[ATP]c
[ADP]2c

= ceq,AK,

x19x17

(x18)2
= ceq,20, (A.40)

x17 = [ATP]c,

x18 = [ADP]c,

x19 = [AMP]c,

ceq,20 = Keq,AK = 0.442.

A.3.7 Algebraic equations

With the help of the pools and the fast dynamics algebraic equations can
be found, describing relations between some of the state variables.
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It follows from [2, p.37, (2.16)] and [2, p.39,(2.33)] that

[hexose-P]g
1 + Keq,PGI

[2,(2.16)]
=

[Glc-6-P]g + [Fru-6-P]g
1 + Keq,PGI

=

[2,(2.33)]
=

[Glc-6-P]g + [Fru-6-P]g

1 +
[Fru-6-P]

g

[Glc-6-P]
g

=

=
[Glc-6-P]2g + [Glc-6-P]g · [Fru-6-P]g

[Glc-6-P]g + [Fru-6-P]g
=

= [Glc-6-P]g,

this gives

x30

1 + ceq,3
= x3. (A.41)

It follows from [2, p.37, (2.17)] and [2, p.39, (2.35)] that

[triose-P]
(

1 + Vc

Vg

)

1 + Vc

Vg
+ Keq,TIM

[2,(2.17)]
=

[DHAP]
(

1 + Vc

Vg

)

+ [GA-3-P]g

1 + Vc

Vg
+ Keq,TIM

=

[2,(2.35)]
=

[DHAP]
(

1 + Vc

Vg

)

+ [GA-3-P]g

1 + Vc

Vg
+

[GA-3-P]
g

[DHAP]

=

=
[DHAP]2

(

1 + Vc

Vg

)

+ [DHAP] · [GA-3-P]g
(

1 + Vc

Vg

)

[DHAP] + [GA-3-P]g

=

= [DHAP],

this gives [2, p.39, (2.36)]

x29 =
x31 (1 + cq)

1 + cq + ceq,6
, (A.42)

with

x31 = [triose-P],

x29 = [DHAP],

cq = 22.2558,

ceq,6 = 0.045.
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With [2, p.37, (2.19)], [2, p.37, (2.20)], [2, p.39, (2.37)], and [2, p.39, (2.38)]
it follows that [2, p.40, (2.39)] holds:

[N]
(

1 + Vc

Vg

)

(

1 + (1 + Keq,PGM + Keq,PGM ·Keq,ENO)Vc

Vg

) =

[2,(2.37)],[2,(2.38)]
=

[N]
(

1 + Vc

Vg

)

1 +

(

1 +
[2-PGA]

c

[3-PGA]
c

+
[PEP]

c

[3-PGA]
c

)

Vc

Vg

=

[2,(2.19)]
=

[N]
(

1 + Vc

Vg

)

1 +

(

1 +
[2-PGA]

c

[3-PGA]
+

[PEP]
c

[3-PGA]

)

Vc

Vg

=

[2,(2.20)]
=

(

[3-PGA]
(

1+ Vc
Vg

)

+[2-PGA]
c

Vc
Vg

+[PEP]
c

Vc
Vg

)(

1+ Vc
Vg

)

(

1+ Vc
Vg

)

(

1 + Vc

Vg
+ 2-PGAc

3-PGA
Vc

Vg
+ PEPc

3-PGA
Vc

Vg

) =

=
[3-PGA]

(

[3-PGA]
(

1 + Vc

Vg

)

+ [2-PGA]c
Vc

Vg
+ [PEP]c

Vc

Vg

)

(

[3-PGA]
(

1 + Vc

Vg

)

+ [2-PGA]c
Vc

Vg
+ [PEP]c

Vc

Vg

) =

= [3-PGA].

So for x33 the following is obtained:

x33 =
x35 (1 + cq)

(1 + (1 + ceq,9 + ceq,9ceq,10)cq)
, (A.43)

x33 = [3-PGA],

x35 = [N],

cq = 22.2558.

A.3.8 Reduction of state variables

In the model of glycolysis of Trypanosoma brucei a system of 10 differential
equations with 37 unknowns is considered. With the help of the algebraic
equations, pools and fast dynamics, unknowns can be expressed in the 10
state variables, for which we have a differential equation in the system of
differential equations, namely {x1, x30, x5, x31, x12, x35, x16, x25, x36, x37}.

First the external concentration x2 is assumed to be 5 mM . The state x3

is depending of x30 with the help of algebraic equation A.41 and x4 can be
expressed by this expression and the equilibrium equation, A.35, between
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x3 and x4. These states are, respectively,

x3 =
x30

(1 + 0.29)
= 0.7752x30 and x4 =

0.29x30

(1 + 0.29)
= 0.2248x30.

To see the relation between x6 and x36,

x6 = 2.5391 + 0.5000x36 − 0.6510

√

(3.9 + 0.768x36)
2 − 1.3578x2

36 ,

A.23, A.33 and A.39 are used. starting with A.39 the following is obtained:

x8x6

(x7)2
A.23
⇒ (c1 − x6 − x7)x6 = ceq,20x

2
7

A.33
⇒ (c1 − x6 − x36 + 2x6)x6 = ceq,20(x36 − 2x6)

2

⇒ c1x6 + x2
6 − x36x6 = ceq,20x

2
36 + 4ceq,20x

2
6 − 4ceq,20x6x36

⇒ (1− 4ceq,20)x
2
6 + (c1 − x36 + 4ceq,20x36)x6 − ceq,20x

2
36 = 0.

With the help of the ABC-formula the relevant solution of this is [2, p.40,
(2.41)]

x6 =
−bg +

√

b2
g − 4agzg

2ag
,

in which

ag = 1− 4ceq,20,

bg = c1 − x36(1− 4ceq,20), (A.44)

zg = −ceq,20(x36)
2,

x36 = [P]g,

ceq,20 = 0.442,

c1 = 3.9.

Now x7 can be found with equation A.33, from x6 and x36, and by this also
depends of x36. So the expression for x7 is the following:

x7 = −5.0781 + 1.3021

√

(3.9 + 0.768x36)
2 − 1.3578x2

36.

The expression for x8 can be found with A.23 and the expressions for x6

and x7,

x8 = 6.4391 − 0.5000x36 − 0.6510

√

(3.9 + 0.768x36)
2 − 1.3578x2

36 .
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So x8 also depend of x36. The expression for the states x9 can be found with
A.42, A.36 and A.28, starting with A.42,

x31
A.42
=

x2923.2558 + x10

23.2558
(A.28)

=
x923.2558 + x10

23.2558
(A.36)

=
x923.2558 + 0.045x9

23.2558
⇒ 0.9981x31 = x9.

By this expression for x9 and by A.36, x10 = 0.0449x31. With relations A.26,
A.27, and A.28 and by using x9 and the relation of x29, x11 can be found,

x11 = 5.1600−1.0000x31−0.0430x30−0.0860x5−0.0430x12−0.0430x36.

Under O2 rich conditions, glycerol in the glycosome is assumed to be zero,
x13 = 0. Now x14 = 0.4205x35, this can be seen by A.29 and A.43. The state
x15 is found by A.37, A.38 and A.43,

x15 = 0.5269x35.

The expression for x17 can be found with A.24, A.34 and A.40 at same way
as x6. So x17 depends on x37. The relevant solution for x17 is

x17 =
−bc +

√

b2
c − 4aczc

2ac
,

with

ac = 1− 4ceq,20,

bc = c2 − x37(1− 4ceq,20),

zc = −ceq,20(x37)
2,

x37 = [P]c,

c2 = 3.9.

Now x18 and x19 can be expressed with the help of x17. With A.34 and x17

x18 = −5.0781 + 1.302
√

(3.9 + 0.768x37)2 − 1.3578x2
37,

then with A.24, x17 and x18

x19 = 6.4391 − 0.5000x37 − 0.6510
√

(3.9 + 0.768x37)2 − 1.358x2
37.
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The state x20 can be found with A.28, and is equal to 0.9981. With A.27 we
have x11 ≡ x28 and x28 can be found by A.26 and A.27,

x28 = 5.1600−1.0000x31−0.0430x30−0.0860x5−0.0430x12−0.0430x36.

By A.25 we can obtain x24 as x24 = 4 − x25. With A.28, A.31 and A.42
x29 = 0.9881x31 and by A.29, A.38 and A.43 x32 = 0.4205x35 and x33 =
0.4205x35. Finally by A.38, A.43 and A.29 it is seen that x34 = 0.0786x35.

Now all the state variables are expressed in the states
{x1, x30, x5, x31, x12, x35, x16, x25, x36, x37}. At the next two pages a list of
all the expressions of state variables is denoted.
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List of State variables

x1 = x1

x2 = 5

x3 =
x30

(1 + 0.29)

x4 = 0.2249x30

x5 = x5

x6 = 2.5391 + 0.5000x36 − 0.6510

√

(3.9 + 0.768x36)
2 − 1.3578x2

36

x7 = 0.2 · 10−9x36 − 5.0781 + 1.3021

√

(3.9 + 0.768x36)
2 − 1.3578x2

36

x8 = 6.4391 − 0.5000x36 − 0.6510

√

(3.9 + 0.768x36)
2 − 1.3578x2

36

x9 = 0.9981x31

x10 = 0.0449x31

x11 = 5.1591 − 1.0000x31 − 0.0430x30 − 0.0860x5 − 0.0430x12 − 0.0430x36

x12 = x12

x13 = 0

x14 = 0.4205x35

x15 = 0.5268x35

x16 = x16

x17 = 2.5391 + 0.5000x37 − 0.6510

√

(3.9 + 0.768x37)
2 − 1.3578x2

37

x18 = 0.2 · 10−9x37 − 5.0781 + 1.302
√

(3.9 + 0.768x37)2 − 1.3578x2
37

x19 = 6.4391 − 0.5000x37 − 0.6510
√

(3.9 + 0.768x37)2 − 1.358x2
37

x20 = 0.9981x31

x21 = 5.1591 − 1.0000x31 − 0.0430x30 − 0.0860x5 − 0.0430x12 − 0.0430x36

x22 = Not in the equations.

x23 = Not in the equations.

x24 = 4− x25

x25 = x25

x26 = Not in the equations.

x27 = Not in the equations.

x28 = 5.1591 − 1.0000x31 − 0.0430x30 − 0.0860x5 − 0.0430x12 − 0.0430x36

x29 = 0.9981x31
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x30 = x30

x31 = x31

x32 = 0.4205x35

x33 = 0.4205x35

x34 = 0.0786x35

x35 = x35

x36 = x36

x37 = x37

A.3.9 The reduced system

In the last two sections, respectively, the system of differential equations is
stated and a list of state variables, expressed in the state variables
{x1, x30, x5, x31, x12, x35, x16, x25, x36, x37}. These expressions can be filled
in the system of differential equations. At this way a new system will be
obtained, which we call the reduced system. Four terms are taken out of
the set of differential equations, because of the complexity of the differential
equations.

The following dynamical system is the reduced system:

S =

√

(3.9 + 0.768x36)
2 − 1.3578x2

36

S1 =
√

(3.9 + 0.768x37)2 − 1.3578x2
37

c5,3 =
1

0.0282 + 0.0054x36 − 0.0025 · S

c11,2 =
1

−0.8432 + 0.2982x37 + 0.3034 · S1

ẋ1 = 9.3158
(5− x1) u1

(3.5 + 1.4375x1)

−9452.5106
(2.5391 + 0.5000x36 − 0.6510 · S)x1u2

(−17.4141 + 4.3103x36 + 4.7216 · S) (1 + 10x1)
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ẋ30 = 219825.8276
(2.5391 + 0.5000x36 − 0.6510 · S)x1u2

(−17.4141 + 4.3103x36 + 4.7216 · S) (1 + 10x1)

−25904.2645
x1.2

30 (2.5391 + 0.5000x36 − 0.6510 · S) u4
(

1 + 0.2116x1.2
30

)

(98.6563 + 19.2308x36 − 25.0401 · S)

ẋ5 = 25904.2645
x1.2

30 (2.5391 + 0.5000x36 − 0.6510 · S)u4
(

1 + 0.2116x1.2
30

)

(98.6563 + 19.2308x36 − 25.0401 · S)

−
752.7540

(

x5 · c5,3 − 53.0780x2
31

)

u5

1 + x5c5,3 + 67.2083x31 + 0.4583x5x31c5,3 + 44.6033x2
31

ẋ31 =
64.7368

(

x5c5,3 − 53.0780x2
31

)

u5

(1 + x5c5,3 + 67.2083x31 + 0.4583x5x31c5,3 + 44.6033x2
31)

−257.8947
(0.6654x31 (4− x25)− 335.00x12x25) u7

(1 + 0.2994x31 + 10x12) (9.8888 + 47.7778x25)

−
74.5614 (78.2799x31x25)

(1.8063 + 1.0179x31 − 0.0067x30 − 0.0134x5 − 0.0067x12 − 0.0067x36)

·
(4− x25)u13

(7.6667 + 65.0000x25)

+
(5.1600 − 1.0000x31 − 0.0430x30 − 0.0860x5 − 0.0430x12 − 0.0430x36)

(1.8063 + 1.0179x31 − 0.0067x30 − 0.0134x5 − 0.0067x12 − 0.0067x36)

·
1.3570(4 − x25)u13

(7.6667 + 65.0000x25)
+ 37.9773 ·

(5.1600 − 1.0000x31 − 0.0430x30 − 0.0860x5 − 0.0430x12 − 0.0430x36)u15

(4.0353 − 0.5882x31 − 0.0253x30 − 0.0506x5 − 0.0253x12 − 0.0253x36)

ẋ12 = 5997.5520
(0.6654x31 (4− x25)− 335.00x12x25)u7

(1 + 0.2994x31 + 10x12) (9.8888 + 47.7778x25)

−2611.1791
200x12 (−5.0781 + 1.3021 · S) u8

(1 + 20x12 + 0.2596x35) (−41.0259 + 1.7242x36 + 10.7758 · S)

−2611.1791
−0.0260x35 (2.5391 + 0.5000x36 − 0.6510 · S)u8

(1 + 20x12 + 0.2596x35) (−41.0259 + 1.7241x36 + 10.7759 · S)
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ẋ35 = 112.2807
200x12 (−5.0781 + 1.3021 · S) u8

(1 + 20x12 + 0.2596x35) (−41.0259 + 1.7241x36 + 10.7759 · S)

+112.2807
−0.0260x35 (2.5391 + 0.5000x36 − 0.6510 · S) u8

(1 + 20x12 + 0.2596x35) (−41.0259 + 1.7241x36 + 10.7769 · S)

−806.2360
(x35c11,2)

2.5

(

1 + 0.2015 (x35c11,2)
2.5

) ·
(−5.0781 + 1.3021 · S1)u11

(−43.5450 + 11.4218 · S1)

ẋ16 = 842.4619
(x35c11,2)

2.5

(

1 + 0.2015 (x35c11,2)
2.5

) ·
(−5.0781 + 1.3021 · S1)u11

(−43.5450 + 11.4218 · S1)

−14.9650
x16u12

(1 + 0.5102x16)

ẋ25 = 5997.5520
(0.6654x31 (4− x25)− 335.00x12x25) u7

(1 + 0.2994x31 + 10x12) (9.8888 + 47.7778x25)

−
78.2799x31x25

(1.8063 + 1.0179x31 − 0.0067x30 − 0.0134x5 − 0.0067x12 − 0.0067x36)

·
(4− x25)u13

(7.6667 + 65.0000x25)
· 1733.9861

+
0.0182 (5.1600 − 1.0000x31 − 0.0430x30 − 0.0860x5 − 0.0430x12 − 0.0430x36)

(1.8063 + 1.0179x31 − 0.0067x30 − 0.0134x5 − 0.0067x12 − 0.0067x36)

·
(4− x25)u13

(7.6667 + 65.0000x25)
· 1733.9575
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ẋ36 = −219825.8276
(2.5391 + 0.5000x36 − 0.6510 · S)x1u2

(−17.4141 + 4.3103x36 + 4.7216 · S) (1 + 10x1)

−25904.2645
x1.2

30 (2.5391 + 0.5000x36 − 0.6510 · S) u4
(

1 + 0.2116x1.2
30

)

(98.6563 + 19.2308x36 − 25.0401 · S)

+2611.1791
200x12 (−5.0781 + 1.3021 · S) u8

(1 + 20x12 + 0.2596x35) (−41.0259 + 1.7241x36 + 10.7759 · S)

+2611.1791
−0.0260x35 (2.5391 + 0.5000x36 − 0.6510 · S)u8

(1 + 20x12 + 0.2596x35) (−41.0259 + 1.7241x36 + 10.7759 · S)

+
(5.1600 − 1.0000x31 − 0.0430x30 − 0.0860x5 − 0.0430x12 − 0.0430x36)

(2.0118 − 0.1961x31 − 0.0084x30 − 0.0169x5 − 0.0084x12 − 0.0084x36)

·
1333.3227 (−5.0781 + 1.3021 · S) u17

(−27.9542 + 2.6316x36 + 7.4242 · S)

ẋ37 = 842.4619
(x35c11,2)

2.5

(

1 + 0.2015 (x35c11,2)
2.5

) ·
(−5.0781 + 1.3021 · S1) u11

(−43.5450 + 11.4218 · S1)

−9.1661
(2.5391 + 0.5000x37 − 0.6510 · S1)u19

(−5.0781 + 1.3021 · S1)

A.3.10 Determination of the output

To consider the output, y, it is important to know which of the variables
the output variables are. For the model of glycolysis in Trypanosoma brucei
6 output variables are defined. The outputs of the system are:

x6(1) [ATP]g produced

x6(2) [ATP]g consumed

x13 [Glycerol]g
x16 [Pyruvate]c
x17 [ATP]c
x22 [H2O]

Glycerol, pyruvate, and H2O are state variables that are only produced,
while ATP produced and consumed in the glycosome and ATP in the cy-
tosol are considered as output variables, since these are variables of interest,
especially for control for drug design. The output variables can be obtained,
by the rate equations. The following list of equations are the equations of
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the output variables:

x6(1) = r17u17 + r8u8 =

= c17,1
(x11c17,3x7c17,4 − c17,2x13c17,5x6c17,6)u17

(1 + x11c17,3 + x13c17,5)(1 + x7c17,4 + x6c17,6)

+c8,1
(x12c8,3x7c8,4 − c8,2x14c8,5x6c8,6)u8

(1 + x12c8,3 + x14c8,5)(1 + x7c8,4 + x6c8,6)
=

= 199.9967
(1.6342x11x7 − 7324.5907x13x6)u17

(1 + 0.1961x11 + 8.3333x7)(1 + 8.3333x13 + 5.2632x6)

+639.9894
(200x12x7 − 0.0617x14x6)u8

(1 + 20x12 + 0.6173x14)(1 + 10x7 + 3.4483x6)
=

= 639.9894
200x12 (−5.0781 + 1.3021 · S) u8

(1 + 20x12 + 0.2596x35) (−41.0259 + 1.7241x36 + 10.7759 · S)

+639.9894
−0.0260x35 (2.5391 + 0.5000x36 − 0.6510 · S)u8

(1 + 20x12 + 0.2596x35) (−41.0259 + 1.7241x36 + 10.7759 · S)

+
(5.1600 − 1.0000x31 − 0.0430x30 − 0.0860x5 − 0.0430x12 − 0.0430x36)

(2.0118 − 0.1961x31 − 0.0084x30 − 0.0169x5 − 0.0084x12 − 0.0084x36)

·
199.9967 (−5.0781 + 1.3021 · S)u17

(−27.9542 + 2.6316x36 + 7.4242 · S)

x6(2) = −r2u2 − r4u4 =

= −c2,1
c2,2x6x1c2,3u2

(1 + x6c2,2 + x7c2,4)(1 + x1c2,3)

−c4,1
(c4,2x4)

n(c4,3x6
)u4

(1 + (c4,2x4)n) (1 + c4,3x6)
=

= −53878.4852
x6x1u2

(1 + 8.621x6 + 7.9365x7)(1 + 10x1)

−38065.5243
x1.2

4 x6u4
(

1 + 1.2689x1.2
4

)

(1 + 38.4615x6)
=

= −53878.4852
(2.5391 + 0.5000x36 − 0.6510 · S) x1u2

(−17.4141 + 4.3103x36 + 4.7216 · S) (1 + 10x1)

−38065.5243
x1.2

30 (2.5391 + 0.5000x36 − 0.6510 · S) u4
(

1 + 0.2116x1.2
30

)

(98.6563 + 19.2308x36 − 25.0401 · S)
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x13 = r17u17 = c17,1
(x11c17,3x7c17,4 − c17,2x13c17,5x6c17,6)u17

(1 + x11c17,3 + x13c17,5)(1 + x7c17,4 + x6c17,6)
=

= 199.9967
(1.6342x11x7 − 7324.5907x13x6)u17

(1 + 0.1961x11 + 8.3333x7)(1 + 8.3333x13 + 5.2632x6)
=

=
(5.1600 − 1.0000x31 − 0.0430x30 − 0.0860x5 − 0.0430x12 − 0.0430x36)

(2.0118 − 0.1961x31 − 0.0084x30 − 0.0169x5 − 0.0084x12 − 0.0084x36)

·
199.9967 (−5.0781 + 1.3021 · S)u17

(−27.9542 + 2.6316x36 + 7.4242 · S)

x16 = r11u11 = c11, 1
(c11,2x15

)n(c11,3x18)u11

(1 + (c11,2x15)n) (1 + c11,3x18)
=

=
22806.94

(

x15

0.34+0.5965x17+0.5313x18

)2.5
x18u11

(

1 +
(

x35

0.34+0.5965x17+0.5313x18

)2.5
)

(1 + 8.7719x18)

=

= 4595.5454
(x35c11,2)

2.5

(1 + 0.2015(x35c11,2)2.5)

c11,2 =
1

−0.8432 + 0.2982x37 + 0.3034
√

(3.9 + 0.768x37)2 − 1.3578x2
37

x17 = r11u11 =

= c11,1
(c11,2x15)

n(c11,3x18)

(1 + (c11,2x15)n) (1 + c11,3x18)

= 22804.27546

(

x15

0.34+0.5965x17+0.5313x18

)2.5
x18u11

(

1 +
(

x15

0.34+0.5965x17+0.5313x18

)2.5
)

(1 + 8.7719x18)

= 4595.5454
(x35c11,2)

2.5

(1 + 0.2015(x35c11,2)2.5)

c11,2 =
1

−0.8432 + 0.2982x37 + 0.3034
√

(3.9 + 0.768x37)2 − 1.3578x2
37
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x22 = r15u15 = c15,1
c15,2x21u15

1 + c15,2x21
= 216.4576

x21u15

1 + 0.5882x21
= 216.4576u15 ·

(5.1591 − 1.000x31 − 0.0430x30 − 0.0860x5 − 0.0430x12 − 0.0430x36)

(4.0346 − 0.5882x31 − 0.0253x30 − 0.0506x5 − 0.0253x12 − 0.0253x36)
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A.4 Positivity of the system

A system is called positive if all state variables are contained in the positive
orthant, with other words they are all positive. To investigate whether the
system is positive the boundaries are considered, dxi

dt
when xi = 0. The

reduced system is called positive if ∀i ∈ {1, 30, 5, 31, 12, 35, 16, 25, 36, 37}
dxi

dt
≥ 0 if xi = 0 , [29, p.20, (2.1.2), (2.1.3) ]. So when this holds xi = 0 is an

under boundary for the reduced system. Since the other state variables can
be expressed in these ten state variables, they also have to be considered.
By considering these other state variables upper boundaries for x36 and
x37 arise, these upper boundaries also arise when the square roots in the
differential equations are considered. There are also a few other restrictions
that arise. Positivity of the system will be checked for the system below.

Positivity of the reduced system

When x1 = 0, the following equation for dx1

dt
is obtained:

dx1

dt
= 9.3158

x2 u1

1.0 + 0.5x2
.

It is known that x2 is a positive concentration and ui ≥ 0
∀i ∈ {1, 30, 5, 31, 12, 35, 16, 25, 36, 37}, so dx1

dt
≥ 0. The following differential

equation for x30 is obtained:

dx30

dt
= 219825.8276

x6 x1 u2

(1 + 8.6207x6 + 7.9365x7) (1 + 10x1)

−155310.6798
x4

1.2x6 u4

(1 + 1.2689x4
1.2) (1 + 38.4615x6)

.

In this equation x30 does not occur, but x4 = 0.2248x30. So when x30 = 0
also x4 = 0 and for dx30

dt
the following holds:

dx30

dt
= 219825.8276

x6 x1 u2

(1 + 8.6207x6 + 7.9365x7) (1 + 10x1)
.

Since the enzyme concentrations and the state concentrations are greater
than or equal to zero it is found that dx30

dt
is greater than or equal to zero if

x30 is zero. The differential equation for x5 is

dx5

dt
= 155310.6798

x4
1.2x6 u4

(1 + 1.2689x4
1.2) (1 + 38.4615x6)

+891320.6299
x9 x10 u5

1.0 + 14.9254x10 + 66.6667x9 + 995.0249x9 x10
,
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if x5 = 0. This equation is greater than or equal to zero and thus dx5

dt
≥ 0 if

x5 = 0. The state variable x31 does not occur in dx31

dt
,

dx31

dt
=

64.7368 (c53x5 − 1184.0796x9x10) u5

1 + c53x5 + x10(14.9254 + 10.2041x5c53 + 995.0249x9) + 66.6667x9

−257.8947
(14.8148x10x24 − 335.0000x12x25)u7

(1 + 6.6667x10 + 10x12) (1 + 2.2222x24 + 50x25)

−
74.5614 (78.4314x9 x25 − 0.0182x11x24) u13

(1 + 1.1765x9 + 0.1563x11) (1 + 66.6667x25 + 1.6667x24)

+37.9773
x21 u15

1 + 0.5882x21
,

with

c53 =
1

0.0282 + 0.0054x36 − 0.0025

√

(

(3.9 + 0.768x36)
2 − 1.3578x2

36

)

.

Since x9 = 0.9981x31 and x10 = 0.0449x31 the following is obtained for dx31

dt

when x31 = 0:

dx31

dt
= 64.7368

c53 x5 u5

1.0 + c53 x5

+86394.7369
x12 x25 u7

(1.0 + 10x12) (1 + 2.2222x24 + 50x25)

+1.3592
x11 x24 u13

(1.0 + 0.1563x11) (1 + 66.6667x25 + 1.6667x24)

+37.9773
x21 u15

1 + 0.5882x21
.

All factors in this differential equation have a positive sign, which means
that dx31

dt
≥ 0 when x31 = 0. As x12 = 0, the differential equation for x12,

dx12

dt
= 88852.6225

x10 x24 u7

(1 + 6.6667x10) (1 + 2.2222x24 + 50x25)

+161.1839
x14 x6 u8

(1 + 0.6173x14) (1 + 10x7 + 3.4483x6)
,
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is greater than or equal to zero. The differential equation

dx35

dt
= 112.2807

(200x12 x7 − 0.0617x14 x6) u8

(1 + 20x12 + 0.6173x14) (1 + 10x7 + 3.4483x6)

−4001.2311

(

x15

0.34+0.5965 x17+0.5313 x18

)2.5
x18 u11

(

1 +
(

x15

0.34+0.5965 x17+0.5313 x18

)2.5
)

(1 + 8.7719x18)

does not contain x35, but both x14 and x15 are zero if x35 = 0, since x14 =
0.4205x35 and x15 = 0.5268x35. This means

dx35

dt
= 22456.1404

x12 x7 u8

(1.0 + 20x12) (1 + 10x7 + 3.4483x6)
,

if x35 = 0. All terms in this equation have a positive sign, and c5,3 > 0 if
x36 ∈ (0, 7.8000). It shall be obtained that x36 is indeed contained inside
this range. This means that dx35

dt
≥ 0 if x35 = 0. If x16 = 0 the differential

equation for x16,

dx16

dt
= 4181.0148

(

x15

0.34+0.5965 x17+0.5313 x18

)2.5
x18 u11

(

1 +
(

x15

0.34+0.5965 x17+0.5313 x18

)2.5
)

(1 + 8.7719x18)

,

is greater than or equal to zero. When x25 = 0, the following equation for
dx25

dt
is obtained:

dx25

dt
= 88852.7225

x10 x24 u7

(1 + 6.6667x10 + 10x12) (1 + 2.2222x24)

+31.6091
x11 x24 u13

(1 + 1.1765x9 + 0.1563x11) (1.0 + 1.6667x24)
.

This differential equation is greater than or equal to zero since the enzyme
and state concentrations are greater than or equal to zero. In the following
differential equation for x36, x36 does not occur:

dx36

dt
= −219825.8276

x6 x1 u2

(1 + 8.6207x6 + 7.9365x7) (1 + 10x1)

−155310.6798
x4

1.2x6 u4

(1 + 1.2689x4
1.2) (1 + 38.4615x6)

+2611.1791
(200x12 x7 − 0.0617x14 x6) u8

(1 + 20x12 + 0.6173x14) (1 + 10x7 + 3.4483x6)

+815.9935
(1.6340x11 x7 − 7324.5614x13 x6)u17

(1 + 0.1961x11 + 8.3333x13) (1 + 8.3333x7 + 5.2632x6)

139



Since both x6 and x7 are depending of x36 in such a way that x6 = 0 and
x7 = 0 if x36 = 0 it follows that dx36

dt
= 0, when x36 = 0. For x37 we have

dx37

dt
= 4181.0148

(

x15

0.34+0.5965 x17+0.5313 x18

)2.5
x18 u11

(

1 +
(

x15

0.34+0.5965 x17+0.5313 x18

)2.5
)

(1 + 8.7719x18)

−9.1661
x17 u19

x18
.

In this differential equation x37 does not occur, but x17 depends in such a
way of x37, that if x37 = 0 also x17 = 0. When x17 is zero the following
equation for dx37

dt
is obtained:

dx37

dt
= 4181.0148

(

x15

0.34+0.5313 x18

)2.5
x18 u11

(

1 +
(

x15

0.34+0.5313 x18

)2.5
)

(1 + 8.7719x18)

.

This differential equation is greater than or equal to zero. It has been ob-
tained that all state variables, in {x1, x30, x5, x31, x12, x35, x16, x25, x36, x37}
are ≥ 0. In next part of this section upper boundaries and restrictions for
the system are considered.

Upper boundaries and restrictions for the system

Since x6 = 2.5391 + 0.5000x36 − 0.6510
√

(3.9 + 0.768x36)
2 − 1.3578x2

36 it is

obtained that x6 ≥ 0 if x36 ∈ (−2.0173, 9.8173), and it is also obtained that

x36 ≥ 0. Since x8 = 6.4391−0.5000x36−0.6510
√

(3.9 + 0.768x36)
2 − 1.3578x2

36 ,
the same upper boundary is found for x36. But by considering x7 = −5.0781+

1.3021
√

(3.9 + 0.768x36)
2 − 1.3578x2

36 it is obtained that this is greater than

or equal to zero if x36 ∈ (0, 7.8000). Thus when x36 ∈ (0, 7.8000), x6 ≥ 0,
x7 ≥ 0, and x8 ≥ 0. When x36 = 7.8000, dx36

dt
has to be less than or equal to

zero. When x36 = 7.8000, x6 = 3.9, x7 = 0, and x8 = 0, then the following
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is obtained for dx36

dt
:

dx36

dt
= −24763.2481

x1 u2

1 + 10x1

−4011.3354
x4

1.2u4

1 + 1.2689x4
1.2

−43.5081
x14u8

1 + 20x12 + 0.6173x14

−0.1083 · 107 x13u17

1 + 0.1961x11 + 8.3333x13
.

One can see that all terms have negative signs, which means that dx36

dt
≤ 0

and this means that x36 ∈ (0, 7.8000). The state variables x17, x18 and x19

depend on x37 at the same way as x6, x7 and x8 depend on x36. So for
x18 to be greater than or equal to zero, x37 has to be in (0, 7.8000). Thus
when x37 = 7.8000, dx37

dt
has to be less than or equal to zero. The following

differential equation for x37 is considered:

dx37

dt
= 842.4619

(x35c11,2)
2.5

(

1 + 0.2015 (x35c11,2)
2.5

)

·
(−5.0781 + 1.3021 · S1) u11

(−43.5450 + 11.4218 · S1)

−9.1661
(2.5391 + 0.5000x37 − 0.6510 · S1)u19

(−5.0781 + 1.3021 · S1)
,

with

S1 =
√

(3.9 + 0.768x37)2 − 1.3578x2
37,

and

c11,2 =
1

−0.8435 + 0.2983x37 + 0.3035 · S1
.

Since c11,2 ≥ 0 if x37 ∈ (−0.5992, 9.8173) it is also ≥ 0 if x37 = 7.8000. So
then it is clear that

842.4619 (x35c11,2)
2.5 u11

(

1 + 0.2015 (x35c11,2)
2.5

) ≥ 0

if x37 = 7.8000. When the numerator and the denominator of

(−5.0781 + 1.3021 · S1) u11

(−43.5450 + 11.4218 · S1)
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are considered, one can see that the numerator is equal to zero if x37 =
7.8000 and the denominator is greater than zero, namely 3.9. By this the
first term of the differential equation for x37 is zero when x37 = 7.8000.
When the second term of dx37

dt
is less than or equal to zero then dx37

dt
≤

0. The numerator, 9.1650(2.5391 + 0.5000x37 − 0.6510 · S1) > 0 if x37 ∈
(−2.0173, 9.8173). Thus when x37 = 7.8000 this is also greater than zero.
When x37 ↑ 7.8000, the denominator, (−5.0781 + 1.3021 · S1) ↓ 0, so

lim
x37↑7.8000

−9.1650
(2.5391 + 0.5000x37 − 0.6510 · S1)u19

(−5.0781 + 1.3021 · S1)
= −∞,

and when x37 ∈ (0, 7.8000) this fraction is less than zero. So dx37

dt
≤ 0 when

x37 = 7.8000 and thus x37 ∈ (0, 7.8000) and x18 ≥ 0. The above explanation
is also explained by the following figure.

–2e+08

0

2e+08

4e+08

6e+08

8e+08

7.79992 7.79996 7.87.80002 7.80006 7.8001

x37

Since it is known that x24 = 4−x25, x25 has to be less than or equal to 4 for
x24 to be greater than or equal to zero. This is the case when the differential
equation for x25 is less than or equal to zero when it happens x25 to be 4.
When x25 = 4 and x24 = 0 the following is obtained for dx25

dt
:

dx25

dt
= −39983.6801

x12u7

1 + 6.6667x10 + 10x12

−2032.3623
x9u13

1 + 1.1765x9 + 0.1563x11
.

Since both signs are negative dx25

dt
≤ 0 and by this x25 ∈ (0, 4).
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The only variables that have to be considered are x11, x21 and x28. It is
known that

x11 = 5.1600 − x31 − 0.0430x30 − 0.0860x5 − 0.0430x12 − 0.0430x36 =

= 5.1600 − 0.0430
( x31

0.0430
+ x30 + 2x5 + x12 + x36

)

. (A.45)

We define:
(

x31

0.0430 + x30 + 2x5 + x12 + x36

)

:= f(x31, x30, x5, x12, x36), here
called f, has to be less than 120. The differential equation for f is

df

dt
=

1

0.0430

dx31

dt
+

dx30

dt
+ 2

dx5

dt
+

dx12

dt
+

dx36

dt
,

this equation has to be less than or equal to zero when f=119.9791. Now the
differential equations for x31, x30, x5, x12 and x36 are used as follows to find
df
dt

:

1

0.0430

dx31

dt
=

0.1754

0.0430
(2r5u5 − r7u7 − r13u13 + r15u15)

dx30

dt
= 4.0799(r2u2 − r4u4)

2
dx5

dt
= 2 · 4.0799(r4u4 − r5u5)

dx12

dt
= 4.0799(r7u7 − r8u8)

dx36

dt
= 4.0799(−r2u2 − r4u4 + u8r8 + r17u17).

When these equations are used it follows that

df

dt
= 4.0799(r15u15 + r17u17 − r13u13) =

= 883.1929
x21u15

1 + 0.5882x21

+815.9935
(1.6340x11x7 − 7324.5614x13x6)u17

(1 + 0.1961x11 + 8.3333x13) (1 + 8.3333x7 + 5.2632x6)

−1733.9861
(78.4314x9x25 − 0.0182x11x24)u13

(1 + 1.1765x9 + 0.1563x11) (1 + 66.6667x25 + 1.6667x24)

= −135998.9120
x9x25u13

(1 + 1.1765x9) (1 + 66.6667x25 + 1.6667x24)
.

Since x13 is assumed to be zero and x11 = 0 and x21 = 0 if f = 120 by
(A.45), this equation is less or equal to zero.

The conclusion is that the dynamical system for the glycolysis in Trypa-
nosoma brucei is positive, since all the state variables are contained in the
positive orthant.
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A.5 Steady state of the system

In this section the results of the discussion about steady state for glycolysis
in Trypanosoma brucei will be denoted. First the graph of the system will
be determined, since this graph is discussed in Section 4.4. In Section 4.6
determining steady state for the system is discussed. In Appendix A.5.2 the
Matlab files, used to determine a steady state numerical, are denoted. In this
appendix also the results under aerobic and under anaerobic conditions, in
the form of tables and in the form of figures as well.

A.5.1 Graph of the system

As defined in Definition 4.11, an edge (i, k) in the graph is a directed edge
from node k to node i, if ẋi depends on xk, or y(t) depends on xk.

In table A.5.1 is denoted, which differential equation, depend on which
states. First two tables of the state and the input variables, which are con-
sidered in the graph, are given below as a reminder.

x1 [Glc]g
x30 [Hexose-P]g
x5 [Fru-1,6-BP]g
x31 [Triose-P]
x12 [1,3-BPGA]g
x35 [N]
x16 [Pyruvate]c
x25 [NADH]g
x36 [P]g
x37 [P]c

u1 Glucose transport
u2 HK
u4 PFK
u5 ALD
u7 GAPDH
u8 PGK
u11 PYK
u13 GDH
u15 GPO
u17 GK
u19 ATP utalization
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The results are denoted for both the dynamical system containing all state
variables, denoted by system, and the reduced system. Which input variable
belongs to which differential equation is also denoted in the table. In the
table ODE stands for Ordinary Differential Equation.

Table A.5.1: the depending of the system of the states

ODE System ui Reduced system

ẋ1 x2, x1 u1 x1

x6, x1, x7 u2 x36, x1

ẋ30 x6, x1, x7 u2 x36, x1

x4, x6 u4 x30, x36

ẋ5 x4, x6 u4 x30, x36

x5, x9, x10, x6, x7, x8 u5 x5, x36, x31

ẋ31 x5, x9, x10, x6, x7, x8 u5 x5, x36, x31

x10, x24, x12, x25 u7 x31, x25, x12

x9, x25, x11, x24 u13 x31, x25, x30, x12, x36, x5

x21 u15 x31, x30, x5, x12, x36

ẋ12 x10, x24, x12, x25 u7 x31, x25, x12

x12, x7, x14, x6 u8 x12, x36, x35

ẋ35 x12, x7, x14, x6 u8 x12, x36, x35

x15, x17, x18 u11 x35, x37

ẋ16 x15, x17, x18 u11 x35, x37

x16 u12 x16

ẋ25 x10, x24, x12, x25 u7 x31, x25, x12

x9, x25, x11, x24 u13 x31, x25, x30, x12, x5, x36

ẋ36 x6, x1, x7 u2 x36, x1

x4, x6 u4 x30, x36

x12, x7, x14, x6 u8 x12, x36, x35

x11, x7, x13, x6 u17 x5, x36, x12, x30, x31

ẋ37 x15, x17, x18 u11 x35, x37

x17, x18 u19 x37
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The following table is a table of edges, and labels of the edges, which are
the input variables. The edges are ordered to differential equation.

Table A.5.2: edges and labels of edges for the system

Edges ui Edges ui

1 (1, 1) u1, u2 35 (12, 35) u8

(36, 1) u2 (36, 35) u8

30 (1, 30) u2 (35, 35) u8, u11

(30, 30) u4 (37, 35) u11

(36, 30) u2, u4 16 (35, 16) u11

5 (30, 5) u4 (37, 16) u11

(36, 5) u4, u5 (16, 16) u12

(5, 5) u5 25 (31, 25) u7, u13

(31, 5) u5 (25, 25) u7, u13

31 (5, 31) u5, u13, u15 (12, 25) u7, u13

(36, 31) u5, u13, u15 (30, 25) u13

(31, 31) u5, u7, u13, u15 (5, 25) u13

(25, 31) u7, u13 (36, 25) u13

(12, 31) u7, u13, u15 36 (36, 36) u2, u4, u8, u17

(30, 31) u13, u15 (1, 36) u2

12 (31, 12) u7 (30, 36) u4, u17

(25, 12) u7 (12, 36) u8, u17

(12, 12) u7, u8 (35, 36) u8

(36, 12) u8 (5, 36) u17

(35, 12) u8 (31, 36) u17

37 (35, 37) u11

(37, 37) u11, u19

The output variables are also obtained in the graph. The following variables
are outputs of the system:

x6(1) [ATP]g produced

x6(2) [ATP]g consumed

x13 [Glycerol]g
x16 [Pyruvate]c
x17 [ATP]c
x22 [H2O]
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In table A.5.3 is denoted, which output variables, depend on which states.

Table A.5.3: the depending of the output variables of the states

System ui Reduced system

x16 x15, x17, x18 u11 x35, x37

x22 x21 u15 x31, x30, x5, x12, x36

x6(1) x12, x7, x14, x6 u8 x36, x35, x12

x11, x7, x13, x6 u17 x31, x30, x5, x12, x36

x6(2) x6, x1, x7 u2 x36, x1

x4, x6 u4 x30, x36

x17 x15, x17, x18 u11 x35, x37

x13 x11, x7, x13, x6 u17 x31, x30, x5, x12, x36

The extra edges that have to be add to the graph, with respect to the output
variables are stated in Table A.5.3.

Table A.5.4: edges and labels of edges for the output variables

Edges ui Edges ui

x22 (31, 22) u15 x6(2) (30, 6(2)) u4

(30, 22) u15 (36, 6(2)) u4, u2

(5, 22) u15 (1, 6(2)) u2

(12, 22) u15 x6(1) (36, 6(1)) u8, u17

(36, 22) u15 (35, 6(1)) u8

x13 (31, 13) u17 (12, 6(1)) u8, u17

(30, 13) u17 (31, 6(1)) u17

(5, 13) u17 (30, 6(1)) u17

(12, 13) u17 (5, 6(1)) u17

(36, 13) u17

x17 (35, 17) u11

(37, 17) u11
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The graph below is the graph of the system, as described in Section 4.4.
The graph consist of the edges from Table A.5.2 and Table A.5.3. This
graph consist of a directed connection of two strongly connected subgraphs.

Graph of the system
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A.5.2 Numerical determination of steady state

The computer program Matlab is used to determine a steady state numerical
for the system of glycolysis in Trypanosoma brucei. In this subsection the
two Matlab files are denoted. Further the steady state results, which are
determined numerically are denoted in this subsection.

Matlab file of the system of differential equations

Two Matlab files are made, one with the system of differential equations as
a function of a ten dimensional vector y and one file that solves the system
of differential equations. The following program is consist the system of
differential equations:

148



function F=trypbruc(t,y)

u1=1;

u2=1;

u4=1;

u5=1;

u7=1;

u13=1;

u15=1;

u8=1;

u11=1;

u12=1;

u17=0;

u19=1;

%x1=y(1);

%x30=y(2);

%x5=y(3);

%x31=y(4);

%x12=y(5);

%x35=y(6);

%x16=y(7);

%x25=y(8);

%x36=y(9);

%x37=y(10);

S=sqrt((3.9+.768*y(9))^2-1.357824*y(9)^2);

S1=sqrt((3.9+.768*y(10))^2-1.357824*y(10)^2);

dx1=9.315789474*(5-y(1))*u1/(3.5+1.4375*y(1))-9452.510586*...

(2.539062500+.5*y(9)-.6510416665*S)*y(1)*u2/((-17.4141...

0954+4.310344828*y(9)+4.721566551*S)*(1+10*y(1)));

dx30 = 219825.8276*(2.539062500+.5*y(9)-.6510416665*S)*y(1...

)*u2/((-17.41410954+4.310344828*y(9)+4.721566551*S)...

*(1+10*y(1)))-25904.26449*y(2)^1.2*(2.539062500+.5*...

y(9)-.6510416665*S)*u4/((1+.2116378409*y(2)^1.2)*(9...

8.65625000+19.23076923*y(9)-25.04006410*S));

dx5=25904.26449*y(2)^1.2*(2.539062500+.5*y(9)-.6510416665*...

S)*u4/((1+.2116378409*y(2)^1.2)*(98.65625000+19.230769...

23*y(9)-25.04006410*S))-752.7539779*(y(3)/(.2821540919...

e-1+.5384770348e-2*y(9)-.2461274573e-2*S)-53.07797156*...

y(4)^2)*u5/(1+y(3)/(.2821540919e-1+.5384770348e-2*y(9)...

-.2461274573e-2*S)+67.20826047*y(4)+.4582968690*y(3)*y...
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(4)/(.2821540919e-1+.5384770348e-2*y(9)-.2461274573e-2...

*S)+44.60333747*y(4)^2);

dx31=64.73684211*(y(3)/(.2821540919e-1+.5384770348e-2*y(9)...

-.2461274573e-2*S)-53.07797156*y(4)^2)*u5/(1+y(3)/(.2...

821540919e-1+.5384770348e-2*y(9)-.2461274573e-2*S)+67...

.20826047*y(4)+.4582968690*y(3)*y(4)/(.2821540919e-1+...

.5384770348e-2*y(9)-.2461274573e-2*S)+44.60333747*y(4...

)^2)-257.8947369*(.6653791579*y(4)*(4-y(8))-335.00*y(...

5)*y(8))*u7/((1+.2994206211*y(4)+10*y(5))*(9.88888888...

8+47.77777778*y(8)))-74.56140351*(78.27990093*y(4)*y(...

8)-.1822916667e-1*(5.160000001-1.000000000*y(4)-.4300...

000001e-1*y(2)-.8600000002e-1*y(3)-.4300000001e-1*y(5...

)-.4300000001e-1*y(9))*(4-y(8)))*u13/((1.806250000+1....

017948514*y(4)-.6718750002e-2*y(2)-.1343750000e-1*y(3...

)-.6718750002e-2*y(5)-.6718750002e-2*y(9))*(7.6666666...

68+65.00000000*y(8)))+37.97729618*(5.160000001-1.0000...

00000*y(4)-.4300000001e-1*y(2)-.8600000002e-1*y(3)-.4...

300000001e-1*y(5)-.4300000001e-1*y(9))*u15/(4.0352941...

18-.5882352941*y(4)-.2529411765e-1*y(2)-.5058823530e-...

1*y(3)-.2529411765e-1*y(5)-.2529411765e-1*y(9));

dx12=5997.552019*(.6653791579*y(4)*(4-y(8))-335.00*y(5)*y(8...

))*u7/((1+.2994206211*y(4)+10*y(5))*(9.888888888+47.77...

777778*y(8)))-2611.179110*(200*y(5)*(-5.078125000+1.30...

2083333*S)-.2595828537e-1*y(6)*(2.539062500+.5*y(9)-.6...

510416665*S))*u8/((1+20*y(5)+.2595828536*y(6))*(-41.02...

586207+10.77586207*S+1.724137931*y(9)));

dx35=112.2807018*(200*y(5)*(-5.078125000+1.302083333*S)-.25...

95828537e-1*y(6)*(2.539062500+.5*y(9)-.6510416665*S))*...

u8/((1+20*y(5)+.2595828536*y(6))*(-41.02586207+10.7758...

6207*S+1.724137931*y(9)))-806.2360378*(y(6)/(-.8432253...

97+.2982456141*y(10)+.3033911275*S1))^2.5*(-5.07812500...

0+1.302083333*S1)*u11/((1+.2014969912*(y(6)/(-.8432253...

97+.2982456141*y(10)+.3033911275*S1))^2.5)*(-43.544956...

14+11.42178362*S1));

dx16=842.4618992*(y(6)/(-.843225397+.2982456141*y(10)+.3033...

911275*S1))^2.5*(-5.078125000+1.302083333*S1)*u11/((1+...

.2014969912*(y(6)/(-.843225397+.2982456141*y(10)+.3033...

911275*S1))^2.5)*(-43.54495614+11.42178362*S1))-14.965...

01367*y(7)*u12/(1+.5102040816*y(7));

150



dx25=5997.552019*(.6653791579*y(4)*(4-y(8))-335.00*y(5)*y(8...

))*u7/((1+.2994206211*y(4)+10*y(5))*(9.888888888+47.77...

777778*y(8)))-1733.986128*(78.27990093*y(4)*y(8)-.1822...

916667e-1*(5.160000001-1.000000000*y(4)-.4300000001e-1...

*y(2)-.8600000002e-1*y(3)-.4300000001e-1*y(5)-.4300000...

001e-1*y(9))*(4-y(8)))*u13/((1.806250000+1.017948514*y...

(4)-.6718750002e-2*y(2)-.1343750000e-1*y(3)-.671875000...

2e-2*y(5)-.6718750002e-2*y(9))*(7.666666668+65.0000000...

0*y(8)));

dx36=-219825.8276*(2.539062500+.5*y(9)-.6510416665*S)*y(1)*...

u2/((-17.41410954+4.310344828*y(9)+4.721566551*S)*(1+1...

0*y(1)))-25904.26449*y(2)^1.2*(2.539062500+.5*y(9)-.65...

10416665*S)*u4/((1+.2116378409*y(2)^1.2)*(98.65625000+...

19.23076923*y(9)-25.04006410*S))+2611.179110*(200*y(5)...

*(-5.078125000+1.302083333*S)-.2595828537e-1*y(6)*(2.5...

39062500+.5*y(9)-.6510416665*S))*u8/((1+20*y(5)+.25958...

28536*y(6))*(-41.02586207+10.77586207*S+1.724137931*y(...

9)))+1333.322667*(5.160000001-1.000000000*y(4)-.430000...

0001e-1*y(2)-.8600000002e-1*y(3)-.4300000001e-1*y(5)-....

4300000001e-1*y(9))*(-5.078125000+1.302083333*S)*u17/(...

(2.011764706-.1960784314*y(4)-.8431372552e-2*y(2)-.168...

6274510e-1*y(3)-.8431372552e-2*y(5)-.8431372552e-2*y(9...

))*(-27.95422149+7.424159353*S+2.631578948*y(9)));

dx37=842.4618992*(y(6)/(-.843225397+.2982456141*y(10)+.3033...

911275*S1))^2.5*(-5.078125000+1.302083333*S1)*u11/((1+...

.2014969912*(y(6)/(-.843225397+.2982456141*y(10)+.3033...

911275*S1))^2.5)*(-43.54495614+11.42178362*S1))-9.1660...

70870*(2.539062500+.5*y(10)-.6510416665*S1)*u19/(-5.07...

8125000+1.302083333*S1);

F=[dx1;dx30;dx5;dx31;dx12;dx35;dx16;dx25;dx36;dx37];

The program, which solves the system of differential equations

The Matlab code below is the code to determine the state trajectory for
a set of the state variables, for which a differential equation exists in the
system.

format long

tInitial=0;
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tFinal=30;

%Determining the state trajectory:

yInitial=[0.02975407611889;0.56817742084615;29.818610444363...

76;1.56315490307066;0.03797123507339;1.6652717578...

9899;21.48049625131047;0.11523189828208;4.9443408...

4977207;6.60862353427018];

tSpan=[tInitial tFinal];

fname=’trypbruc1’;

options=odeset(’AbsTol’,0.00000001,’RelTol’,0.000001,’stats’,...

’on’);

[t,y]=ode45(fname,tSpan,yInitial);

%Plotting of the state trajectory:

subplot(3,2,1), plot(t,y(:,1))

subplot(3,2,2), plot(t,y(:,2))

subplot(3,2,3), plot(t,y(:,3))

subplot(3,2,4), plot(t,y(:,4))

subplot(3,2,5), plot(t,y(:,5))

subplot(3,2,6), plot(t,y(:,6))

figure

subplot(2,2,1), plot(t,y(:,7))

subplot(2,2,2), plot(t,y(:,8))

subplot(2,2,3), plot(t,y(:,9))

subplot(2,2,4), plot(t,y(:,10))

%Algebraic relations:

a=size(y);

x1=y(a(1),1);

x2=5;

x3=y(a(1),2)/(1+0.29);

x4=y(a(1),2)-y(a(1),2)/(1+0.29);

x5=y(a(1),3);

x6=2.539062500+0.5*y(a(1),9)-0.6510416665*sqrt((3.9 + 0.768*...

y(a(1),9))^2 -1.357824*y(a(1),9)^2);

x7=-5.078125000+1.302083333*sqrt((3.9 + 0.768*y(a(1),9))^2-1...

.357824*y(a(1),9)^2);

x8=6.439062500-0.5*y(a(1),9)-0.6510416665*sqrt((3.9+0.768*y(...

a(1),9))^2-1.357824*y(a(1),9)^2);

x9=(y(a(1),4)*(1+22.25581396))/((1+22.25581396)+0.045);

x10=0.045*((y(a(1),4)*(1+22.25581396))/((1+22.25581396)+0.04...

5));

x11=5.159999999-1.000000000*y(a(1),4)-.4299999999e-1*y(a(1),...
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2)-.8599999998e-1*y(a(1),3)-.4299999999e-1*y(a(1),5)-.42...

99999999e-1*y(a(1),9); x12=y(a(1),5); x13=0;

x14=y(a(1),6)*(1+22.25581396)/((1+22.25581396)+0.187*22.2558...

1396+0.187*6.7*22.25581396);

x15=(y(a(1),6)*(1+22.25581396)/((1+22.25581396)+0.187*22.255...

81396+0.187*6.7*22.25581396))*0.187*6.7;

x16=y(a(1),7);

x17=2.539062500+0.5*y(a(1),10)-0.6510416665*sqrt((3.9 + 0.76...

8*y(a(1),10))^2-1.357824*y(a(1),10)^2);

x18=-5.078125000+1.302083333*sqrt((3.9 + 0.768*y(a(1),10))^2...

-1.357824*y(a(1),10)^2);

x19=6.439062500-0.5*y(a(1),10)-0.6510416665*sqrt((3.9+0.768*...

y(a(1),10))^2-1.357824*y(a(1),10)^2);

x20=(y(a(1),4)*(1+22.25581396))/((1+22.25581396)+0.045);

x21=5.159999999-1.000000000*y(a(1),4)-.4299999999e-1*y(a(1),2...

)-.8599999998e-1*y(a(1),3)-.4299999999e-1*y(a(1),5)-.4299...

999999e-1*y(a(1),9);

x24=4-y(a(1),8);

x25=y(a(1),8);

x28=5.159999999-1.000000000*y(a(1),4)-.4299999999e-1*y(a(1),2)...

-.8599999998e-1*y(a(1),3)-.4299999999e-1*y(a(1),5)-.429999...

9999e-1*y(a(1),9);

x29=(y(a(1),4)*(1+22.25581396))/((1+22.25581396)+0.045);

x30=y(a(1),2);

x31=y(a(1),4);

x32=(y(a(1),6)*(1+22.25581396)/((1+22.25581396)+0.187*22.25581...

396+0.187*6.7*22.25581396))*0.187*6.7/(0.187*6.7);

x33=(y(a(1),6)*(1+22.25581396)/((1+22.25581396)+0.187*22.25581...

396+0.187*6.7*22.25581396))*0.187*6.7/(0.187*6.7);

x34=(y(a(1),6)*(1+22.25581396)/((1+22.25581396)+0.187*22.25581...

396+0.187*6.7*22.25581396))*0.187*6.7/(0.187*6.7)*0.187;

x35=y(a(1),6);

x36=y(a(1),9);

x37=y(a(1),10);

v1=x6/x7;

v2=x17/x18;

v3=y(a(1),8)/(4-y(a(1),8));

y(a(1),:)
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Steady state values

Starting with an initial values, for x1, x30, x5, x31, x12, x35, x16, x36 and x37, a
steady state is determined, by use of the above Matlab program. The initial
vector, which is used is [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]. For other initial vectors the
same results are obtained. The steady state is obtained for both aerobic,
u17 = 0, and anaerobic, u15 = 0, conditions, which can be find in the follow-
ing table.

Table A.5.5: the steady state concentrations under
aerobic and anaerobic conditions.

State Steady state Steady state
variable concentration (mM) concentration (mM)

aerobic anaerobic

x1 0.0561 0.1023

x2 5.0000 5.0000

x3 0.4411 0.4416

x4 0.1279 0.1281

x5 25.7975 2.3466

x6 0.7817 0.4071

x7 1.6251 1.3913

x8 1.4933 2.1015

x9 1.6493 0.6102

x10 0.0742 0.0275

x11 1.1261 4.2271

x12 0.0280 0.0097

x13 0.0000 0.0000

x14 0.6833 0.4566

x15 0.8561 0.5721

x16 21.4393 1.5760

x17 2.8010 2.0329

x18 2.8010 1.4254

x19 0.1439 0.4417

x20 1.6493 0.6102

x21 1.1261 4.2271

x24 3.8601 3.8469

x25 0.1399 0.1531

x28 1.1261 4.2271

x29 1.6493 0.6102

x30 0.5690 0.5697

x31 1.6525 0.6113

x32 0.6833 0.4566

x33 0.6833 0.4566

x34 0.1278 0.0854

x35 1.6248 1.0858

x36 3.1884 2.2056

x37 6.5570 5.4912
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Figures are determined for the state trajectories. For both the aerobic and
the anaerobic case, figures are plotted for tFinal=1 and for tFinal=5 minu-
tes. The following figures are obtained under aerobic conditions:
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The following figures are obtained under anaerobic conditions:
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A.6 Control of the output, ATP, of the system

In this section the results of zeroing the output variable ATP are denoted.
First the Graph has to be formulated as explained in Section 5.4. After for-
mulating the graph, the Maple program, which is used to determine whether
there does not exist a path between Glucose and ATP is denoted. Finally
the results obtained by Maple are checked numerical, by determining the
steady state values.

A.6.1 Formulation for the Graph

As discussed in Section 5.3 and edge (i, k), k → i exists if or there exist
a reaction from complex k to complex i, or k is part of complex i and the
complex is consumed or i is part of the complex k and i is consumed after
production of the complex k, here i, k ∈ I, which is the set of nodes. The
edges in the graph are labeled by ui, i = 1, . . . , 21, the input variables of the
reactions catalyzed by the enzymes.

The set of species of which the complexes in the graph exist is {S1, . . . , S30},
which are 30 in total. The set of complexes is:

1 S2 11 S9 21 S24

2 S1 12 S9 + S25 22 S25

3 S1 + S6 13 S11 + S24 23 S12 + S25

4 S3 + S7 14 S11 24 S12

5 S3 15 S11 + S7 25 S12 + S7

6 S4 16 S13 + S6 26 S14 + S6

7 S4 + S6 17 S13 27 S14

8 S5 + S7 18 S26 28 S32

9 S5 19 S10 29 S34

10 S9 + S10 20 S10 + S24 30 S15

31 S15 + S18 41 S17 51 1
2S23 + S21

32 S16 + S17 42 S19 52 S21

33 S16 43 S19 + S17

34 S27 44 S37

35 S6 45 S18 + S37

36 S7 46 2S18

37 2S7 47 S22

38 S8 48 S20 + S22

39 S6 + S8 49 S20

40 S18 50 1
2S23

Table A.6.1 is a table of edges and labels of the edges:
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Table A.6.1: edges and labels of edges

Edges ui Edges ui

1 (S2, S1) u1 60 (S32, S34) u9

2 (S1, S2) u1 61 (S34, S32) u9

3 (S1, S1 + S6) 62 (S34, S15) u10

4 (S1 + S6, S1) 63 (S15, S34) u10

5 (S1 + S6, S3 + S7) u2 64 (S15, S15 + S18)
6 (S3 + S7, S3) 65 (S15 + S18, S15)
7 (S3, S3 + S7) 66 (S15 + S18, S16 + S17) u11

8 (S3, S4) u3 67 (S16 + S17, S16)
9 (S4, S3) u3 68 (S16, S16 + S17)
10 (S4, S4 + S6) 69 (S16, S27) u12

11 (S4 + S6, S4) 70 (S9, S20) u16

12 (S4 + S6, S5 + S7) u4 71 (S20, S9) u16

13 (S5 + S7, S4 + S6) u4 72 (S20, S20 + S22)
14 (S5 + S7, S5) 73 (S20 + S22, S20)
15 (S5, S5 + S7) 74 (S20 + S22, S22)
16 (S5, S9 + S10) u5 75 (S22, S20 + S22)
17 (S9 + S10, S5) u5 76 (1

2S23 + S21, S20 + S22) u15

18 (S9 + S10, S9) 77 (1
2S23 + S21,

1
2S23)

19 (S9, S9 + S10) 78 (1
2S23,

1
2S23 + S21)

20 (S9 + S10, S10) 79 (1
2S23 + S21, S21

21 (S10, S9 + S10) 80 (S21,
1
2S23 + S21)

22 (S9, S10) u6 81 (S21, S11) u14

23 (S10, S9) u6 82 (S11, S21) u14

24 (S9, S9 + S25) 83 (S18, S15 + S18) u11

25 (S9 + S25, S9) 84 (S16 + S17, S17) u11

26 (S9 + S25, S11 + S24) u13 85 (S18, S18 + S37) u19

27 (S11 + S24, S9 + S25) u13 86 (S18 + S37, S18) u19

28 (S11 + S24, S11) 87 (S37, S18 + S37) u19

29 (S11, S11 + S24) 88 (S18 + S37, S37) u19

30 (S11), S11 + S7 89 (S18, 2S18) u21

31 (S11 + S7, S11) 90 (2S18, S18) u21

32 (S11 + S7, S13 + S6) u17 91 (S17, S18 + S37) u19

33 (S13 + S6, S11 + S7) u17 92 (S17, S19 + S17) u21

34 (S13 + S6) 93 (S19 + S17, S17) u21

35 (S13, S13 + S6) 94 (S19 + S17, S19) u21

36 (S13, S26) u18 95 (S19, S19 + S17) u21

37 (S26, S13) u18 96 (S6, S1 + S6) u2

38 (S24, S11 + S24) u13 97 (S6, S4 + S6) u3, u4

39 (S11 + S24, S24) u13 98 (S3 + S7, S7) u2, u3, u4
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Edges ui Edges ui

40 (S9 + S25, S25) u13 99 (S5 + S7, S7) u4

41 (S25, S9 + S25) u13 100 (S7, 2S7) u20

42 (S24, S10 + S24) u7 101 (2S7, S7) u20

43 (S10 + S24, S24) u7 102 (2S7, S6 + S8) u20

44 (S25, S12 + S25) u7 103 (S6 + S8, 2S7) u20

45 (S12 + S25, S25) u7 104 (S8, S6 + S8) u20

46 (S10, S10 + S24) 105 (S19 + S17, 2S18) u21

47 (S10 + S24, S10) 106 (2S18, S19 + S17) u21

48 (S10 + S24, S12 + S25) u7 107 (S6 + S8, S8) u20

49 (S12 + S25, S10 + S24) u7 108 (S6, S6 + S8) u20

50 (S12 + S25, S12) 109 (S6 + S8, S6) u20

51 (S12, S12 + S25) 110 (S7, S11 + S7) u5, u17

52 (S12, S12 + S7) 111 (S11 + S7, S7) u5, u13, u17

53 (S12 + S7, S12) 112 (S12 + S7, S7) u5, u7, u8, u13

54 (S12 + S7, S14 + S6) u8 113 (S7, S12 + S7) u5, u7, u8

55 (S14 + S6, S12 + S7) u8 114 (S13 + S6, S6) u5, u13, u17

56 (S14 + S6, S14) 115 (S6, S13 + S6) u5, u13, u17

57 (S14, S14 + S6) 116 (S14 + S6, S6) u5, u7, u8

58 (S14, S32) 117 (S6, S14 + S6) u5, u7, u8

59 (S32, S14)
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These edges and labels are used to obtain the graph, which is the following:

Graph, used for control of the output variables
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A.6.2 Maple program for the graph theoretic approach

To determine whether a path exists between inflow and outflow the Maple
program below will be used. In the case of glycolysis in Trypanosoma brucei
the inflow is taken as glucose and the outflow as ATP. The program is
explained in Section 5.4.

> restart:

> with(networks):

> with(linalg):

> PathExists:=proc(G,v1,v2)

local i,c,C,path_exists;

path_exists:=false;

C:= components(G);

for c in C do

if member(v1, c)

and member(v2, c) then

path_exists:=true;

fi;

od;

path_exists;

end:

> TrypBruc:=proc(U)

local n,m,C,G,T:

global P,e1,e2:

e1:=1: e2:=35:

new(Gf):

addvertex({1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,

21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,

38,39,40,41,42,43,44,45,46,47,48,49,50,51,52},Gf):

addedge([[1,2],[2,1],[2,3],[3,2],[3,4],[4,5],[5,4],[5,6],

[6,5],[6,7],[7,6],[7,8],[8,9],[9,8],[9,10],[10,9],

[10,11],[11,10],[10,19],[19,10],[11,19],[19,11],

[12,11],[11,12],[12,13],[13,12],[13,14],[14,13],

[14,15],[15,14],[15,16],[16,15],[16,17],[17,16],

[17,18],[18,17],[21,13],[13,21],[12,22],[22,12],

[21,20],[20,21],[22,23],[23,22],[19,20],[20,19],

[20,23],[23,20],[23,24],[24,23],[24,25],[25,24],

[25,26],[26,25],[26,27],[27,26],[27,28],[28,27],

[28,29],[29,28],[29,30],[30,29],[30,31],[31,30],

[31,32],[32,33],[33,32],[33,34],[11,49],[49,11],

[49,48],[48,49],[47,48],[48,47],[51,48],[51,50],

163



[50,51],[51,52],[52,51],[52,14],[14,52],[40,31],

[32,41],[40,45],[45,40],[44,45],[45,44],[40,46],

[46,40],[41,45],[43,41],[41,43],[42,43],[43,42],

[35,3],[35,7],[4,36],[8,36],[37,36],[36,37],

[37,39],[39,37],[38,39],[43,46],[46,43],[39,35],

[35,39],[39,38],[15,36],[36,15],[36,25],[25,36],

[16,35],[35,16],[26,35],[35,26]],names=[edg1,edg2,

edg3,edg4,edg5,edg6,edg7,edg8,edg9,edg10,edg11,

edg12,edg13,edg14,edg15,edg16,edg17,edg18,edg19,

edg20,edg21,edg22,edg23,edg24,edg25,edg26,edg27,

edg28,edg29,edg30,edg31,edg32,edg33,edg34,edg35,

edg36,edg37,edg38,edg39,edg40,edg41,edg42,edg43,

edg44,edg45,edg46,edg47,edg48,edg49,edg50,edg51,

edg52,edg53,edg54,edg55,edg56,edg57,edg58,edg59,

edg60,edg61,edg62,edg63,edg64,edg65,edg66,edg67,

edg68,edg69,edg70,edg71,edg72,edg73,edg74,edg75,

edg76,edg77,edg78,edg79,edg80,edg81,edg82,edg83,

edg84,edg85,edg86,edg87,edg88,edg89,edg90,edg91,

edg92,edg93,edg94,edg95,edg96,edg97,edg98,edg99,

edg100,edg101,edg102,edg103,edg104,edg105,edg106,

edg107,edg108,edg109,edg110,edg111,edg112,edg113,

edg114,edg115,edg116],Gf):

G:=Gf:

if U[1]=0 then delete({edg1,edg2},G) fi:

if U[2]=0 then delete({edg5},G) fi:

if U[3]=0 then delete({edg8,edg9},G) fi:

if U[4]=0 then delete({edg12},G) fi:

if U[5]=0 then delete({edg15,edg16},G) fi:

if U[6]=0 then delete({edg21,edg22},G) fi:

if U[7]=0 then delete({edg44,edg41,edg42,edg43,edg47,

edg48},G) fi:

if U[8]=0 then delete({edg54,edg53},G) fi:

if U[9]=0 then delete({edg60,edg59},G) fi;

if U[10]=0 then delete({edg61,edg62},G) fi:

if U[11]=0 then delete({edg65,edg83,edg82},G) fi:

if U[12]=0 then delete({edg68},G) fi:

if U[13]=0 then delete({edg25,edg26,edg37,edg38,edg39,

edg40},G) fi:

if U[14]=0 then delete({edg80,edg81},G) fi:

if U[15]=0 then delete({edg75},G) fi:

if U[16]=0 then delete({edg69,edg70},G) fi:

if U[17]=0 then delete({edg31,edg32},G) fi:

if U[18]=0 then delete({edg35,edg36},G) fi:

if U[19]=0 then delete({edg90,edg87,edg86,edg85,
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edg84},G) fi:

if U[20]=0 then delete({edg107,edg106,edg103,edg108,edg102,

edg101,edg100,edg99},G) fi:

if U[21]=0 then delete({edg88,edg89,edg93,edg94,edg92,edg91,

edg105,edg104},G) fi:

if U[2]=0 or U[3]=0 or U[4]=0 or U[5]=0 or U[7]=0 or U[8]=0

then delete({edg95},G) fi:

if U[4]=0 or U[5]=0 or U[7]=0 or U[8]=0 then delete({edg96},G)

fi:

if U[5]=0 or U[13]=0 or U[17]=0 then delete({edg114,edg113,

edg109,edg110},G) fi:

if U[5]=0 or U[7]=0 or U[8]=0 then delete({edg115,edg116},G)

fi:

if U[5]=0 or U[7]=0 or U[8]=0 or U[13]=0 then delete({edg111,

edg112},G) fi:

delete({edg97,edg98},G);

T:=shortpathtree(G,1);

n:=path([e1,e2],T):

P:=PathExists(T,e1,e2):

if not P then

print(‘No path exists from glucose to ATP produce in the

glycosome.‘)

else

print(‘This is a path from glucose to ATP produce in the

glycosome‘):

print(n);

fi:

end:

> FindPath1:=proc()

local i,j,TB1,u: global k:

for i from 1 to 21 do

u:=vector([1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]);

u[i]:=0; u[17]:=0; print(u);

TB1(i):=TrypBruc(u);

if not P then k(i):=0 else k(i):=1 fi:

od:

k:=vector([k(1),k(2),k(3),k(4),k(5),k(6),k(7),k(8),k(9),

k(10),k(11),k(12),k(13),k(14),k(15),k(16),k(17),

k(18),k(19),k(20),k(21)]);

end:

> FindPath2:=proc()
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local i,j,u:

global l:

l:=k:

print(l);

for i from 1 to 21 do

for j from 1 to 21 do

u:=vector([1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]);

if not i>=j then

if k[i]=1 and k[j]=1 then u[i]:=0; u[j]:=0; u[17]:=0;

print(u); TB2(i):=TrypBruc(u);

if not P then l[i]:=0; l[j]:=0;

fi:

fi:

fi:

od:

od:

print(l);

end:

> FindPath3:=proc()

local i,j,t,u:

global g:

g:=l:

print(g);

for i from 1 to 21 do

for j from 1 to 21 do

for t from 1 to 21 do

u:=vector([1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]);

if not i>=j and not j>=t then

if g[i]=1 and g[j]=1 and g[t]=1 then

u[i]:=0; u[j]:=0;

u[t]:=0; u[17]:=0;

print(u);

TB3(i):=TrypBruc(u);

if not P then g[i]:=0; g[j]:=0; g[t]:=0;

fi:

fi:

fi:

od:

od:

od:

print(g);

end:
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> FindPath4:=proc()

local i,j,t,s,u,TB4:

global h:

h:=g:

print(h);

for i from 1 to 21 do

for j from 1 to 21 do

for t from 1 to 21 do

for s from 1 to 21 do

u:=vector([1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,

1,1,1,1]);

if not i>=j and not j>=t and not t>=s then

if l[i]=1 and l[j]=1 and l[t]=1 and l[s]=1 then

u[i]:=0; u[j]:=0; u[t]:=0; u[s]:=0; u[17]:=0;

print(u);

TB4(i):=TrypBruc(u);

if not P then h[i]:=0; h[j]:=0; h[t]:=0; h[s]:=0;

fi:

fi:

fi:

od:

od:

od:

od:

print(h);

end:
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A.6.3 Numerical determination of steady state

For the model of Trypanosoma brucei, under aerobic condition the steady
state is determined numerically for the case that u1 is equal to zero and
for the case that u4 is equal to zero. For the anaerobic case the results of
determining the steady state numerically are denoted for the case that u1

is equal to zero and for the case that u7 is equal to zero. The results are
denoted in, respectively, Table A.6.2 and Table A.6.3.

Table A.6.2: the steady state concentrations under aerobic conditions

State Steady state Steady state
variable concentration (mM) concentration (mM)

aerobic (u1 = 0) aerobic (u4 = 0)

x1 4.9995 4.9994

x2 5.000 5.000

x3 0.2446 93.0232

x4 0.0709 26.9767

x5 14.8155 0.0000

x6 0.0000 0.0000

x7 0.0000 0.0000

x8 3.9000 0.0390

x9 3.8647 0.0000

x10 0.1739 0.0000

x11 0.0001 0.0000

x12 0.0000 0.0000

x13 0.0000 0.0000

x14 0.0024 0.0024

x15 0.0030 0.0030

x16 0.0000 0.0000

x17 0.0000 0.0000

x18 0.0001 0.0000

x19 3.8999 3.8998

x20 3.8647 0.0000

x21 0.0001 0.0000

x24 3.4000 3.9650

x25 0.0000 0.0350

x28 0.0001 0.0000

x29 3.8647 0.0000

x30 0.3156 1.2000

x31 3.8722 0.0000

x32 0.0024 0.0024

x33 0.0024 0.0024

x34 0.0004 0.0004

x35 0.0057 0.0057

x36 0.0000 0.0000

x37 0.0001 0.0002
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Table A.6.3: the steady state concentrations under anaerobic conditions.

State Steady state Steady state
variable concentration (mM) concentration (mM)

anaerobic (u1 = 0) anaerobic (u7 = 0)

x1 0.0000 4.9524

x2 5.0000 5.0000

x3 0.0000 0.6673

x4 0.0000 0.1935

x5 0.8670 14.6452

x6 3.9000 0.0000

x7 0.0000 0.0045

x8 0.0000 3.8955

x9 0.5181 3.8405

x10 0.0233 0.1728

x11 4.2074 0.0154

x12 0.5463 0.0000

x13 0.0000 0.0000

x14 0.0026 0.0025

x15 0.0032 0.0032

x16 0.0000 0.0000

x17 0.0000 0.0000

x18 0.0192 0.0124

x19 3.8808 3.8875

x20 0.5181 3.8405

x21 4.2074 0.0154

x24 3.9925 3.4000

x25 0.0075 0.0000

x28 4.2074 0.0154

x29 0.5181 3.8405

x30 0.0000 0.8608

x31 0.5191 3.8479

x32 0.0026 0.0025

x33 0.0026 0.0025

x34 0.0005 0.0005

x35 0.0062 0.0061

x36 7.8000 0.0045

x37 0.0193 0.0125
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Appendix B

List of All Equations

(A.1) r1 = 106.2 0.5(x2−x1)
1+0.5x2+0.5x1+0.75x1x20.52

(A.2) r2 = 625 8.6207x610x1

(1+8.6207x6+7.9365x7)(1+10x1)

(A.3) r4 = 780 (1.2195x4)1.2(38.4615x6)
(1+(1.2195x4)1.2)(1+38.4615·x6)

(A.4) r5 = 184.5
(c5,3x5−1.19·66 2

3
·14.9254x9x10)

1+c5,3x5+14.9254x10+66 2

3
x9+c5,3·10.2041x5x10+66 2

3
·14.9254x10x9

c5,3 = 1
9·10−3(1+1.4706x6+0.6667x7+0.2703x8)

(A.5) r7 = 1470 (6.6667·2.2222x10x24−0.67·10·50x12x25)
(1+6.6667x10+10x12)(1+2.2222x24+50x25)

(A.6) r8 = 640 (20·10x12x7−0.029·0.6173·3.4483x14x6)
(1+20x12+0.6173x14)(1+10x7+3.4483x6)

(A.7) r11 = 2.6 · 103

(

x15
0.34+0.5965·x17+0.5313·x18

)2.5
(8.7719x18)

(

1+
(

x15
0.34+0.5965·x17+0.5313·x18

)2.5
)

(1+8.7719x18)

(A.8) r12 = 160 0.5102x16

1+0.5102x16

(A.10) r13 = 425 (1.1765·66.6667x9x25−0.07·0.1563·1.6667x11x24)
(1+1.1765x9+0.1563x11)(1+66.6667x25+1.6667x24)

(A.10) r15 = 368 0.5882x21

1+0.5882x21

(A.11) r17 = 200 (0.1961x118.3333x7−167x138.3333x65.2632)
(1+0.1961x11+8.3333x13)(1+8.3333x7+5.2632x6)

(A.12) r19 = 50x17

x18
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(A.13) ẋ1 = 0.1754(r1u1 − r2u2)

(A.14) ẋ30 = 4.0799(r2u2 − r4u4)

(A.15) ẋ5 = 4.0799(r4u4 − r5u5)

(A.16) ẋ31 = 0.1754(2r5u5 − r7u7 − r13u13 − r15u15)

(A.17) ẋ12 = 4.0799(r7u7 − r8u8)

(A.18) ẋ35 = 0.1754(r8u8 − r11u11)

(A.19) ẋ16 = 0.1833(r11u11 − r12u12)

(A.20) ẋ25 = 4.0799(r7u7 − r13u13)

(A.21) ẋ36 = 4.0799(−r2u2 − r4u4 + r8u8 + r17u17)

(A.22) ẋ37 = 0.1833(r11u11 − r19u19)

(A.23) 3.9 = x6 + x7 + x8

(A.24) 3.9 = x17 + x18 + x19

(A.25) 4 = x25 + x24

(A.26) 120 = (x28 + x29) (1 + 22.2558) + x3 + x4 + 2x5 + x10 + x12 + 2x6 + x7

(A.27) x28 ≡ x11 = x21

(A.28) x29 ≡ x9 = x20

(A.29) x33 ≡ x14 = x32

(A.30) x30 ≡ x3 + x4

(A.31) x31 ≡ x29(1+22.2558)+x10

(1+22.2558)
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(A.32) x35 ≡ x33(1+22.2558)+x3422.2558+x1522.2558
(1+22.2558)

(A.33) x36 ≡ 2x6 + x7

(A.34) x37 ≡ 2x17 + x18

(A.35) 0.29 = x4

x3

(A.36) 0.045 = x10

x9

(A.37) 0.187 = x34

x32

(A.38) 6.7 = x15

x34

(A.39) 0.442 = x8x6

(x7)2

(A.40) 0.442 = x19x17

(x18)2

(A.41) x3 = x30

1+0.29

(A.42) x29 = x31(1+22.2558)
1+22.2558+0.045

(A.43) x33 = x35(1+22.2558)
1+(1+0.187+0.187·6.7)22.2558

172



Appendix C

List of Abbreviations

ADP = Adenosine diphosphate
AK = Adenylate kinase
ALD = Fructose-1,6-bisphosphate aldolase
AMP = Adenosine monophosphate
ATP = Adenosine triphosphate
1,3-BPGA = 1,3-Bisphosphoglycerate
c = Cytosolic
cc = Cytosolic volume
cg = Glycosomal volume
ct = Cellular volume
DHAP = Dihydroxyacetone phosphate
en = Enzyme
ex = Extern
ENO = Enolase
Fru-1,6-BP = Fructose-1,6-biphosphate
Fru-6-P = Fructose-6-phosphate
g = Glycosomal
GA-3-P = Glyceraldehyde-3-phosphate
GAPDH = Glyceraldehyde-3-phosphate dehydrogenase
GDA = Glycerol-3-phosphate dehydrogenase
GK = Glycerol kinase
Glc-6-P = Glucose-6-phosphate
Gly-3-P = Glycerol-3-phosphate
GPO = Glycerol-3-phosphate oxidase
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HK = Hexokinase
m = Mytochondrial
NADH = Nicotinamide adenine dinucleotide
PEP = Phosphoenolpyruvate
PFK = Phosphofructokinase
3-PGA = 3-Phosphoglycerate
PGI = Glucosephosphate isomerase
PGK = Phosphoglycerate kinase
PGM = Phosphoglycerate mutase
PYK = Pyruvate kinase
R = Set of real numbers, (−∞,∞)
R+ = set of positive real numbers, {x ∈ R|x ≥ 0} = [0,∞)
Rs+ = set of strictly positive real numbers, (0,∞)
t = Total
TIM = Triosephosphate isomerase
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