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Chapter 1

Introduction

The functioning of a cell is driven by biochemical processes. For their detailed study, we
model the individual chemical reactions and integrate them into a reaction network. There
is a difference between ordinary chemistry, anorganic chemistry, and biochemical chemistry,
organic chemistry. In biochemistry the reactions are catalyzed by enzymes which are very
large molecules on which small molecules are assembled into larger ones. This makes bio-
chemistry different from ordinary chemistry.

Mathematical models of biochemical reaction networks have been investigated for many
decades. Nowadays, as the genome is known, there is a reinforced interest into mathematical
models of the biochemical reactions of the cell. The attention has been focused mainly on
the dynamic system properties of a biochemical reaction system such as investigating the
set of equilibria, the stability properties of equilibrium points, and periodic trajectories.
Accordingly, control theory of biochemical reaction networks is also gaining interest. This
introductory text is based on [12].

The objective of this thesis is to provide an introduction to the basic known facts about
the theory of biochemical reaction systems. In most cases, detailed proofs are presented.
These proofs often use a different approach than it is common in the literature. We also
extend some of the results.

After a short chapter on notations, the model of a biochemical reaction system is intro-
duced in Chapter 3. This model consist of a biochemical reaction network and of a kinetics
on it. We shall consider a continuous-time model in which the state of the system will be the
instantaneous concentrations of the chemical species included in the model. The evolution
of the species concentrations in time is governed by an ordinary differential equation. As we
shall see, the model also includes a directed graph. Several dynamic system properties are
direct consequences of certain properties of that graph. Therefore basic concepts of graph
theory such as the incidence matrix and circulations are useful to introduce. Hence, Chap-
ter 4 will serve as a detailed summary on the needed notions of graph theory. It is more
convenient to discuss properties of biochemical reaction systems by using the terminology
of graph theory.

As we shall see, an integer number can be associated to each reaction network. This
number is called the deficiency of the network. As it will turn out, the deficiency has an
important role in the dynamic behaviour of a reaction system. For instance, in case of a spe-
cial kind of kinetics, if the deficiency is zero then the set of equilibria has a nice structure.
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Namely, each positive stoichiometric class contains exactly one interior equilibrium point.
Moreover, in this case, asymptotic stability of equilibrium points relative to stoichiometric
classes can also be proven. It turns out that the existence and uniqueness of interior equi-
librium points in positive stoichiometric classes can be extended to a considerable wider
class of systems. At the same time, the stability property does not remain valid. Chapter 5
therefore deals with the notion of deficiency. We present three definitions for the deficiency
of a reaction network and we show that those three notions coincide. It is depending on the
situation which definition of these three is the most convenient to use.

One can be interested in the long term behaviour of a biochemical reaction system.
Chapter 6 summarizes the basic known facts about it. From Section 6.1 till Section 6.3 we
deal with forward invariant sets for the differential equation that governs the evolution of
the system in time. In Section 6.4 and Section 6.5 we examine the set of equilibria for that
differential equation. The latter section contains a construction of a new system from the
original one. The connection between these two systems allows us to reduce questions about
the set of boundary equilibria to the investigation of the set of interior equilibria. Then we
investigate stability properties of equilibrium points and also convergence of solutions of
the above mentioned differential equation in Section 6.6. We conclude Chapter 6 by a short
section on periodic solutions.

Chapter 7 serves as a brief summary on the contributions of this thesis to the theory of
biochemical reaction systems. We also mention possible directions of further research.
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Chapter 2

Notations

In this chapter we introduce notations, which are then used throughout the thesis.
Denote by Z the set of integers. Let p, q ∈ Z. Define the set p, q by

p, q = {k ∈ Z | p ≤ k ≤ q}.

Denote by R the set of the real numbers. We refer to R+ = {x ∈ R | x > 0} as the set of
positive real numbers and to R≥0 = {x ∈ R | x ≥ 0} as the set of nonnegative real numbers.

Let n be a positive integer. Then the functional 〈·, ·〉 : Rn×Rn → R is the scalar product
defined by

〈x, y〉 =
n∑

s=1

xsys for x, y ∈ Rn.

Orthogonality in this thesis is always understood with respect to this scalar product. Let
|x| =

√
〈x, x〉 for x ∈ Rn. Define the positive orthant Rn

+ and the nonnegative orthant Rn
≥0

by

Rn
+ = {x ∈ Rn | xs ∈ R+ for all s ∈ 1, n} and

Rn
≥0 = {x ∈ Rn | xs ∈ R≥0 for all s ∈ 1, n}.

Note that if the topology on Rn is defined by the above scalar product then Rn
≥0 is closed

and its interior is Rn
+. Denote by Rn

0 the boundary of Rn
≥0. Note that

Rn
0 = Rn

≥0\Rn
+ = {x ∈ Rn

≥0 | there exists s ∈ 1, n such that xs = 0}.

Clearly, Rn
≥0 is the disjoint union of Rn

+ and Rn
0 .

Define the distance between x ∈ Rn and H ⊆ Rn by

dist(x, H) = inf{|x− h| | h ∈ H}.

If A is any matrix then Ai,·, A·,j , and Ai,j denote the ith row, the jth column, and the
(i, j)th element of A, respectively.

The function sgn : R → {−1, 0, 1} is the sign function (sgn(x) = 1 for x > 0, sgn(x) = −1

for x < 0, and sgn(0) = 0).
The empty sum is always defined to be zero.
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Chapter 3

Biochemical reaction systems

In this chapter we introduce the concept of a biochemical reaction system. Properties of
such systems are then investigated in the subsequent chapters.

3.1 Purposes of the modelling of a biochemical reaction

system

This section is based on [12]. A mathematical model of the dynamic behaviour of the chemical
species in a cell is needed. The purposes of the model are to evaluate the behaviour of the
chemical reaction network; to determine the dynamic system properties of networks such
as the existence of an equilibrium point, the uniqueness or the multiplicity of equilibrium
points, local or global asymptotic stability of equilibrium points, periodic trajectories; and
to analyse control of such networks for rational drug design or for biotechnology. The subject
of this thesis is to investigate these properties, except the control theoretical aspects, which
are not discussed here.

The exposition of Section 3.2 and Section 3.3 is based on the formalism developed by M.
Feinberg, F.J.M. Horn, and R. Jackson [5, 6, 7] and follows quite closely the paper of M.
Feinberg, [5].

3.2 Biochemical reaction networks

Before we introduce biochemical reaction networks, we need to introduce several related
notions and terminology.

Consider chemical species also referred to as chemical substances of chemical compounds.
We shall refer to chemical species as species. Let A be a nonempty finite set of species. Let
n = |A|. Denote the elements of A by the symbols A1, . . . , An.

We shall use the notations A = {A1, . . . , An} and 1, n = {1, . . . , n} interchangeably.
Accordingly, the notation s ∈ A is also used, where s ∈ 1, n.

A chemical complex or complex consists of species. More precisely, one can specify a
complex by associating nonnegative integer numbers to each species. Those numbers are
then called the stoichiometric coefficients. In other words, a complex can be specified by
an n-tuple (p1, . . . , pn), where ps is a nonnegative integer for all s ∈ 1, n. One can then
refer to a complex as p1A1 + · · · + pnAn. However, we do not display those species in this
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notation, for which the stoichiometric coefficient is zero. For example, if n = 3 then the
complex associated to the triple (3, 2, 0) is 3A1 + 2A2. The complex associated to (0, . . . , 0)

is called the zero complex. One can refer to the zero complex by the symbol 0. The practical
utility of allowing the zero complex in the model is described in [5]. The set of complexes
is denoted by C, which is assumed to be a nonempty finite set. Denote by c the number of
complexes. The complexes are denoted by the symbols C1, . . . , Cc. One can use the notation
Ci = p1A1 + · · ·+pnAn (i ∈ 1, c). In this case we shall say that the stoichiometric coefficient
of the species As in complex Ci is ps (s ∈ 1, n).

We shall use the notations C = {C1, . . . , Cc} and 1, c = {1, . . . , c} interchangeably. Ac-
cordingly, the notation i ∈ C is also used, where i ∈ 1, c.

We assume that if i and j are distinct elements of the set 1, c then there exists s ∈ 1, n

such that the stoichiometric coefficient of species As in Ci and in Cj are not the same.
Roughly speaking, it means that complexes are listed only once.

To define reaction networks, another object is needed. An ordered pair of complexes is
called a reaction. If (Ci, Cj) is a reaction for some i, j ∈ 1, c then we say that complex Ci

reacts to become Cj . In this case, Ci and Cj are called the reactant and the product of
the reaction (Ci, Cj), respectively. The set of reactions is denoted by R and assumed to be
nonempty. The number of reactions is denoted by m. We also assume that if i ∈ 1, c then
(Ci, Ci) /∈ R. So

∅ 6= R ⊆ (C × C)\{(Ci, Ci) ∈ C × C | i ∈ 1, c}.

We also assume that for every Ci ∈ C there exists Cj ∈ C such that at least one of the
ordered pairs (Ci, Cj) and (Cj , Ci) is an element of R. This means that if a complex is not
involved in any of the reactions then that complex is not part of the model.

We often write (i, j) instead of (Ci, Cj).
We are now in the position to define what we mean by a biochemical reaction network.

Definition 3.2.1 A biochemical reaction network is a triple (A, C,R) of three nonempty
finite sets, where A is the set of species, C is the set of complexes, and R is the set of
reactions as described above.

By reaction network and network we always mean biochemical reaction network.
An example for reaction network follows.

Example 3.2.2 Let the set of species be A = {A1, . . . , A8}. Let the set of complexes be
C = {C1, . . . , C7}, where

C1 = A1 + A2, C2 = A3, C3 = A4 + A5, C4 = A6,

C5 = 2A1, C6 = A2 + A7, and C7 = A8.

For instance, the notation C6 = A2 + A7 means that the stoichiometric coefficient of both
species A2 and A7 in complex C6 is 1. The stoichiometric coefficients of other species in
complex C6 are zero. As another instance, the stoichiometric coefficient of species A1 in
complex C5 is 2, while stoichiometric coefficient in complex C5 is 0 for the other species. Let
the set of reactions be

R =

{
(C1, C2), (C2, C1), (C2, C3), (C3, C4), (C4, C3),

(C5, C6), (C6, C7), (C7, C6), (C7, C5)

}
. (3.1)
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Note that n = 8, c = 7, and m = 9 in this example. �

Reaction networks can be visualized using reaction schemes. One can represent complexes
in a figure and indicate reactions by arrows. As an example, the reaction scheme of the
reaction network in Example 3.2.2 is displayed in Figure 3.1.

A1 + A2
-� A3

- A4 + A5
-� A6

2A1
- A2 + A7

A8
@@I

��	���

Figure 3.1: Scheme of the reaction network in Example 3.2.2

A convenient way to specify the set of complexes is to provide an n × c matrix whose
entries are nonnegative integers. Denote this matrix by B. The matrix B ∈ Rn×c is called
the matrix of complexes. Using the introduced terminology, Bs,i is then the stoichiometric
coefficient of species As in complex Ci (s ∈ 1, n, i ∈ 1, c). The fact that complexes are listed
only once can be expressed in terms of the B matrix by requiring that if i, j ∈ 1, c and i 6= j

then B·,i 6= B·,j . We remark that if the zero complex is involved in the network then one of
the columns of B has only zero entries.

The matrix of complexes for Example 3.2.2 is

B =



1 0 0 0 2 0 0

1 0 0 0 0 1 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1


∈ R8×7.

Sometimes the assumption that no row of B vanishes is made for convenience [10]. This
would mean that if a certain species is not involved in any of the complexes then that species
is not considered to be part of the model. However, we do not make this assumption in this
thesis.

The notations and terminology introduced in this section are used throughout the thesis.

3.3 Biochemical reaction systems

The notion of biochemical reaction networks was defined in the previous section. However,
it was not discussed how exactly the complexes become other complexes. In other words,
the dynamic evolution was not yet investigated.

Consider a biochemical reaction network (A, C,R). Let us represent by the vector x ∈
Rn
≥0 the concentrations of the species in a biochemical reaction network. The sth coordinate

of x, xs, represents the concentration of the species As (s ∈ 1, n). A continuous-time model
will be considered, where the species concentrations are changing in accordance with a

7



differential equation. We are interested in the evolution of the species concentrations in time.
A vector x ∈ Rn denotes then the state of the biochemical reaction system. Accordingly, the
linear space Rn is called the state space of the biochemical reaction system. Note however
that we are always interested in nonnegative states, because the coordinates of the vector
x are representing species concentrations. The notion of a biochemical reaction system is
defined below.

It will be useful to introduce the following notation. Let x ∈ Rn. Denote by supp(x) the
set

supp(x) = {s ∈ 1, n | xs 6= 0}.

Recall that B ∈ Rn×c is the matrix of complexes.

Definition 3.3.1 Let (A, C,R) be a biochemical reaction network. Let (i, j) ∈ R. A locally
Lipschitz continuous function R(i,j) : Rn → R is called a rate function of the reaction (i, j)

if the properties

R(i,j)(x) ≥ 0 and (3.2)

R(i,j)(x) > 0 if and only if supp(B·,i) ⊆ supp(x) (3.3)

hold for all x ∈ Rn
≥0. The value R(i,j)(x) of R(i,j) at x ∈ Rn

≥0 is called the reaction rate of
reaction (i, j) at x.

An example of a rate function is the following. Let (i, j) ∈ R. Define the function
R(i,j) : Rn → R by

R(i,j)(x) = κ(i,j)|x1|B1,i |x2|B2,i · · · |xn|Bn,i = κ(i,j)

n∏
s=1

|xs|Bs,i (3.4)

for x ∈ Rn, where κ(i,j) > 0. The positive number κ(i,j) is called the rate constant of the
reaction (i, j). The power z0 is considered to be 1 for all z ≥ 0. One can easily check that the
above defined function is indeed a rate function in the sense of Definition 3.3.1. The local
Lipschitz continuity is guaranteed by the fact that the entries of B are nonnegative integers.

We are now in the position to introduce the notion of a biochemical reaction system.
Recall that m denotes the number of reactions.

Definition 3.3.2 Let (A, C,R) be a biochemical reaction network. Let R : Rn → Rm be
any function. Assume that the coordinate functions of R are indexed by the set of reactions.
The quadruple (A, C,R, R) is called a biochemical reaction system if R(i,j) : Rn → R is a
rate function of the reaction (i, j) in the sense of Definition 3.3.1 for all (i, j) ∈ R.

By reaction system and system we always mean a biochemical reaction system.
A reaction systems is called a mass action system if the coordinates of R are defined by

(3.4).
We introduce now the differential equation that governs the evolution of species con-

centrations in time, in other words we introduce the kinetics of a biochemical reaction system.
We remark at this point that if one understands a differential equation automatically to be
a scalar one then the precise terminology in our case would be to speak about system of
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differential equations. However, we shall use the term differential equation even when it is
not a scalar one, but a system of scalar differential equations.

Consider a reaction system (A, C,R, R). Recall that B ∈ Rn×c is the matrix of complexes.
We shall consider a model in which the species concentrations are evolving in accordance
with the autonomous differential equation

ẋ = f(x) =
∑

(i,j)∈R

R(i,j)(x)(B·,j −B·,i) (3.5)

with state space Rn. Note that f : Rn → Rn in (3.5) is locally Lipschitz continuous. This is
guaranteed by the fact that a rate function is assumed to be locally Lipschitz continuous.
Hence, for all t0 ∈ R and for all ξ ∈ Rn there exists a maximal open interval J(t0, ξ) ⊆ R
containing t0 and there exists a unique differentiable function φ(·; t0, ξ) : J(t0, ξ) → Rn,
which satisfies

φ̇(·; t0, ξ) = f(φ(·; t0, ξ)), φ(t0; t0, ξ) = ξ.

Because (3.5) is autonomous, one can assume without loss of generality that the initial
time t0 is 0. Hence, let t0 = 0 from now on. Denote by J(ξ) the interval J(0, ξ). For the
sake of convenience, denote by J+(ξ) and by J≥0(ξ) the intervals J(ξ)∩R+ and J(ξ)∩R≥0,
respectively. Similarly, let us denote by φ(·; ξ) the function φ(·; 0, ξ).

As the introduced differential equation describes the evolution of species concentrations,
we are always interested in solutions with initial value in the nonnegative orthant. We shall
show in Section 6.1 that no solution starting from ξ ∈ Rn

≥0 can leave the nonnegative
orthant. This means that the mathematical model of a biochemical reaction system satisfies
the qualitative property that no species concentration can become negative.

We now give a short explanation on the assumptions imposed on the rate functions. Let
(i, j) ∈ R. The local Lipschitz continuity is made to guarantee the existence and uniqueness
of the solution of (3.5) for every initial value. Further conditions are imposed on the re-
striction of the rate function R(i,j) to the nonnegative orthant Rn

≥0. The function R(i,j)|Rn
≥0

describes how the instantaneous occurrence of reaction (i, j) depends on the instantaneous
concentrations. This explains why the values are assumed to be nonnegative. Condition (3.3)
expresses that the occurrence of reaction (i, j) is positive if and only if all the ingredient
species of the reactant complex Ci are actually present in the system (i.e. their concentra-
tions are positive). Conditions (3.2) and (3.3) are the ones that are imposed on the rate
functions in [5]. It is stated in [5] that for particular purposes one should consider a different
class of rate functions. Rather, these conditions are regarded as the natural ones that are
likely to be respected by a wide variety of kinetic models.

We provide now further explanation on the differential equation (3.5). Let s ∈ 1, n.
Consider the sth equation in (3.5):

ẋs = fs(x) =
∑

(i,j)∈R

R(i,j)(x)(Bs,j −Bs,i), (3.6)

for x ∈ Rn. The subindex of f indicates the corresponding coordinate function. Thus ẋs

equals to the weighted sum of the reaction rates at x over the set of reactions. The weight
for (i, j) ∈ R is the difference between the stoichiometric coefficients of As in the product
complex Cj and in the reactant complex Ci. Suppose now that R(i,j)(x) > 0 for some
x ∈ Rn

≥0. Then the sign of R(i,j)(x)(Bs,j −Bs,i) equals to the sign of Bs,j −Bs,i. Therefore
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the concentration of the species As in that individual reaction increases, decreases, or does
not change, respectively to the sign of Bs,j −Bs,i.

Another form of (3.5) is useful to introduce. Recall that m denotes the number of elements
of the set of reactions R and the coordinate functions of the function R : Rn → Rm are
indexed by the reactions. Let q : R → 1,m be a bijection. Define S ∈ Rn×m by

S·,k = B·,j −B·,i

for k ∈ 1,m, where q(i, j) = k. The matrix S is called the stoichiometric matrix. Denote
the range of S by S. The linear space S is called the stoichiometric subspace. If we label the
reactions in Example 3.2.2 according to (3.1) then the stoichiometric matrix S ∈ R8×9 in
that example is

S =



−1 1 0 0 0 −2 0 0 2

−1 1 0 0 0 1 −1 1 0

1 −1 −1 0 0 0 0 0 0

0 0 1 −1 1 0 0 0 0

0 0 1 −1 1 0 0 0 0

0 0 0 1 −1 0 0 0 0

0 0 0 0 0 1 −1 1 0

0 0 0 0 0 0 1 −1 −1


.

One can now easily see that (3.5) can be written equivalently in the form

ẋ = S ·R(x). (3.7)

We remark that (3.7) allows us to reduce the dimension of the state space of the reaction
system. Assume that the s∗th row of S is a linear combination of the other rows of S for
some s∗ ∈ 1, n:

Ss∗,· =
∑

s∈1,n\{s∗}

αsSs,·,

where αs ∈ R for s ∈ 1, n\{s∗}. Let ξ ∈ Rn be the initial value of (3.7). Then

ẋs∗ =
∑

s∈1,n\{s∗}

αsẋs

and hence there exists d ∈ R such that

φs∗(t; ξ)−
∑

s∈1,n\{s∗}

αsφs(t; ξ) = d

for all t ∈ J(ξ), where the subindex of φ indicates the corresponding coordinate function.
The constant d equals to

φs∗(0; ξ)−
∑

s∈1,n\{s∗}

αsφs(0; ξ) = ξs∗ −
∑

s∈1,n\{s∗}

αsξs.

After one has the constant d, it is possible to write for s ∈ 1, n\{s∗}

ẋs = fs

x1, . . . , xs∗−1,

d +
∑

s∈1,n\{s∗}

αsxs

 , xs∗+1, . . . , xn

 .
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A new differential equation with state space Rn−1 can thus be obtained. Clearly, if one has
established certain dynamic system properties of the new differential equation then direct
consequences for the original system can also be derived. Using this procedure successively,
one can reduce the dimension of the state space of the system to rank S. However, we will
not consider this reduction in this thesis, we shall examine the differential equation in its
original form.

We conclude this section by introducing another equivalent form of (3.5) in case of mass
action systems. This form is then not used later in this thesis, but it is worth to mention
that one can also investigate dynamic system properties using this new form. This way is
followed in [10].

Recall that the rate functions are defined by (3.4) in case of a mass action system. Note
that for mass action systems the rate functions R(i,j1) and R(i,j2) differ only in the constants
κ(i,j1) and κ(i,j2) ((i, j1), (i, j2) ∈ R). In other words, if two reactions have the same reactant
complex then the rate functions corresponding to those reactions satisfy the equality

1
κ(i,j1)

R(i,j1) =
1

κ(i,j2)
R(i,j2).

Define the diagonal matrix G̃ ∈ Rc×c by

G̃i,i =
∑

(i′,j′)∈R
i′=i

κ(i′,j′)

for i ∈ 1, c. Define G ∈ Rc×c by

Gi,j =

{
κ(j,i), if (j, i) ∈ R,

0, if (j, i) /∈ R

for i, j ∈ 1, c. Define the function ΘB : Rn → Rc
≥0 by

ΘB(x) =


∏n

s=1 |xs|Bs,1

...∏n
s=1 |xs|Bs,c


for x ∈ Rn. It is easy to see that in case of mass action systems, S ·R(x) = B ·(G−G̃)·ΘB(x).
Hence, one can reformulate (3.5) as

ẋ = B · (G− G̃) ·ΘB(x). (3.8)

Let i, j ∈ 1, c such that i 6= j. Then (G− G̃)i,j 6= 0 if and only if (j, i) ∈ R. We remark
that one can define irreducibility of a square matrix in several equivalent ways. It turns
out that G− G̃ is irreducible if and only if the directed graph (C,R) is strongly connected.
Directed graphs and related notions are discussed in Chapter 4. However, we do not discuss
in more detail irreducibility, because we will not use (3.8) later.
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Chapter 4

Preliminaries on graphs

In Chapter 3 the notion of biochemical reaction network is introduced. It is natural to
associate a directed graph to a biochemical reaction network. First we introduce the notion
of a directed graph and explain how can one relate a directed graph to a biochemical reaction
network. This graph will be called the graph of complexes.

In this chapter we introduce some well known concepts of graph theory. General reference
for these concepts is [9]. The terminology and results of this chapter are then applied to the
graph of complexes in the subsequent chapters.

4.1 Directed graphs

In this section we introduce the notion of directed graphs and also related notions to it. All
the definitions in this section are well known, they are collected here for the sake of complete-
ness. The definitions however are adjusted to the situation we have in case of biochemical
reaction networks. For instance, we do not consider infinite graphs.

Let V be a nonempty finite set with c elements. Let A be a nonempty family of ordered
pairs from V . Then the ordered pair D = (V,A) is called a directed graph, or digraph. The
set V is called the set of vertices of D and the family A is called the family of arcs of D.
The term family is used to indicate that the same pair of vertices may occur several times
in A. A pair occurring more than once is called a multiple arc. An arc of the form (i, i) is
called a loop (i ∈ V ). A directed graph is said to be simple if A does not contain any loop
or multiple arc.

In this thesis the term graph always refers to a directed graph.

Recall that the nonempty finite set C denotes the set of complexes of a biochemical
reaction network. Recall also that R denotes the set of reactions. The ordered pair (C,R)

is a directed graph in the sense of the above definition. This graph is called the graph of
complexes. Note that (C,R) is a simple directed graph. The terminology and results of this
chapter are applied to the graph of complexes. Hence, a directed graph in this chapter is
automatically understood to be a simple one. In case of simple graphs, one does not have
to use the term family. We shall always call A to be the set of arcs.

Let (V,A) be a directed graph. Let (i, j) ∈ A. Then i ∈ V is called the tail of the arc
(i, j) and j ∈ V is called the head of the arc (i, j).

Directed graphs are often visualized in figures. One can represent vertices by points and
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indicate arcs by arrows. The arrows are pointing from the tail of the arc to the head of the
arc. For reaction networks, these figures are called reaction schemes. For instance, the graph
of complexes for Example 3.2.2 is displayed in Figure 3.1.

In terms of graphs, that each complex of a reaction network is involved in at least one
reaction of the biochemical reaction network means that for all vertices there exists an arc
for which that vertex is the head or the tail. We also assume from now on that all the
considered graphs have this property.

Further terminology follows.

Definition 4.1.1 Let D = (V,A) be a directed graph. Let l ≥ 0, i0, i1, . . . , il ∈ V , and
a1, . . . , al ∈ A. Then P = (i0, a1, i1, . . . , al, il) is called a directed walk between i0 and il if
ak = (ik−1, ik) for all k ∈ 1, l. A directed walk between i0 and il is called a directed path if
i0, i1, . . . , il are all distinct. A directed walk between i0 and il is called a directed circuit if
i0 = il, l ≥ 1, and i1, . . . , il are all distinct.

Definition 4.1.2 Let D = (V,A) be a directed graph. Let l ≥ 0, i0, i1, . . . , il ∈ V , and
a1, . . . , al ∈ A. Then P = (i0, a1, i1, . . . , al, il) is called an undirected walk between i0 and
il if ak = (ik−1, ik) or ak = (ik, ik−1) for all k ∈ 1, l. The arcs ak with ak = (ik−1, ik) are
called the forward arcs of P and the arcs ak with ak = (ik, ik−1) are called the backward
arcs of P (k ∈ 1, l). An undirected walk between i0 and il is called an undirected path if
i0, i1, . . . , il are all distinct. An undirected walk between i0 and il is called an undirected
circuit if i0 = il, l ≥ 1, and i1, . . . , il are all distinct.

Definition 4.1.3 Let D = (V,A) be a directed graph. The directed graph D′ = (V ′, A′)

is called a subgraph of D if V ′ ⊆ V and A′ ⊆ A. If V ′ = V then D′ is called a spanning
subgraph of D.

Definition 4.1.4 Let D = (V,A) be a directed graph. Then D is called connected if for all
i, j ∈ V there exists an undirected path between i and j. The directed graph D is called
strongly connected if for all i, j ∈ V there exists a directed path between i and j. A maximal
connected subgraph of D is called a connected component, or just a component, of D.

The term maximal in the above definition is taken with respect to taking subgraphs.

We remark that sometimes the terms weakly connected and weakly connected component
are used instead of connected and connected component, respectively. However, we avoid
these terms, because in Chapter 6 we introduce the notion of a weakly reversible reaction
network, which is defined in [5]. As we shall see, it would be misleading to use the terms
weakly connected and weakly connected component when speaking about biochemical reac-
tion networks.

It shall turn out later that the directed graphs, which have the property that all of its
components are strongly connected are especially interesting in the study of biochemical
reaction systems.

Definition 4.1.5 A directed graph is called a directed forest if there is no undirected circuit
in it. A connected directed forest is called a directed tree.
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4.2 The incidence matrix

The aim of this section is to introduce the notion of incidence matrix of a directed graph.
The main results of this section are two proposition about the rank and the range of an
incidence matrix. These propositions are then applied in Chapter 5.

Even though the content of this section is well known, we present also the proofs of the
statements, because the reader of this thesis may not be familiar with graph theory.

Let us start with the definition of the incidence matrix. Let D = (V,A) be a directed
graph. Consider V to be the set 1, c for some positive integer c. Denote by m the number of
elements of A. Let q : A → 1,m be a bijection.

Definition 4.2.1 Let us define the incidence matrix I ∈ Rc×m of the directed graph D =

(V,A) by

Ii,k =


−1, if q−1(k) = (i, j) for some j ∈ V ,
+1, if q−1(k) = (j, i) for some j ∈ V ,
0, otherwise,

where i ∈ 1, c and k ∈ 1,m.

The following proposition contains the main observation that will be applied in the
proposition that establishes the rank of the incidence matrix.

Proposition 4.2.2 Let I be the incidence matrix of the directed graph D = (V,A). Then
the columns of I are linearly dependent if and only if the graph contains an undirected
circuit.

Proof Suppose that the graph contains an undirected circuit. Consider a linear combination
of the columns of the incidence matrix corresponding to this undirected circuit, where the
coefficients are 1 and −1 depending on whether the arc is a forward or a backward one of
that undirected circuit. Clearly, the result is the zero vector in Rc, hence, the columns of I

are linearly dependent.
To show the converse direction, assume that the columns of I are linearly dependent. Let

us choose a nonempty linearly dependent subset of the columns (i.e. a subset of the arcs)
such that all its nonempty proper subsets consists of linearly independent vectors. Consider
a nontrivial linear combination of the chosen vectors, which results the zero vector. By the
above property, all the coefficients are nonzero. Consider the vertices, which are tails or
heads of at least one chosen arc. Then there exist at least two of chosen arcs for which these
vertices are heads or tails (by the nonzero coefficients). One can then easily construct an
undirected circuit. �

Denote by ` the number of connected components of D.

Proposition 4.2.3 Let I be the incidence matrix of the directed graph D = (V,A). Then
rank I = c− `.

Proof Pick any linearly independent subset of the columns of the incidence matrix such
that adding any other column to that subset yields in a set of linearly dependent vectors.
The rank of the incidence matrix equals to the cardinality of such a set. By Proposition
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4.2.2, we get linearly independent columns of the incidence matrix exactly when we choose
columns for which the corresponding subgraph of (V,A) does not contain any undirected
circuit (i.e. it is a directed forest). Thus, to choose maximal number of linearly independent
columns is exactly to choose a directed forest, which is maximal among the directed trees,
which are spanning subgraphs of D. Clearly, the number of vertices and the number of
connected components of this chosen directed tree are the same as in D. This concludes the
proof, because the number of arcs in a directed forest equals to the number of vertices minus
the number of connected components. �

Due to the above proposition, rank I = c− `. It is also possible to completely determine
the range of I. There is a natural way of enumerating the vertices and arcs. Let us assume
that D = (V,A) has ` connected components: D1 = (V1, A1), D2 = (V2, A2), . . . , D` =

(V`, A`). Then V is the disjoint union of the sets V1, V2, . . . , V` and A is the disjoint union of
the sets A1, A2, . . . , A`. Let cr = |Vr| and mr = |Ar| (r ∈ 1, `). Let us enumerate the vertices
and arcs according to these partitions and let us denote by Ir ∈ Rcr×mr the incidence matrix
of Dr = (Vr, Ar) (r ∈ 1, `). Then the incidence matrix I has the following block diagonal
form:

I =


I1 0 · · · 0

0 I2 · · · 0
...

...
. . .

...
0 0 · · · I`

 ∈ R(
∑

cr)×(
∑

mr).

We also write the incidence matrix I in the following form:

I = [I1, I2, . . . , I`],

where Ir ∈ Rc×mr (r ∈ 1, `).
It can be seen from these forms of the incidence matrix that

ran I = ran I1 ⊕ ran I2 ⊕ · · · ⊕ ran I`,

where ran denotes the range of a matrix and the symbol ⊕ denotes direct sum. One can see
from these observations that it is enough to determine the range of the incidence matrix for
a connected graph. If Dr = (Vr, Ar) is connected then rank Ir = cr − 1 due to Proposition
4.2.3 (r ∈ 1, `). The sum of the rows of the incidence matrix Ir is the zero vector in Rmr ,
because all the columns contains an entry 1, an entry -1, and the other entries are zeros. This
means that ran Ir is a linear subspace of the linear space {v ∈ Rcr : v1 + v2 + · · ·+ vcr

= 0}
(r ∈ 1, `). But the dimensions of these two linear spaces are equal, thus these linear spaces
must be equal. Thus, we have proven the following proposition:

Proposition 4.2.4 The range of the incidence matrix I is

{v ∈ Rc | vNr+1 + vNr+2 + · · ·+ vNr+cr = 0 for all r ∈ 1, `},

where Nr =
∑r−1

i=1 ci (r ∈ 1, `).

4.3 Circulations

In this section we introduce the notion of a circulation on a directed graph. As it turns out in
the subsequent chapters, this is a useful tool for examining some dynamic system properties
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of biochemical reaction systems. The notion of a circulation is standard in graph theory (see
e.g. [9]).

Let D = (V,A) be a directed graph and T ⊆ V . Let us define the sets Aδ(T ) and A%(T )

by

Aδ(T ) = {(i, j) ∈ A | i ∈ T, j ∈ V \T} and

A%(T ) = {(i, j) ∈ A | i ∈ V \T, j ∈ T}.

In words, an arc in Aδ(T ) has its tail in T and its head in V \T . Similarly, an arc in A%(T )

has its tail in V \T and its head in V . Clearly, Aδ(T ) = A%(V \T ) and A%(T ) = Aδ(V \T ).
Let y : A → R be a function. Using the above notations, define δy(T ) and %y(T ) by

δy(T ) =
∑

(i,j)∈Aδ(T )

y(i, j) and

%y(T ) =
∑

(i,j)∈A%(T )

y(i, j).

Clearly, δy(T ) = %y(V \T ) and %y(T ) = δy(V \T ).
The symbol δ will have a different meaning in the subsequent chapters. This will not

cause ambiguity, because notations of this section that are containing the symbol δ are not
used in those chapters.

Definition 4.3.1 Let D = (V,A) be a directed graph. A function y : A → R is called a
circulation if δy({i}) = %y({i}) for all i ∈ V .

The requirement in the definition is called the conservation rule. Clearly, we have an
equivalent definition for circulation if we require that δy(T ) = %y(T ) for all T ⊆ V . An
example of a circulation can be found in Figure 4.1.
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Figure 4.1: Example of a circulation

An important observation is the following proposition. Recall that I denotes the incidence
matrix of D = (V,A) and q : A → 1,m is a bijection.

Proposition 4.3.2 Let D = (V,A) be a directed graph. Let y : A → R be any function.
Let us define the vector y ∈ Rm by y

k
= y(q−1(k)) for k ∈ 1,m. Then y is a circulation if

and only if y ∈ ker I.

Proof The statement is clear from the definitions of the incidence matrix and of a circu-
lation. �

As we shall see in the subsequent chapters, when examining equilibrium points of bio-
chemical reaction systems, ker I is of interest. Hence, the above observation about the con-
nection between the kernel of the incidence matrix and circulations on a directed graph
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allows us to use tools of graph theory when investigating the set of equilibria for a biochem-
ical reaction system. For this purpose, we work out statements about circulations.

For biochemical reaction systems, the elements of ker I for which all entries are positive
are the most interesting. Let us call a circulation to be a positive circulation if y(i, j) > 0

for all (i, j) ∈ A. Clearly, if y is defined by y(i, j) = 0 for (i, j) ∈ A then y is a circulation.
Call this circulation the zero circulation. Any other circulation than the zero circulation is
called nonzero circulation.

Theorem 4.3.3 Let D = (V,A) be a directed graph. Then there exists a positive circulation
on D if and only if all the components of D are strongly connected.

Proof Assume that there exists a positive circulation y : A → R+ on D. Let D′ = (V ′, A′)

be a connected component of D, which is not strongly connected. Then there exist ∅ 6= T ⊆
V ′ such that Aδ(T ) = ∅ and A%(T ) 6= ∅. Then, by the positivity of y, 0 = δy(T ) = %y(T ) > 0,
contradiction. Hence, all the components of D must be strongly connected.

Assume now that all of the components of D are strongly connected. We shall show a
construction of a positive circulation y. If P = (i0, a1, i1, . . . , al, il) is a directed circuit then
let us define yP : A → R by

yP (i, j) =

{
1, if (i, j) = ak for some k ∈ 1, l,
0, otherwise

for (i, j) ∈ A. Clearly, yP is a circulation. Since ker I is a linear space, linear combination of
circulations is a circulation due to Proposition 4.3.2. We assumed that all the components of
D are strongly connected. This means that for each (i, j) ∈ A there exists a directed circuit
through (i, j). Choose a set of directed circuits such that each (i, j) ∈ A is covered by at
least one of the chosen directed circuits. For each directed circuit we define a circulation as
it was shown for P . Sum these circulations and the resulting circulation is clearly a positive
circulation. �

The preceding theorem tells us what property of a graph is equivalent to the existence
of a positive circulation on it. Another question is also arising when biochemical reaction
systems are examined. Which property of a graph can guarantee that there exists a positive
circulation y for which y(i, j1) = y(i, j2) holds for all (i, j1), (i, j2) ∈ A? In words, if two
arcs have common tail then the value of y on those arcs must be equal. It turns out that if
a positive circulation exists then a positive circulation with the above property also exists.
We shall show that this claim holds, moreover, a little more is also true.

Let us start with a well known proposition of linear algebra.

Proposition 4.3.4 If u, v ∈ Rm
+ are linearly independent vectors then the linear subspace

of Rm generated by u and v contains vectors with both positive and negative coordinates.

Proof Let us define the function g : R → Rm by g(λ) = v − λu for λ ∈ R. Let λ1 =

min{ vk

uk
| k ∈ 1,m} and λ2 = max{ vk

uk
| k ∈ 1,m}. The imposed requirements on u and v

ensure that 0 < λ1 < λ2 < ∞. For any λ ∈ (λ1, λ2), g(λ) is in the linear subspace generated
by u and v, and has both positive and negative coordinates. �

It is not known to the author of this thesis whether the implication of Theorem 4.3.5 is
known or not.
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Let y : A → R be any function. If α ∈ R then define αy : A → R by (αy)(i, j) = α ·y(i, j)

for (i, j) ∈ A.

Theorem 4.3.5 Let us assume that D = (V,A) is a strongly connected graph. Let κ : A →
R+ be a given function. Then there exists a positive circulation y : A → R such that

y(i, j1)
κ(i, j1)

=
y(i, j2)
κ(i, j2)

(4.1)

for all (i, j1), (i, j2) ∈ A. Moreover, if y : A → R is such a circulation then the set

{αy : A → R | α ∈ R+}

gives all the circulations with the above property.

Proof Note that A 6= ∅ and the strong connectivity of D implies that for all i ∈ V there
exists a ∈ A for which i is the tail of a. Let us fix i ∈ V . Assume that there are ti different
arcs in A with tail i: (i, j1), . . . , (i, jti

) ∈ A. Due to the first sentence of this proof, ti ≥ 1.
Then there are ti − 1 homogeneous linear requirements of the form

y(i, j1)
κ(i, j1)

=
y(i, jk)
κ(i, jk)

(4.2)

for k ∈ 2, ti. It means that we have
∑

i∈V (ti − 1) = (
∑

i∈V ti) − c = m − c homogeneous
linear equations. We also have c linear equations for a circulation from the incidence matrix
(see Proposition 4.3.2). So altogether we have (m−c)+c = m homogeneous linear equations
for the m values of a circulation. But these conditions are linearly dependent, because the
sum of the rows of the incidence matrix is the zero vector in Rm. It means that there exists
a nonzero circulation which satisfies condition (4.1).

The next step is to show that a positive circulation with the above property also exists.
Let y : A → R be a nonzero circulation which satisfies condition (4.1). Recall that the values
of κ are positive. This implies that the value of y on arcs with common tail have the same
sign: sgn(y(i, j1)) = sgn(y(i, j2)) ((i, j1), (i, j2) ∈ A). Let us define the sets V−, V0, and V+

by

V− = {i ∈ V | y(i, j) < 0 for arcs with tail i},

V0 = {i ∈ V | y(i, j) = 0 for arcs with tail i}, and

V+ = {i ∈ V | y(i, j) > 0 for arcs with tail i}.

Clearly, V is the disjoint union of V−, V0, and V+. Suppose that V− 6= ∅ and V0∪V+ 6= ∅. The
digraph D = (V,A) is assumed to be strongly connected, hence Aδ(V−) = A%(V0 ∪ V+) 6= ∅
and A%(V−) = Aδ(V0∪V+) 6= ∅. Then 0 > δy(V−) = %y(V−) = δy(V0∪V+) ≥ 0, contradiction.
(Note that the conservation rule was used for the set V−.) This means that either V− = ∅ or
V0∪V+ = ∅. If V0∪V+ = ∅ then V− = V and −y satisfies all the conditions in the statement
of the theorem and we are done. If V− = ∅ then V = V0 ∪ V+. The set V+ cannot be the
empty set, because y is assumed to be nonzero. If V0 6= ∅ then Aδ(V0) = A%(V+) 6= ∅ and
A%(V0) = Aδ(V+) 6= ∅. Then 0 = δy(V0) = %y(V0) = δy(V+) > 0, contradiction. (Note that
the conservation rule was used for the set V0.) This means that V0 = ∅ and V+ = V . Hence,
y is a positive circulation.

It is clear from the previous paragraph that if a nonzero circulation y satisfies condition
(4.1) then either y or −y is positive.
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Pick now any positive circulation y that satisfies condition (4.1). Clearly, αy (α ∈ R+)

also satisfies all the conditions in the statement of the theorem. Moreover, if we leave the
positivity requirement then circulations satisfying condition (4.1) constitute a linear space.
It remains to show that all the positive circulations satisfying condition (4.1) are positive
multiples of y. Suppose by contradiction that there exist two positive circulations y1 and y2

that satisfy condition (4.1). Suppose that y1 and y2 are linearly independent. Then y1 and y2

satisfy the conditions of Proposition 4.3.4. This means that there exists a circulation which
has both positive and negative values and satisfies conditions (4.1). But this is not possible,
as we saw it in the previous paragraph of this proof. This concludes the proof. �

A similar statement to the above theorem also holds when the graph has more than
one component and each of the components is strongly connected. Recall that ` denotes
the number of connected components of D = (V,A). Let us denote by Ar ⊆ A the set of
arcs in the rth connected component (r ∈ 1, `). Clearly, A is the disjoint union of the sets
A1, A2, . . . , A`. If y : A → R is a circulation and r ∈ 1, ` then let us define the circulation
yr : A → R by

yr(i, j) =

{
y(i, j), if (i, j) ∈ Ar,
0, if (i, j) ∈ A\Ar.

Clearly, yr is indeed a circulation on D = (V,A). The following theorem is an immediate
consequence of Theorem 4.3.5.

Theorem 4.3.6 Let us assume that all components of the graph D = (V,A) are strongly
connected. Let κ : A → R+ be a given function. Then there exists a positive circulation
y : A → R such that

y(i, j1)
κ(i, j1)

=
y(i, j2)
κ(i, j2)

for all (i, j1), (i, j2) ∈ A. Moreover, if y : A → R is such a circulation then the set{∑̀
r=1

αryr : A → R
∣∣∣∣ αr ∈ R+ for all r ∈ 1, `

}
gives all the circulations with the above property.

We conclude this section by a remark. Suppose that all the components of D = (V,A) are
strongly connected and the function κ : A → R+ in Theorem 4.3.6 is defined by κ(i, j) = 1

for (i, j) ∈ A. Then the conclusion is that there exists a positive circulation y : A → R on
D such that the values of y are equal on arcs with common tail.
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Chapter 5

Deficiency

In this chapter we introduce the notion of deficiency. It turns out that this notion plays an
important role in the dynamic behaviour of biochemical reaction systems.

5.1 Introduction

Biochemical reaction systems are defined in Chapter 3. Let (A, C,R, R) be a reaction system.
Recall that n denotes the number of species, c denotes the number of complexes, and m

denotes the number of reactions in the underlying biochemical reaction network. Recall also
the definition of the n×m stoichiometric matrix S. We repeat (3.7), the differential equation,
which governs the evolution of the system:

ẋ = S ·R(x). (5.1)

Having in hand the notion of the incidence matrix, the differential equation (5.1) can be
written in a new form. Namely, the stoichiometric matrix S can be written as a product of
two matrices. Recall that B ∈ Rn×c is the matrix of complexes. Denote by I the incidence
matrix of the directed graph (C,R). Then I ∈ Rc×m.

Proposition 5.1.1 The stoichiometric matrix is the product of the matrix of complexes
and the incidence matrix of the graph of complexes: S = B · I.

Proof Recall that q : R → 1,m is a bijection. If q(i, j) = k then the kth column of I

contains an entry -1 in its ith row and an entry 1 in its jth row. The other entries in the
kth column are zeros. This means that the kth column of the product B · I is B·,j − B·,i.
The definition of S is the same. �

By Proposition 5.1.1, the differential equation (5.1) can be written in the form

ẋ = B · I ·R(x). (5.2)

One can expect that certain properties of the matrices S, B, and I have crucial role in the
behaviour of the system. The notion of deficiency relates an integer number to a reaction
network via these matrices. Note that these matrices are determined by the underlying
reaction network of a reaction system. In other words, they are not depending on the precise
nature of the rate functions. In Chapter 6, assumption on the deficiency of the underlying
reaction network is often imposed.
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5.2 Linkage classes

Before introducing the notion of deficiency, we define the linkage classes of a biochemical
reaction network.

Let (C,R) be the graph of complexes. Denote by ` the number of connected components
of (C,R). Let the connected components be (C1,R1), . . . , (C`,R`). The sets C1, . . . , C` are
called the linkage classes of a reaction network [5]. Using this terminology, the linkage classes
for Example 3.2.2 are the sets

{A1 + A2, A3, A4 + A5, A6} and {2A1, A2 + A7, A8}.

However, the author of this thesis proposes to call the components of (C,R) to be the
linkage classes of a reaction network. This seems to be more convenient, because then one
can speak about reactions in a certain linkage class. It also allows us to speak about graph
theoretic properties of a linkage class, for instance, one can say that a certain linkage class
is strongly connected. Applying this new terminology, the linkage classes in Example 3.2.2
are the connected graphs

A1 + A2
-� A3

- A4 + A5
-� A6

and

2A1
- A2 + A7

A8
@@I

��	���
·

Throughout this thesis, we shall use the proposed new terminology.
Denote by ` the number of linkage classes. In Example 3.2.2, ` = 2.
Assume that the linkage classes are labeled by the elements of the set 1, `. Let r ∈ 1, `.

Then it is natural to introduce quantities for the rth linkage class. As it was already done
before, denote by Cr and by Rr the set of complexes and the set of reactions in the rth
linkage class, respectively. Using these notations, the linkage classes of a reaction network
are the directed graphs (C1,R1), . . . , (C`,R`). Denote by cr and mr the number of complexes
and the number of reactions in the rth linkage class, respectively. Other notions, for instance
the stoichiometric matrix of a linkage class, are also useful to introduce, but this is done at
the moment when we first need them.

5.3 Deficiency of a reaction network

In this section we define the notion of deficiency for a reaction network. Alternative defini-
tions are also discussed.

Recall that ` denotes the number of linkage classes of a biochemical reaction network.
The following definition is due to M. Feinberg [5].

Definition 5.3.1 Define the deficiency of a reaction network as c−`−rank S. Usual notation
for the deficiency is the symbol δ.
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In Definition 5.3.1, using the notations introduced in Chapter 3, one can replace rank S

by dimS. The deficiency of the reaction network in Example 3.2.2 can be calculated easily.
In that example, rank S = 5 and therefore δ = 7− 2− 5 = 0.

We emphasise that the deficiency is defined for a reaction network. Naturally, one can
speak about the deficiency of a reaction system. Namely, it is the deficiency of its reaction
network. The deficiency of a reaction system is therefore not depending on the kinetics
of the system. The following proposition implies that the deficiency of a network is not
depending on how the reactions connect complexes inside a linkage class. In other words,
one can determine the deficiency of a network just by knowing how the set of complexes C
is partitioned according to the connected components of the graph of complexes (C,R).

Recall that B ∈ Rn×c denotes the matrix of complexes and S denotes the range of the
stoichiometric matrix S ∈ Rn×m.

Proposition 5.3.2 Let

S ′ = span{B·,j −B·,i ∈ Rn | i, j ∈ Cr with r ∈ 1, `}. (5.3)

Then S = S ′.

Proof Since the set of spanning vectors of S is a subset of the set of spanning vectors of
S ′, S ⊆ S ′.

Observe that the stoichiometric subspace S can also be defined by

S = span{B·,j −B·,i ∈ Rn | (i, j) ∈ R or (j, i) ∈ R}.

Pick any i, j ∈ Cr with r ∈ 1, ` such that i 6= j. Since Ci and Cj are from the same component
of the graph of complexes (C,R), there exists an undirected path (i, a1, i1, . . . , al−1, il−1, al, j)

between i and j for some l ≥ 1. Using the notations i0 = i and il = j, due to the above
made observation,

B·,iq
−B·,iq−1 ∈ S for all q ∈ 1, l.

The observation

B·,j −B·,i =
l∑

q=1

(B·,iq
−B·,iq−1)

implies that B·,j −B·,i ∈ S. This shows that S ⊇ S ′. �

The deficiency of a reaction network is an integer number. Due to the following propo-
sition, the deficiency is always nonnegative.

Proposition 5.3.3 The deficiency of a reaction network is always nonnegative.

Proof We have to show that dimS ≤ c− `.
Fix any ir ∈ Cr for all r ∈ 1, `. Define the linear subspace S ′′ of Rn by

S ′′ = span{B·,j −B·,ir
∈ Rn | j ∈ Cr\{ir} with r ∈ 1, `}.

We claim that S ′ = S ′′, where S ′ is defined by (5.3). Clearly, the inclusion S ′ ⊇ S ′′ holds.
To show the converse inclusion, fix any r ∈ 1, `. Pick any i, j ∈ Cr such that i 6= j. Then

B·,j −B·,i = (B·,j −B·,ir
)− (B·,i −B·,ir

).
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This shows that S ′ ⊆ S ′′.
Proposition 5.3.2 then implies that dimS = dimS ′′. From the definition of dimS ′′ it is

clear that

dimS ′′ ≤
∑̀
r=1

(cr − 1) = c− `,

where cr denotes the number of complexes in the rth linkage class (r ∈ 1, `). This concludes
the proof. �

An alternative definition of deficiency is sometimes used [1]. Namely, the deficiency of a
reaction network is defined by

δ = dim ker S − dim ker I. (5.4)

Before we prove that the two notions coincide, we recall a theorem of linear algebra.

Theorem 5.3.4 Let U and V be finite dimensional vector spaces and let A : U → V be a
linear map. Then dim U = dim kerA + rank A.

Proposition 5.3.5 The equality c−`−rank S = dim kerS−dim ker I holds for all reaction
networks.

Proof By Theorem 5.3.4 and Proposition 4.2.3,

dim kerS − dim ker I = (m− rank S)− (m− rank I) =

= rank I − rank S = c− `− rank S.

�

We remark that Proposition 5.3.3 is an immediate consequence of Proposition 5.3.5 and
Proposition 5.1.1, because S = B · I and hence the kernel of I is a linear subspace of the
kernel of S.

As a matter of fact, we propose a third alternative definition for the deficiency. That
this third alternative definition is equivalent to Definition 5.3.1 can be found in [4] as a
side remark. This alternative definition was discovered by the author of this thesis prior to
reading that paper.

Recall that mr denotes the number of reactions in the rth linkage class (r ∈ 1, `). The
matrix B can be written in the block form

B = [B1, B2, . . . , B`],

where Br ∈ Rn×mr and the columns of Br correspond to the complexes in the rth linkage
class (r ∈ 1, `). Define the block matrix B̂ ∈ R(n+`)×c by

B̂ =



B1 B2 · · · B`

1 · · · 1 0 · · · 0 · · · 0 · · · 0
0 · · · 0 1 · · · 1 · · · 0 · · · 0

...
...

. . .
...

0 · · · 0 0 · · · 0 · · · 1 · · · 1


.
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The third alternative definition of the deficiency of a reaction network is

δ = dim ker B̂. (5.5)

The following proposition shows that the third alternative definition is equivalent to the
previous ones.

Proposition 5.3.6 The equality dim kerS − dim ker I = dim ker B̂ holds for all reaction
network.

Proof Let e1, . . . , et1 be a basis of ker I and e1, . . . , et1 , et1+1, . . . , et2 be a basis of ker S.
(If t1 = t2 then dim kerS − dim ker I ≤ dim ker B̂ obviously holds. Hence, we can assume
that t1 < t2.) Denote by U the linear subspace of Rm, which is spanned by et1+1, . . . , et2 .
Then Iet1+1, . . . , Iet2 is an independent system of t2 − t1 vectors in ran I. We claim that
Iet1+1, . . . , Iet2 are elements of ker B̂. Indeed, S = B ·I implies that B ·Ieq = Seq = 0 for all
q ∈ t1 + 1, t2. Due to Proposition 4.2.4, every element in the range of the incidence matrix
has the property that the sum of its coordinates corresponding to the same component of
the graph is zero. Therefore Iet1+1, . . . , Iet2 ∈ ker B̂. So dim kerS − dim ker I = t2 − t1 ≤
dim ker B̂.

It remains to show that dim kerS−dim ker I ≥ dim ker B̂. Let us choose a basis f1, . . . , ft3

in ker B̂. (If t3 = 0 then the statement trivially holds. Hence, we can assume that t3 >

0.) Due to Proposition 4.2.4, f1, . . . , ft3 are in the range of I. If I|U is considered as
the restriction of the map I to the linear space U then I|U is a linear bijection. Hence,
(I|U )−1f1, . . . , (I|U )−1ft3 are independent elements in U . (Note that t3 > 0 therefore im-
plies that t1 < t2.) So dim ker B̂ = t3 ≤ t2 − t1 ≤ dim kerS − dim ker I. �

We summarize the contents of Proposition 5.3.5 and Proposition 5.3.6 in the following
theorem:

Theorem 5.3.7 The deficiency of a reaction network is

δ = c− `− rank S = dim ker S − dim ker I = dim ker B̂.

We remark that the nonnegativity of the deficiency is an immediate consequence of the
fact that the deficiency of a reaction network equals to dim ker B̂.

We also remark that the previously mentioned fact that the deficiency of a reaction
network is not depending on how the reactions connect complexes inside a linkage class can
be seen directly from (5.5). This is due to the fact that the matrix B̂ does not depend on
how reactions connect complexes inside connected components of (C,R).

It is worth to mention what is the meaning of the B̂ matrix in the language of reaction
networks. Let us introduce ` extra species An+1, . . . , An+`. In the rth linkage class, add to
each complex the new species An+r (r ∈ 1, `). Then the matrix of the complexes for the
resulting new reaction network is B̂.

5.4 Deficiency of a linkage class

After one has defined the deficiency of a reaction network, the notion of deficiency of a
linkage class is quite natural. In this section, we introduce this notion and we also provide
several propositions, which are then used in Chapter 6.
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When a linkage class of a network is under consideration, it can happen that there exists
s ∈ 1, n such that the species As is not appearing in any of the complexes of that linkage
class. However, we continue to regard the network as a network with n species.

Consider a reaction network. Recall that mr denotes the number of reactions in the rth
linkage class (r ∈ 1, `). Clearly,

∑`
r=1 mr = m. Let us assume that the arcs of the graph of

complexes (C,R) are labeled in such a way that the stoichiometric matrix can be written in
the block form

S = [S1, S2, . . . , S`],

where Sr ∈ Rn×mr and the columns of Sr are corresponding to reactions inside the rth
linkage class (r ∈ 1, `). Recall also that cr denotes the number of complexes in the rth
linkage class (r ∈ 1, `).

Definition 5.4.1 Let r ∈ 1, `. Define the deficiency of the rth linkage class of a reaction
network as cr − 1− rank Sr. Usual notation for the deficiency of the rth linkage class is the
symbol δr.

For instance, if the upper linkage class in Figure 3.1 is considered to be the first one and
the lower one to be the second one in Example 3.2.2 then c1 = 4, c2 = 3,

S1 =



−1 1 0 0 0

−1 1 0 0 0

1 −1 −1 0 0

0 0 1 −1 1

0 0 1 −1 1

0 0 0 1 −1

0 0 0 0 0

0 0 0 0 0


, and S2 =



−2 0 0 2

1 −1 1 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1 −1 1 0

0 1 −1 −1


.

One can then calculate that rank S1 = 3 and rank S2 = 2. Hence, δ1 = 4 − 1 − 3 = 0 and
δ2 = 3− 1− 2 = 0.

The following proposition is an immediate consequence of Proposition 5.3.2 and Proposi-
tion 5.3.3, because one can consider a linkage class to be a reaction network with one linkage
class. Note that the assumption that no row of B vanishes was not made. Hence, one can
regard a linkage class as a reaction network with the same set of species as the original
network has, even if there exists species, which appears in the complexes of the original
network, but does not appear in the complexes of that linkage class.

Proposition 5.4.2 Let r ∈ 1, `. Let Sr = ranSr and

S ′r = span{B·,j −B·,i ∈ Rn | i, j ∈ Cr}.

Then Sr = S ′r and δr ≥ 0.

Let us call for later reference Sr in the above proposition the stoichiometric subspace of
the rth linkage class.

Naturally, alternative definitions for the deficiency of a linkage class can also be intro-
duced. Recall from Section 4.2 that the incidence matrix I can be written in the block
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form

I = [I1, . . . , I`],

where Ir ∈ Rc×mr and the columns of Ir are corresponding to the arcs in the rth connected
component of (C,R). Similarly, let

B̂ = [B̂1, . . . , B̂`],

where B̂r ∈ R(n+`)×cr and the columns of B̂r are corresponding to the complexes in the rth
linkage class.

Theorem 5.4.3 Let r ∈ 1, `. Then

δr = cr − 1− rank Sr = dim ker Sr − dim ker Ir = dim ker B̂r.

Proof Let r ∈ 1, `. The kernel of Ir and the kernel of the incidence matrix of the graph
(Cr,Rr) are clearly the same. Similarly, the kernel of B̂r and the kernel of the matrix[

Br

1 · · · 1

]
∈ R(n+1)×cr

are the same. Hence, application of Theorem 5.3.7 for the network, which consists of the rth
linkage class yields the result. �

The following proposition shows a relation between the deficiency of a reaction network
and the deficiencies of its linkage classes.

Proposition 5.4.4 The sum of the deficiencies of the linkage classes is less than or equal
to the deficiency of the whole network:

δ1 + δ2 + · · ·+ δ` ≤ δ.

Furthermore, δ1 + δ2 + · · · + δ` = δ if and only if the stoichiometric subspace is the direct
sum of the stoichiometric subspaces of the linkage classes.

Proof Recall that S = [S1, S2, . . . , S`] and hence rank S ≤
∑`

r=1 rank Sr. Using Definition
5.3.1 and Definition 5.4.1, the first statement of the proposition follows:

∑̀
r=1

δr =
∑̀
r=1

(cr − 1− rank Sr) =

(∑̀
r=1

cr

)
−

(∑̀
r=1

1

)
−

(∑̀
r=1

rank Sr

)
=

= c− `−

(∑̀
r=1

rank Sr

)
≤ c− `− rank S = δ.

It is also apparent from the above estimation that equality between δ and
∑`

r=1 δr holds if
and only if rank S =

∑`
r=1 rank Sr. The latter is equivalent to the fact that the stoichiometric

subspace is the direct sum of the stoichiometric subspaces of the linkage classes. �

We remark that the above proposition can also be proven by using the second alternative
definitions and the fact that

ran I = ran I1 ⊕ · · · ⊕ ran I`.
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The following estimation gives the alternative proof.∑̀
r=1

δr =
∑̀
r=1

(dim kerSr − dim ker Ir) =
∑̀
r=1

((mr − rank Sr)− (mr − rank Ir)) =

= −

(∑̀
r=1

rank Sr

)
+ rank I ≤ − rank S + rank I =

= −(m− dim kerS) + (m− dim ker I) = δ.

The following estimation shows how the first part of Proposition 5.4.4 can be proven by
using the third alternative definitions.∑̀

r=1

δr =
∑̀
r=1

dim ker B̂r =
∑̀
r=1

(cr − rank B̂r) =

(∑̀
r=1

cr

)
−

(∑̀
r=1

rank B̂r

)
=

= c−

(∑̀
r=1

rank B̂r

)
≤ c− rank B̂ = dim ker B̂ = δ.

The above estimation also shows that an equivalent condition to δ1 + δ2 + · · ·+ δ` = δ can
also be formulated in terms of the B̂ matrix. We summarize this and an earlier result in the
following proposition.

Proposition 5.4.5 Denote by B̂ the linear space ran B̂. Similarly, denote by B̂r the linear
space ran B̂r for r ∈ 1, `. Then the following are equivalent.

(i) δ = δ1 + · · ·+ δ`,

(ii) S = S1 ⊕ · · · ⊕ S`,

(iii) B̂ = B̂1 ⊕ · · · ⊕ B̂`.

The following proposition shows that deficiency zero networks have the property that
the stoichiometric subspace is the direct sum of the stoichiometric subspaces of the linkage
classes.

Proposition 5.4.6 Assume that δ = 0. Then δ = δ1 + · · ·+ δ`.

Proof The nonnegativity of the deficiencies of the linkage classes and the inequality part
of Proposition 5.4.4 implies that δr = 0 for all r ∈ 1, `. Hence, the result of this proposition
follows. �

We conclude this section by providing a simple proposition, which is then used in Chapter
6. Recall that the function f : Rn → Rn denotes the right hand side of the differential
equation (3.5). Let r ∈ 1, `. Define the function fr : Rn → Rn by

fr(x) =
∑

(i,j)∈Rr

R(i,j)(x)(B·,j −B·,i) (5.6)

for x ∈ Rn. Clearly, f(x) = f1(x) + · · ·+ f `(x) for all x ∈ Rn.

Proposition 5.4.7 Assume that δ = δ1 + · · ·+ δ`. Let x ∈ Rn. Then f(x) = 0 implies that
fr(x) = 0 for all r ∈ 1, `.

Proof Clearly, f(x) ∈ S and fr(x) ∈ Sr for all x ∈ Rn and for all r ∈ 1, `. Proposition
5.4.5 implies the result. �
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Chapter 6

Dynamic system properties of

biochemical reaction systems

In this chapter we investigate dynamic system properties of biochemical reaction systems.
First we show that the positive and the nonnegative orthants are forward invariant sets
for (3.5). Then we introduce the notion of stoichiometric classes, which are also forward
invariant sets for (3.5). In Section 6.3 we introduce the notion of a siphon. This will be
useful in understanding the long term behaviour of the solutions of (3.5). Section 6.4 and
Section 6.5 deals with the set of equilibria (3.5). Stability properties of equilibrium points
are investigated in Section 6.6. Finally, in Section 6.7 we show that in some special cases
the existence of periodic orbits is excluded.

6.1 Forward invariance of the positive and the nonnega-

tive orthants

Let (A, C,R, R) be a biochemical reaction system. Recall that the differential equation that
governs the evolution of species concentrations in time for a biochemical reaction system
has the form

ẋ = f(x) =
∑

(i,j)∈R

R(i,j)(x)(B·,j −B·,i), (6.1)

where B ∈ Rn×c is the matrix of complexes and the state space is Rn.

In this section we show that the positive and nonnegative orthants are forward invariant
for (6.1). This means that the mathematical model of a biochemical reaction system satisfies
the qualitative property that no species concentration can become negative. This section is
based on [10] with the difference that we consider here the rate functions as specified in
Section 3.3, which is more general than the ones in [10]. This extension can be done without
any new idea.

Definition 6.1.1 Let K ⊆ Rn. The set K is said to be forward invariant for (6.1) if
φ(t; ξ) ∈ K for all ξ ∈ K and for all t ∈ J+(ξ).
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Recall that fs : Rn → R is the sth coordinate function of f (s ∈ 1, n). Let s ∈ 1, n. Then

fs(x) =
∑

(i,j)∈R

R(i,j)(x)(Bs,j −Bs,i).

Define the functions β+
s : Rn → R and β0

s : Rn → R by

β+
s (x) =

∑
(i,j)∈R
Bs,i>0

R(i,j)(x)(Bs,j −Bs,i),

β0
s (x) =

∑
(i,j)∈R
Bs,i=0

R(i,j)(x)Bs,j .

Clearly, fs = β+
s + β0

s .
Recall from Chapter 2 the definition of the sign function sgn : R → {−1, 0, 1}.

Proposition 6.1.2 Suppose that xs = 0 for some s ∈ 1, n and x ∈ Rn
≥0. Then β+

s (x) = 0

and fs(x) = β0
s (x) ≥ 0. Moreover, sgn(fs(x)) depends only on supp(x).

Proof Let x be as in the statement. Assume that Bs,i > 0 for some i ∈ 1, c. Then
s ∈ supp(B·,i) and s /∈ supp(x). Due to (3.3), this implies that R(i,j)(x) = 0. Hence,
β+

s (x) = 0. This also shows that fs(x) = β0
s (x).

Since all the summands in the defining sum of β0
s are nonnegative, it follows that β0

s (x) ≥
0.

Obviously, fs(x) > 0 if and only if there exists a positive summand in the defining sum
of β0

s . Due to (3.3), for all (i, j) ∈ R, sgn(R(i,j)(x)) is determined by supp(x). This implies
the desired result. �

The key observation for proving the forward invariance of the positive orthant for (6.1)
is Proposition 6.1.4. We follow the line of [10] to prove that proposition. First we recall a
comparison theorem. A proof of it can be found for example in [13].

Theorem 6.1.3 Let G : R2 → R be locally Lipschitz continuous in its second variable. Let
I ⊆ R be an open interval and let u, v : I → R be differentiable functions. Let [a, b] ⊆ I be
a compact interval. Assume that u(a) ≤ v(a) and that u̇(t) − G(t, u(t)) ≤ v̇(t) − G(t, v(t))

for all t ∈ [a, b]. Then u(t) ≤ v(t) for all t ∈ [a, b].

Proposition 6.1.4 Let ξ ∈ Rn
≥0 and let s ∈ 1, n such that ξs > 0. Let t∗ ∈ J+(ξ). Assume

that φ(t; ξ) ∈ Rn
≥0 for all t ∈ [0, t∗]. Then φs(t∗; ξ) > 0.

Proof Let us define the function F : R2 → R by

F (t, y) =


fs(φ1(t; ξ), . . . , φs−1(t; ξ), y, φs+1(t; ξ), . . . , φn(t; ξ)), if 0 ≤ t ≤ t∗,
F (0, y), if t < 0,
F (t∗, y), if t∗ < t

for (t, y) ∈ R2. Note that F is locally Lipschitz continuous. Note also that F (t, 0) ≥ 0 for
all t ∈ R, because, by Proposition 6.1.2, fs(x) = β0

s (x) ≥ 0 whenever x ∈ Rn
≥0 and xs = 0.

Consider the scalar initial value problem

ẏ = F (t, y), y(0) = ξs.
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It can be seen that the unique solution of this initial value problem equals to φs(·; ξ) in
[0, t∗]. We prove that this solution does not vanish at t∗.

Let us define the function G : R2 → R by G(t, p) = F (t, p) − F (t, 0) for (t, p) ∈ R2.
Introduce another scalar initial value problem

ż = G(t, z), z(0) = ξs.

Note that G is locally Lipschitz continuous and 0 ∈ R is an equilibrium point (0 = G(t, 0)

for all t ∈ R). Denote by z the solution of this initial value problem. As solutions cannot
intersect each other, z(t) > 0 for all t in its domain of definition. Moreover, we have that
G(t, z) ≤ F (t, z) for all (t, z) ∈ R2. Theorem 6.1.3 implies that z(t) ≤ φs(t; ξ) for all t ≥ 0 in
the common domain of definition of z and φs(·; ξ). Since φs(t∗; ξ) is well defined, z remains
bounded on [0, t∗], and thus is defined as well at t∗. So, φs(t∗; ξ) ≥ z(t∗) > 0. �

Note that in the above proposition it was assumed that the examined solution of the
differential equation lies in Rn

≥0 on a compact interval [0, t∗].

We are now in the position to prove the forward invariance of the positive orthant.

Proposition 6.1.5 The positive orthant Rn
+ is a forward invariant set for (6.1).

Proof Let ξ ∈ Rn
+. A solution can leave the positive orthant only if there exists t ∈ J+(ξ)

such that φ(t; ξ) ∈ Rn
0 . Assume that this happens. Let t∗ = min{t ∈ J+(ξ) | φ(t; ξ) ∈ Rn

0}.
Then t∗ ∈ J+(ξ). By the minimality of t∗, φ(t; ξ) ∈ Rn

≥0 for all t ∈ [0, t∗]. By the definition
of t∗, there exists s ∈ 1, n such that φs(t∗; ξ) = 0, which contradicts Proposition 6.1.4. �

One can prove that the closure of a forward invariant set is also forward invariant by using
the continuous dependence of the solution on the initial value. The proof of the following
theorem can be found for example in [8].

Theorem 6.1.6 Let g : D → Rn be locally Lipschitz continuous, where D ⊆ Rn is an
open connected set. Consider the differential equation ẋ = g(x). Let ξ ∈ D and assume that
J(ξ) ⊇ [0, t∗] for some t∗ > 0. Let ε > 0. Then there exists η > 0 such that |ζ − ξ| < η and
ζ ∈ D implies that J(ζ) ⊇ [0, t∗] and |φ(t; ζ)− φ(t; ξ)| < ε for all t ∈ [0, t∗].

Proposition 6.1.7 Let g : D → Rn be locally Lipschitz continuous, where D ⊆ Rn is an
open connected set. Let K ⊆ D be forward invariant for ẋ = g(x). Then the intersection of
D and the closure cl(K) of K is forward invariant as well.

Proof If K is closed then the statement trivially holds. Assume that K is not closed and
pick any ξ ∈ (cl(K)∩D)\K. Suppose by contradiction that there exists t∗ ∈ J+(ξ) such that
φ(t∗; ξ) /∈ cl(K). (Clearly, φ(t; ξ) ∈ D for all t ∈ J(ξ).) Let ε = dist(φ(t∗; ξ), cl(K)). (See
Chapter 2 for the definition of dist.) Note that ε > 0. Due to Theorem 6.1.6, there exists
η > 0 such that |ζ−ξ| < η and ζ ∈ D implies that J(ζ) ⊇ [0, t∗] and |φ(t; ζ)−φ(t; ξ)| < ε for
all t ∈ [0, t∗]. Clearly, there exists ζ ∈ K such that |ζ − ξ| < η. Since K is forward invariant,
φ(t∗; ζ) ∈ K, which implies that |φ(t∗; ζ)− φ(t∗; ξ)| ≥ ε, contradiction. �

The forward invariance of the nonnegative orthant is therefore an immediate consequence
of the forward invariance of the positive orthant.
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Proposition 6.1.8 The nonnegative orthant Rn
≥0 is a forward invariant set for (3.5).

Combining Proposition 6.1.4 and Proposition 6.1.8 yields the following proposition.

Proposition 6.1.9 Let ξ ∈ Rn
≥0 and let s ∈ 1, n such that ξs > 0. Then φs(t; ξ) > 0 for all

t ∈ J+(ξ).

Proposition 6.1.9 expresses that the mathematical model of a biochemical reaction net-
work has the property that no positive species concentration can become zero in finite time.

6.2 Stoichiometric classes

In this section we introduce the notion of stoichiometric classes. The importance of these
objects is given by the facts that they provide a partition of Rn

≥0 and that they are forward
invariant sets for the differential equation (6.1).

Recall that S ∈ Rn×m and S ⊆ Rn denote the stoichiometric matrix and its range,
respectively. If p ∈ Rn then denote by p + S the parallel of S, which contains p, i.e. p + S =

{p + v ∈ Rn | v ∈ S}.

Definition 6.2.1 Let p ∈ Rn
≥0. The set P = (p + S) ∩ Rn

≥0 is called a stoichiometric class.
A stoichiometric class P is called positive, if P ∩ Rn

+ 6= ∅.

The above definition coincides with the one in [10]. Note however that a slightly different
definition for positive stoichiometric classes is given in [5].

Let ξ ∈ P = (p +S)∩Rn
≥0 for some p ∈ Rn

≥0. By the preceding section, φ(t; ξ) ∈ Rn
≥0 for

all t ∈ J+(ξ). Let t∗ ∈ J+(ξ). Integrating (6.1) along φ(·; ξ) yields

φ(t∗; ξ)− ξ =
∑

(i,j)∈R

∫ t∗

0

R(i,j)(φ(τ ; ξ))dτ(B·,j −B·,i). (6.2)

Formula (6.2) shows that φ(t∗; ξ)− ξ ∈ S, or equivalently, φ(t∗; ξ) ∈ ξ + S, because the
right hand side of (6.2) is a linear combination of the spanning vectors of S. In other words,
if a solution of (6.1) starts in the stoichiometric class P then φ(t; ξ) ∈ P for all t ∈ J+(ξ).
This yields the following proposition:

Proposition 6.2.2 Any stoichiometric class is forward invariant for (6.1).

Proposition 6.1.5 and Proposition 6.2.2 together yield the following proposition:

Proposition 6.2.3 Let P be a positive stoichiometric class. Then the set P∩Rn
+ is forward

invariant for (6.1).

Note that either all or none of the stoichiometric classes are bounded. If they are bounded
then no solution of (6.1) can explode in finite time. In other words, for all initial values
ξ ∈ Rn

≥0 the inclusion J(ξ) ⊇ R≥0 holds. This will follow immediately from Theorem 6.6.13
in Section 6.6.
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6.3 Forward invariant sets on the boundary of the non-

negative orthant

In this section we deal with forward invariant sets for (6.1) on the boundary of the nonneg-
ative orthant.

Let H ⊆ 1, n. Denote by Hc the set 1, n\H. Define the set FH by

FH = {x ∈ Rn
≥0 | xs = 0 if and only if s ∈ H}.

For later use we mention that the closure of FH is

cl(FH) = {x ∈ Rn
≥0 | xs = 0 if s ∈ H}.

Let x ∈ Rn
≥0. Then the statements

x ∈ FH if and only if supp(x) = Hc

and

x ∈ cl(FH) if and only if supp(x) ⊆ Hc.

trivially hold.
Note that F∅ = Rn

+ and cl(F∅) = Rn
≥0. The forward invariance of the positive and the

nonnegative orthants is proven in Section 6.1. The sets FH and cl(FH) are lying on the
boundary of the positive orthant if and only if H 6= ∅. We shall derive equivalent conditions
to the forward invariance of the sets FH and cl(FH) in terms of the set of reactions R and
the B matrix. As it will turn out, the forward invariance of these sets is independent of the
precise nature of the rate functions.

We now provide a simple equivalent condition to the forward invariance of the set FH .

Proposition 6.3.1 Let ∅ 6= H ⊆ 1, n. Then FH is forward invariant for (6.1) if and only if
fs(x) = 0 for all s ∈ H and for all x ∈ FH .

Proof As earlier, denote by φ(·; ξ) : J(ξ) → Rn the unique solution of the differential
equation ẋ = f(x), which satisfies φ(0; ξ) = ξ for ξ ∈ Rn.

Suppose that FH is forward invariant. Let ξ ∈ FH . Then φs(t; ξ) = 0 for all s ∈ H and
for all t ∈ J≥0(ξ). Hence, 0 = φ̇s(t; ξ) = fs(φ(t; ξ)) for all s ∈ H and for all t ∈ J≥0(ξ). In
particular, 0 = fs(φ(0; ξ)) = fs(ξ) for all s ∈ H. Since ξ ∈ FH was arbitrary, the only if part
of the proposition is proven.

Suppose now that fs(x) = 0 for all s ∈ H and for all x ∈ FH . If H = 1, n then fs(0) = 0

for all s ∈ 1, n. Hence, the unique solution starting from 0 ∈ Rn is clearly the identically
zero function. This shows that F1,n is forward invariant.

Assume for the rest of this proof that ∅ 6= H ( 1, n. Let ξ ∈ FH . Let n = |Hc|. In what
follows the coordinates of vectors in Rn are indexed by the elements of the set Hc. Denote
by K the linear space

K = {x ∈ Rn | xs = 0 if s ∈ H}.

Define the function P : K → Rn by (Px)s = xs for s ∈ Hc and for x ∈ K. Clearly,
P |FH

is a bijection between FH and Rn
+. Define the differential equation ẋ = g(x) on Rn

+
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by the function g(x) = Pf(P−1x) for x ∈ Rn
+. Note that f(FH) ⊆ K by assumption and

hence g : Rn
+ → Rn is well defined. Clearly, g inherits the local Lipschitz continuity from f ,

provided by the fact that P is a linear homeomorphism.
Denote by ϕ(·; ξ) : J(ξ) → Rn

+ the unique solution of the new differential equation, which
satisfies ϕ(0; ξ) = ξ for ξ ∈ Rn

+. We claim that φ(t; ξ) = P−1ϕ(t;Pξ) for all ξ ∈ FH and
for all t ∈ J(Pξ). To verify this claim, define y : J(Pξ) → Rn by y(t) = P−1ϕ(t;Pξ) for
t ∈ J(Pξ). It is enough to check that ẏ(t) = f(y(t)) for all t ∈ J(Pξ) and y(0) = ξ (because
of the uniqueness of the solution). Clearly, y(0) = P−1Pξ = ξ. Moreover,

ẏ(t) = P−1ϕ̇(t;Pξ) = P−1g(ϕ(t;Pξ)) = P−1Pf(P−1ϕ(t;Pξ)) = f(y(t))

for all t ∈ J(Pξ). The claim is verified. Hence, J(Pξ) ⊆ J(ξ). Moreover, φ(t; ξ) ∈ FH for all
t ∈ J(Pξ), because ϕ(t;Pξ) ∈ Rn

+ for all t ∈ J(Pξ) and P−1x ∈ FH for all x ∈ Rn
+.

Moreover, we claim that J≥0(Pξ) = J≥0(ξ). Suppose by contradiction that J(Pξ) (
J(ξ). Let t∗ = sup J(Pξ). Then φ(t∗; ξ) ∈ cl(FH) and

lim
t→t∗−0

P−1ϕ(t;Pξ) = φ(t∗; ξ).

Hence, t∗ cannot be a finite explosion time for ϕ(·;Pξ). It follows that

lim
t→t∗−0

ϕ(t;Pξ) ∈ Rn
0 .

Consequently, φ(t∗; ξ) ∈ cl(FH)\FH . This is a contradiction, because we know from Section
6.1 that no positive species concentration can become zero in finite time. This proves that
J≥0(Pξ) = J≥0(ξ).

It follows now that FH is forward invariant for ẋ = f(x). �

We formulate an equivalent condition to fs(x) = 0 for all s ∈ H and for all x ∈ FH .

Proposition 6.3.2 Let ∅ 6= H ⊆ 1, n, x ∈ FH , and s ∈ H. Then fs(x) = 0 if and only if
for all (i, j) ∈ R, Bs,i = 0 and Bs,j > 0 implies that supp(B·,i) * Hc.

Proof Due to Proposition 6.1.2, fs(x) = β0
s (x). The sum in the definition of β0

s contains
only nonnegative terms. The sum is zero if and only if all the summands are zero. This
means that fs(x) = 0 if and only if for all (i, j) ∈ R, Bs,i = 0 and Bs,j > 0 implies that
R(i,j)(x) = 0. By condition (3.3), R(i,j)(x) = 0 if and only if supp(B·,i) * supp(x). Due to
the discussion at the beginning of this section, x ∈ FH if and only if supp(x) = Hc. This
concludes the proof. �

Let x ∈ FH for some ∅ 6= H ⊆ 1, n. Biologically, xs = 0 means that species As is not
present in the system. That Bs,i = 0 and Bs,j > 0 for some (Ci, Cj) ∈ R means that
the reactant complex Ci of reaction (Ci, Cj) does not contain species As, while the product
complex Cj contains it. Hence, reaction (Ci, Cj) provides a chance to the formation of species
As. However, supp(B·,i) * Hc expresses that reaction (Ci, Cj) does not take place, because
there exists a constituent species of the reactant complex, which is (similarly to As) not
present in the system.

In the rest of this section we introduce the notion of siphon in the same way as it is done
in [2]. As it will turn out, the notion of a siphon provides another characterization of the
forward invariance of the sets FH for ∅ 6= H ⊆ 1, n.
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We associate to the set of reactions and the matrix of complexes a bipartite digraph. By
bipartite graph we mean that the set of vertices can be partitioned into two sets such that
there are no arcs, which connect vertices of the same element of the partition. Recall that
A denotes the set of species {A1, . . . , An} = 1, n.

Definition 6.3.3 Define the set E ⊆ (A ∪R)× (A ∪R) by

E = {(s, (i, j)) ∈ A×R | Bs,i > 0} ∪ {((i, j), s) ∈ R×A | Bs,j > 0}.

The bipartite digraph (A ∪R, E) is called the species-reaction graph.

Note that the digraph (A∪R, E) is indeed bipartite, because there are no arcs between
species, and similarly, there are no arcs between reactions. In notation, E ∩ (A×A) = ∅ and
E ∩ (R×R) = ∅.

Definition 6.3.4 The reaction (i, j) ∈ R is called an input reaction for species s ∈ A if
((i, j), s) ∈ E . The reaction (i, j) ∈ R is called an output reaction for species s ∈ A if
(s, (i, j)) ∈ E .

We now introduce notations, which help in formulating the definition of a siphon in a
compact form. Let ∅ 6= H ⊆ 1, n. Define the set of input reactions associated to H and the
set of output reactions associated to H by

RI
H = {(i, j) ∈ R | there exists s ∈ H such that ((i, j), s) ∈ E} =

= {(i, j) ∈ R | there exists s ∈ H such that Bs,j > 0}

and

RO
H = {(i, j) ∈ R | there exists s ∈ H such that (s, (i, j)) ∈ E} =

= {(i, j) ∈ R | there exists s ∈ H such that Bs,i > 0},

respectively.

Definition 6.3.5 A set ∅ 6= H ⊆ 1, n is called a siphon if each input reaction associated to
H is also an output reaction associated to H (i.e. RI

H ⊆ RO
H).

In words, a set ∅ 6= H ⊆ 1, n is a siphon if the following holds: if (Ci, Cj) ∈ R is a reaction
such that there exists a species As, which is a constituent part of the product complex Cj

for some s ∈ H then there exists a species s′ ∈ H, which is a constituent part of the reactant
complex Ci.

Note that ∅ 6= H ⊆ 1, n is a siphon if and only if none of the input reactions associated
to H takes place at concentrations ξ ∈ FH .

Example 6.3.6 Let n = 4 and c = 4. We consider the complexes

C1 = A1 + 3A2, C2 = 2A3, C3 = 4A1 + A4, and C4 = A3.
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Then

B =


1 0 4 0

3 0 0 0

0 2 0 1

0 0 1 0

 .

Let R = {(C1, C2), (C2, C1), (C3, C4)} be the set of the reactions. The scheme of the defined
reaction network is displayed in Figure 6.1. The species-reaction graph associated to the
reaction network is displayed in Figure 6.2. The siphons of this example are the sets

{A4}, {A1, A3}, {A1, A2, A3}, {A1, A3, A4}, {A2, A3, A4}, and {A1, A2, A3, A4}.

A1 + 3A2
-� 2A3

4A1 + A4
- A3

Figure 6.1: Scheme of the reaction network in Example 6.3.6

A1 A2 A3 A4

(C1, C2) (C2, C1) (C3, C4)
?

6 6

HH
HHH

HHYXXXXXXXXXXXXXXz��������������:�
���

����

�
���

����

�
���

����

Figure 6.2: The digraph (A ∪R, E) associated to the reaction network in Example 6.3.6

�

The notion of a siphon is very closely related to the previously examined forward invariant
sets. The statement that (i) and (iii) in Theorem 6.3.7 are equivalent can be found in [2].
The proof presented there makes use of the so called Bouligand contingent cones. We present
here another proof and also several other equivalent statements. The major part of the work
was done in the proof of Proposition 6.3.1.

Theorem 6.3.7 Let ∅ 6= H ⊆ 1, n. Denote by Hc the set 1, n\H. Then the following are
equivalent.

(i) H is a siphon,

(ii) FH is forward invariant,

(iii) cl(FH) is forward invariant,

(iv) fs(x) = 0 for all s ∈ H and for all x ∈ FH ,

(v) fs(x) = 0 for all s ∈ H and for all x ∈ cl(FH),

(vi) there exists x ∈ FH such that fs(x) = 0 for all s ∈ H,

(vii) for all s ∈ H and for all (i, j) ∈ R, Bs,i = 0 and Bs,j > 0 implies that supp(B·,i) * Hc.
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Proof As FH ⊆ cl(FH), (v) immediately implies (iv). Continuity of f guarantees that (iv)
implies (v).

Equivalence of (iv) and (vii) is the content of Proposition 6.3.2.

Statement (iv) trivially implies (vi). Due to Proposition 6.3.2, (vi) implies (vii).

The equivalence of (iv),(v),(vi), and (vii) is now proven.

If FH is forward invariant then cl(FH) is forward invariant as well, because of Proposition
6.1.7. Hence, (ii) implies (iii).

Suppose that (iii) holds. Then (ii) is satisfied as well. Indeed, the forward invariance
of FH consists of two things. That positive coordinates cannot become zero is guaranteed
by Proposition 6.1.9. That zero coordinates corresponding to H cannot become positive is
provided by the forward invariance of cl(FH).

The statements in (ii) and (iv) are equivalent by Proposition 6.3.1.

The equivalence of (ii),(iii),(iv),(v),(vi), and (vii) is now proven.

As concluding step, we show that (vii) is equivalent to RI
H ⊆ RO

H . Suppose first that
(vii) holds. Pick any (i, j) ∈ RI

H . Let s ∈ H such that Bs,j > 0. If Bs,i > 0 then (i, j) ∈ RO
H .

If Bs,i = 0 then (vii) implies that there exists s′ ∈ H such that Bs′,i > 0. Hence, again,
(i, j) ∈ RO

H .

Suppose now that RI
H ⊆ RO

H holds. Let s ∈ H and (i, j) ∈ R such that Bs,i = 0 and
Bs,j > 0. Then (i, j) ∈ RI

H . By the assumption, (i, j) ∈ RO
H . Hence, there exists s′ ∈ H such

that Bs′,i > 0. Hence, s′ ∈ supp(B·,i) and s′ /∈ Hc. �

Recall that F∅ = Rn
+ and cl(F∅) = Rn

≥0. We remark that it is possible to allow H = ∅ in
the definition of a siphon. In this case, RI

H = RO
H = ∅. Hence, ∅ is always a siphon. Recall

from Section 6.1 that F∅ and cl(F∅) are always forward invariant sets for (6.1). Note also
that the statements (iv),(v),(vi), and (vii) in Theorem 6.3.7 are true for H = ∅. Therefore
Theorem 6.3.7 holds true if we allow H = ∅ in the definition of a siphon. The following
paragraph provides explanation for the name siphon. The text is borrowed from [2].

Removing all the species of a siphon from the network (or equivalently, setting their
initial concentrations equal to zero) will prevent those species from being present at all
future times. Hence, those species literally lock a part of the network and shut off all the
reactions that therein involved. In particular, once emptied a siphon will never be full again.

As we saw in the preceding theorem, ∅ 6= H ⊆ 1, n is a siphon if and only if FH is forward
invariant. In other words, that H is a siphon means that if species corresponding to H are
not present in the system (i.e. each of those has zero concentration) then those species will
never be present in the future.

That the positive orthant Rn
+ is forward invariant means that a trajectory cannot leave

Rn
+. In other words, supp(φ(t; ξ)) = 1, n for all ξ ∈ Rn

+ and for all t ∈ J+(ξ). We are also
interested in how trajectories, which start on the boundary of the nonnegative orthant evolve
in time. The following proposition expresses that a trajectory starting from the boundary
immediately enters a forward invariant set FH .

Proposition 6.3.8 Let ∅ 6= H ⊆ 1, n. Let ξ ∈ FH . Then there exists H ′ ⊆ H such that
φ(t; ξ) ∈ FH′ for all t ∈ J+(ξ). Moreover, FH′ is forward invariant.

Proof First we remark that one cannot replace the forward invariance of FH′ in the
statement by the expression H ′ is a siphon. This is due to the fact that H ′ may be empty.
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Keep in mind that positive species concentrations cannot become zero in finite time.
Hence, supp(φ(t; ξ)) ⊇ Hc for all t ∈ J≥0(ξ). Define t∗s for s ∈ 1, n by

t∗s = min
{

inf{t ∈ J≥0(ξ) | φs(t; ξ) > 0}, supJ(ξ)
}
,

where inf ∅ = ∞ and min{a,∞} = a for all a ∈ R≥0∪{∞}. Then t∗s ≥ 0 for all s ∈ 1, n with
the convention ∞ > 0. Define the set H ′ ⊆ 1, n by

H ′ = {s ∈ 1, n | t∗s > 0}.

Then H ′ ⊆ H. Indeed, s ∈ H ′ implies that t∗s > 0 and φs(t; ξ) = 0 for all t ∈ [0, t∗s). In
particular, φs(0; ξ) = ξs = 0 and hence s ∈ H.

It suffices to show that t∗s = sup J(ξ) for all s ∈ H ′. Suppose by contradiction that there
exists s ∈ H ′ such that t∗s < supJ(ξ). Let

t∗ = min{t∗s | s ∈ H ′ and t∗s < supJ(ξ)}.

Then t∗ > 0 and supp(φ(t; ξ)) = (H ′)c for all t ∈ (0, t∗). It will be shown that FH′ is forward
invariant and this provides a contradiction.

Due to Theorem 6.3.7, it suffices to show that there exists x ∈ FH′ such that fs(x) = 0

for all s ∈ H ′. Since φs(t; ξ) = 0 for all t ∈ (0, t∗) and for all s ∈ H ′,

0 = φ̇s(t; ξ) = fs(φ(t; ξ))

for all t ∈ (0, t∗) and for all s ∈ H ′. Pick any t0 ∈ (0, t∗) and let x = φ(t0; ξ). Then x ∈ FH′

and fs(x) = 0 for all s ∈ H ′. Hence, t∗ = supJ(ξ).
We have established that there exists H ′ ⊆ H such that φ(t; ξ) ∈ FH′ for all t ∈ J+(ξ).

That FH′ is forward invariant can be proven by following the above ideas with the only
exception that t∗ should be defined to be supJ(ξ). �

The following proposition states that the set H ′ depends only on supp(ξ). In other words,
the set H ′ is the same for all ξ ∈ FH .

Proposition 6.3.9 The set H ′ in the above proposition is determined by H (meaning that
H ′ is the same for all ξ ∈ FH).

Proof The proof we present here is constructive. It can be considered as an algorithm.
The set H is the input and the set H ′ is the output of the algorithm. Denote the set H by
H0.

Recall Proposition 6.1.2. Let x ∈ FG for some G ⊆ 1, n. Then either fs(x) = 0 for all
s ∈ G and for all x ∈ FG or fs(x) > 0 for all s ∈ G and for all x ∈ FG.

If FH0 is forward invariant then clearly H ′ = H0.
If FH0 is not forward invariant then let H1 = {s ∈ H0 | fs(x) = 0 for all x ∈ FH0}. Then

H1 ( H0. Indeed, if H1 would be equal to H0 then FH0 would be forward invariant. Clearly,
supp(φ(t; ξ)) ⊇ Hc

1 for all t ∈ J+(ξ). Hence, H ′ ⊆ H1.
If FH1 is forward invariant then cl(FH1) is forward invariant as well. Clearly H ′ = H1 in

this case.
If FH1 is not forward invariant then let H2 = {s ∈ H1 | fs(x) = 0 for all x ∈ FH1}.

Then H2 ( H1. Indeed, if H2 would be equal to H1 then FH1 would be forward invariant.
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We claim that supp(φ(t; ξ)) ⊇ Hc
2 for all t ∈ J+(ξ). Suppose by contradiction that there

exists s ∈ H1\H2 such that φs(t; ξ) = 0 for all t ∈ J+(ξ). Then s ∈ H ′ and fs(x) > 0

for all x ∈ FH1 (by Proposition 6.1.2, sgn(fs(x)) depends only on supp(x)). This implies
that fs(φ(t; ξ)) > 0 for all t ∈ J+(ξ), because fs(x) = β+

s (x) and the defining sum of β+
s

contain positive summands, because it already contains a positive summand for x ∈ FH1 .
Contradiction. Hence, H ′ ⊆ H2.

If FH2 is forward invariant then cl(FH2) is forward invariant as well. Clearly H ′ = H2 in
this case.

If FH2 is not forward invariant then one can continue this procedure by defining H3.
Since H is a finite set, there exists i ≥ 0 such that H0 ) H1 ) · · · ) Hi = Hi+1. It is

clear that H ′ = Hi. Since H is a finite set, the above described procedure will terminate
after finitely many steps. �

We repeat the algorithm for constructing H ′ in Algorithm 6.3.10. The correctness of this
algorithm is clear from the above proof. It is also clear that the algorithm terminates after
finitely many steps.

Algorithm 6.3.10 Input is H and output is H ′.

(1) Let H0 := H and k := 0.

(2) If FHk
is forward invariant then let H ′ := Hk and STOP. If FHk

is not forward invariant
then GOTO (3).

(3) Let Hk+1 := {s ∈ Hk | fs(x) = 0 for all x ∈ FHk
} and k := k + 1. GOTO (2).

Due to Proposition 6.1.2, it is enough to determine the sign of fs(x) in the calculation of
the set Hk+1 for only one fixed x ∈ FHk

and for all s ∈ Hk. Checking the forward invariance
of FHk

can also be done easily by Theorem 6.3.7.

6.4 Interior equilibria

In this section we examine the set of equilibria for (6.1). We provide some simple statements
for general kinetics. After that we deal with results for networks with mass action kinetics.

We are interested in the behaviour of the solutions of (6.1) with initial condition in the
nonnegative orthant. Hence, we are interested in those equilibrium points of (6.1), which lie
in Rn

≥0.

Definition 6.4.1 Consider the differential equation (6.1). Let us define the set of equilibria
E, the set of interior equilibria E+, and the set of boundary equilibria E0 by

E = {x ∈ Rn
≥0 | f(x) = 0},

E+ = {x ∈ Rn
+ | f(x) = 0}, and

E0 = {x ∈ Rn
0 | f(x) = 0}.

Clearly, E is the disjoint union of E+ and E0. The elements of E are called equilibrium
points, the elements of E+ are called positive or interior equilibrium points and the elements
of E0 are called boundary equilibrium points.
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In this section we investigate mainly the set of interior equilibria. Section 6.5 deals with
the set of boundary equilibria. As we shall see in the next section, in certain cases it is
possible to reduce the investigation of the set of boundary equilibria to examining the set
of interior equilibria for a system, which is derived from the original one.

Recall that δ denotes the deficiency of a reaction network, I denotes the incidence matrix
of the digraph (C,R), and the coordinates of the function R : Rn → Rm are the rate
functions. Recall also that S is the stoichiometric matrix and that S = B · I, where B is the
matrix of complexes.

Proposition 6.4.2 Consider a reaction system. Assume that δ = 0 and let x ∈ Rn
≥0. Then

x ∈ E if and only if R(x) ∈ ker I.

Proof Due to (3.7), x ∈ E if and only if R(x) ∈ ker S. Recall that δ = dim ker S−dim ker I.
If δ = 0 then we obtain that ker S = ker I. Hence, x ∈ E if and only of R(x) ∈ ker I. �

The above proposition shows the importance of examining the kernel of the incidence
matrix, or equivalently, introducing the notion of a circulation. Also in the case when the
deficiency of a network is not zero, part of the equilibrium points comes from the kernel
of the incidence matrix. But in this case, other equilibrium points may also occur, because
ker I is strictly smaller than ker S.

Definition 6.4.3 If all the components of the graph of complexes (C,R) are strongly con-
nected then we say that the reaction network is weakly reversible.

Note that the weak reversibility property is a property of a reaction network. By the weak
reversibility property of a reaction system we mean the weak reversibility of the underlying
reaction network. The following theorem expresses that a deficiency zero network must be
weakly reversible for being able to admit interior equilibrium point.

Theorem 6.4.4 If δ = 0 and E+ 6= ∅ then the underlying reaction network is weakly
reversible.

Proof Suppose that x ∈ E+. Then supp(x) = 1, n, thus condition supp(B·,i) ⊆ supp(x) is
satisfied for all i ∈ C. Hence, by (3.3), R(x) ∈ Rm

+ . The deficiency is zero by assumption, thus
due to Proposition 6.4.2, R(x) ∈ ker I. This means that there exists a positive circulation
on (C,R). This concludes the proof, because due to Theorem 4.3.3, this implies that all the
components of (C,R) are strongly connected. �

In the rest of this section we deal with mass action systems. Due to the following theorem,
for deficiency zero mass action systems, the converse statement of Theorem 6.4.4 also holds.

Theorem 6.4.5 Consider a mass action system with δ = 0. Then E+ 6= ∅ if and only if the
underlying reaction network is weakly reversible.

Proof The only if part follows from Theorem 6.4.4.

To prove the converse statement, let us assume that the underlying reaction network
is weakly reversible. The deficiency was assumed to be zero, hence an equilibrium point
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can only come from the kernel of the incidence matrix. Let x ∈ Rn
+. Define the function

y : R → R+ by

y(i, j) = κ(i,j)

n∏
s=1

xBs,i
s (6.3)

for (i, j) ∈ R. We have to show that there exists x ∈ Rn
+ such that (6.3) defines a circulation

on (C,R). Note that the defined y(i, j) is indeed positive for all (i, j) ∈ R. Observe also that
if (i, j1), (i, j2) ∈ R then

y(i, j1)
κ(i,j1)

=
y(i, j2)
κ(i,j2)

. (6.4)

Positive circulations that satisfy (6.4) are examined in Theorem 4.3.6. Consider a positive
circulation y∗ : R → R+, which satisfies condition (6.4). Pick any r ∈ 1, `. Clearly, using
the same notation as in Theorem 4.3.6, the existence of an interior equilibrium point is
equivalent to the existence of α ∈ R`

+ and x ∈ Rn
+ such that

∑̀
r=1

αry
∗
r (i, j) = κ(i,j)

n∏
s=1

xBs,i
s (6.5)

for all (i, j) ∈ R. Note that if (i, j1), (i, j2) ∈ R with common tail then equation (6.5) are
the same for these two arcs, because y∗ satisfies (6.4). (The unknowns in (6.5) are x and
α.) Hence, we can eliminate part of the equations, keeping only one for all i ∈ 1, c. To be
precise, let p : C → R be an injection such that the tail of p(i) is i for all i ∈ C. Note that by
the weakly reversibility and by the assumption that each complex is involved in at least one
reaction, such injection exists. Define y∗ ∈ Rc

+ by y∗
i

= y∗(p(i))/κp(i). Recall that cr denotes
the number of complexes in the rth linkage class (r ∈ 1, `). Denote by y∗r ∈ Rcr

+ the vector,
which coordinates are the coordinates of y∗ corresponding to the rth linkage class (r ∈ 1, `).

If d is a positive integer then define logd : Rd
+ → Rd by

[v1, . . . , vd]T 7→ [log(v1), . . . , log(vd)]T ,

where log : R+ → R is the natural logarithm function.

Assuming that the columns of B are ordered accordingly to the vectors y∗r and taking
logarithm, (6.5) reduces to

logc1(α1y
∗1)

...
logc`(α`y

∗`)

 = BT · logn(x).

Using that log(ab) = log(a) + log(b) for all a, b ∈ R+, one can write the above equation
in the form

logc(y∗) =


logc1(y∗1)

...
logc`(y∗`)

 = B̂T ·

[
logn(x)

− log`(α)

]
,

where B̂ ∈ R(n+`)×c is the matrix defined in Section 5.3. Due to Theorem 5.3.7, the deficiency
equals to dim ker B̂. As δ = 0 by assumption, B̂T has full range.
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This concludes the proof, because it means that there exist vectors v1 ∈ Rn and v2 ∈ R`

such that

logc(y∗) = B̂T ·

[
v1

v2

]
. (6.6)

Define xs to be ev1
s for s ∈ 1, n and αr to be e−v2

r for r ∈ 1, `. The defined x and α satisfy
all desired conditions. �

We remark that the determination of y∗ in the above proof is equivalent to finding any
positive element of the kernel of an m×m matrix. After one has y∗, it is possible to solve the
linear equation (6.6). Determination of the set of interior equilibria is then straightforward.

The above proof showed that for deficiency zero mass action systems, the weakly re-
versibility property is equivalent to the existence of an interior steady state. As a matter of
fact, we can say more. Recall that S denotes the stoichiometric subspace.

Proposition 6.4.6 Consider a weakly reversible mass action system with δ = 0. Let
x1, x2 ∈ E+. Then logn(x2)− logn(x1) ∈ S⊥.

Proof Due to the proof of Theorem 6.4.5, there exist α1, α2 ∈ R`
+ such that

B̂T ·

[
logn(x1)

− log`(α1)

]
= B̂T ·

[
logn(x2)

− log`(α2)

]
.

One can write out this equation in coordinates. If i ∈ 1, c and the complex Ci is in the
rth linkage class for some r ∈ 1, ` then the ith equation has the form

log(α2
r)− log(α1

r) = 〈B·,i, logn(x2)− logn(x1)〉.

If (i, j) ∈ R then complex Ci and complex Cj are in the same linkage class. This implies
that

〈B·,j −B·,i, logn(x2)− logn(x1)〉 = 0

for all (i, j) ∈ R. Recall that the stoichiometric subspace S is spanned by the set {B·,j−B·,i ∈
Rn | (i, j) ∈ R}. This concludes the proof. �

The above results remain true for a considerable wider class of systems. Recall that δr

denotes the deficiency of the rth linkage class (r ∈ 1, `). The proof of the following theorem
can be found in [6].

Theorem 6.4.7 Consider a weakly reversible mass action system for which δr ≤ 1 for all
r ∈ 1, ` and δ = δ1 + · · ·+ δ`. Then E+ 6= ∅. Moreover, if x∗ ∈ E+ then

E+ ⊆ {x ∈ Rn
+ | logn(x)− logn(x∗) ∈ S⊥}. (6.7)

Recall that we have shown in Section 5.4 that the property δ = δ1 + . . . + δ` holds for all
deficiency zero network. Hence, Theorem 6.4.5 and Proposition 6.4.6 provide the proof of a
special case of Theorem 6.4.7.

The following proposition shows that the converse inclusion in (6.7) holds for a wide class
of systems, including systems in Theorem 6.4.7.
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Proposition 6.4.8 Consider a mass action system, which satisfies δ = δ1 + · · ·+δ`. Assume
that E+ 6= ∅. Fix any x∗ ∈ E+. Then

E+ ⊇ {x ∈ Rn
+ | logn(x)− logn(x∗) ∈ S⊥}.

Proof Pick any x ∈ Rn
+ such that logn(x)− logn(x∗) ∈ S⊥. Let i ∈ 1, c. Let us define the

function πi : Rn
≥0 × Rn

+ → R≥0 by

πi(x, y) =
n∏

s=1

(
xs

ys

)Bs,i

(6.8)

for (x, y) ∈ Rn
≥0×Rn

+. Fix any x∗ ∈ E+ and any x ∈ Rn
+ such that logn(x)− logn(x∗) ∈ S⊥.

Let (i, j) ∈ R. Then

〈B·,j −B·,i, logn(x)− logn(x∗)〉 = 0.

The latter can be written equivalently as

πi(x, x∗) = πj(x, x∗).

Recall thatRr denotes the set of reactions and Cr the set of complexes in the rth linkage class
(r ∈ 1, `). The above equality implies that πi(x, x∗) = πj(x, x∗) for all i, j ∈ Cr (r ∈ 1, `).
For fixed x and x∗ denote this common value by πr. Recall also the definition of the function
fr : Rn → Rn. Straightforward calculation shows that x ∈ E+:

f(x) =
∑̀
r=1

fr(x) =
∑̀
r=1

 ∑
(i,j)∈Rr

κ(i,j)

n∏
s=1

xBs,i
s (B·,j −B·,i)

 =

=
∑̀
r=1

 ∑
(i,j)∈Rr

κ(i,j)

(
n∏

s=1

(x∗s)
Bs,i

)
πi(x, x∗)(B·,j −B·,i)

 =
∑̀
r=1

πrfr(x∗).

Due to x∗ ∈ E+, f(x∗) = 0. Hence, Proposition 5.4.7, fr(x∗) = 0 for all r ∈ 1, `. This
concludes the proof. �

The following theorem is an immediate consequence of Theorem 6.4.7 and Proposition
6.4.8.

Theorem 6.4.9 Consider a weakly reversible mass action system for which δr ≤ 1 for all
r ∈ 1, ` and δ = δ1 + · · ·+ δ`. Fix any x∗ ∈ E+. Then

E+ = {x ∈ Rn
+ | logn(x)− logn(x∗) ∈ S⊥}.

The above theorem allows us to provide a differential geometric statement about E+.
Recall that δ = c− `− rank S. Since 0 < rank S ≤ n, 0 ≤ n− (c− `− δ) < n. The following
proposition can be found in [10] in a slightly different form.

Proposition 6.4.10 Consider a system as in Theorem 6.4.9. Then E+ is C∞-diffeomorphic
to Rn−(c−`−δ). Hence, E+ is a C∞ submanifold of Rn of dimension n− (c− `−δ). Moreover,
E+ is connected.
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Proof Fix any x∗ ∈ E+. Define the map Θ : Rn → Rn
+ by y 7→ [x∗1e

y1 , . . . , x∗neyn ]T . Then
Θ is a C∞-diffeomorphism. Since dimS = c − ` − δ, dimS⊥ = n − (c − ` − δ). We claim
that Θ(S⊥) = E+. Note that x ∈ Θ(S⊥) if and only if there exists a y ∈ S⊥ such that
logn(x∗) + y = logn(x), that is, if and only if logn(x) − logn(x∗) ∈ S⊥. By Theorem 6.4.9,
the latter is equivalent to x ∈ E+. The claim is verified. The connectedness of E+ follows
from the fact that continuous image of a connected set is connected. �

The proof of the following lemma is borrowed from [10].

Lemma 6.4.11 Let S be the stoichiometric subspace and P = (p + S) ∩ Rn
≥0 a positive

stoichiometric class for some p ∈ Rn
+. Then, for each x∗ ∈ Rn

+ there exists a unique x ∈ Rn
+

such that x ∈ P ∩ Rn
+ and logn(x)− logn(x∗) ∈ S⊥.

Proof Let x∗ ∈ Rn
+. For s ∈ 1, n, define function Ls : R → R by

Ls(y) = x∗se
y − psy

for y ∈ R. Then limy→∞ Ls(y) = ∞ and limy→−∞ Ls(y) = ∞, hence Ls is proper, that is,
{y ∈ R | Ls(y) ≤ v} is compact for each v ∈ R. Define the function Q : Rn → R by

Q(y) =
n∑

s=1

Ls(ys).

Note that Q is continuously differentiable. The function Q inherits the proper property from
the functions Ls (s ∈ 1, n):

{y ∈ Rn | Q(y) ≤ w} ⊆
n×

s=1

{ys ∈ R | Ls(ys) ≤ w − (n− 1)M},

where M ∈ R is any common lower bound for the functions Ls (s ∈ 1, n). Restricted to S⊥,
Q is still proper, so it attains a minimum at some point y∗ ∈ S⊥. The transposed of the
gradient of Q at point y∗ ∈ Rn must be orthogonal to S⊥:

((gradQ)(y∗))T = [x∗1e
y∗1 − p1, . . . , x

∗
ney∗n − pn]T = [x∗1e

y∗1 , . . . , x∗ney∗n ]T − p ∈ (S⊥)⊥ = S.

Pick x ∈ Rn
+ such that logn(x) = y∗ + logn(x∗). Note that logn : Rn

+ → Rn is a bijection,
hence such x indeed exists. Then logn(x) − logn(x∗) = y∗ ∈ S⊥ and the formula for the
gradient of Q at point y∗ shows that x− p ∈ S. In other words, x ∈ P ∩ Rn

+.
It remains to show the uniqueness part of the statement. Suppose that x1, x2 ∈ Rn

+ are
such that x1 − p ∈ S, x2 − p ∈ S, logn(x1)− logn(x∗) ∈ S⊥, and logn(x2)− logn(x∗) ∈ S⊥.
This implies that x1 − x2 ∈ S and logn(x1)− logn(x2) ∈ S⊥. Since log : R+ → R is strictly
increasing, (a− b)(log(a)− log(b)) > 0 for any a, b ∈ R+ distinct numbers. Thus

n∑
s=1

(x1
s − x2

s)(log(x1
s)− log(x2

s)) = (x1 − x2)T (logn(x1)− logn(x2)) = 0

implies that x1
s = x2

s for all s ∈ 1, n. �

We are now in the position to formulate a theorem, which states that for certain reaction
systems there exists a unique interior equilibrium point in each positive stoichiometric class.

Theorem 6.4.12 Consider a system as in Theorem 6.4.9. Then |P∩E+| = 1 for all positive
stoichiometric class P.
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Proof Fix any x∗ ∈ E+. Due to Theorem 6.4.9, the set of positive equilibria is {x ∈
Rn

+ | logn(x)− logn(x∗) ∈ S⊥}. Lemma 6.4.11 then implies that |P ∩ E+| = 1. �

The following two examples illustrate the above theorem. The examples will be revisited
in Section 6.6. The examples are borrowed from [10].

Example 6.4.13 Consider the simple example for a reaction network in Figure 6.3.

C1 = A1 + A2
-� C2 = 2A1 + A2

Figure 6.3: Scheme of the reaction network of Example 6.4.13

Using the introduced notations,

C = {C1, C2}, R = {(1, 2), (2, 1)}, c = 2, m = 2, ` = 1, n = 2,

B =

[
1 2

1 1

]
, I =

[
−1 1

1 −1

]
, S = B · I =

[
1 −1

0 0

]
,

rank S = 1, δ = 2− 1− 1 = 0.

Endow the network with mass action kinetics, with rate constants κ(1,2) = 1 and κ(2,1) =

1. Then the differential equation for the system is[
ẋ1

ẋ2

]
= x1x2

[
1

0

]
+ x2

1x2

[
−1

0

]
=

[
(1− x1)x1x2

0

]
.

Thus

E0 = {[x1, x2]T ∈ R2
0 | x1x2 = 0} and E+ = {[x1, x2]T ∈ R2

+ | x1 = 1}.

The stoichiometric subspace S is generated by the vector [1, 0]T . Hence, the positive stoi-
chiometric classes are the sets

Pz = {[x1, x2]T ∈ R2
≥0 | x2 = z}

for z ∈ R+. Each positive stoichiometric class contains exactly one interior equilibrium point.
The sets E0, E+, and Pz are depicted in Figure 6.4. The unique interior equilibrium point
in Pz, [1, z]T , is denoted by x∗ in the figure.

�

Example 6.4.14 Consider the simple example for a reaction network in Figure 6.5.
Using the introduced notations,

C = {C1, C2}, R = {(1, 2), (2, 1)}, c = 2, m = 2, ` = 1, n = 2,

B =

[
1 0

0 1

]
, I =

[
−1 1

1 −1

]
, S = B · I =

[
−1 1

1 −1

]
,
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x1

x2

z Pz

E+

E0

x∗

1

Figure 6.4: The sets E0, E+, and Pz for Example 6.4.13

C1 = A1
-� C2 = A2

Figure 6.5: Scheme of the reaction network of Example 6.4.14

rank S = 1, δ = 2− 1− 1 = 0.

Endow the network with mass action kinetics, with rate constants κ(1,2) = 1 and κ(2,1) =

1. Then the differential equation for the system s:[
ẋ1

ẋ2

]
= x1

[
−1

1

]
+ x2

[
1

−1

]
=

[
x2 − x1

x1 − x2

]
.

Thus

E0 = {[0, 0]T }, and E+ = {[x1, x2]T ∈ R2
+ | x1 = x2}.

The stoichiometric subspace S is generated by the vector [1,−1]T . Hence, the positive stoi-
chiometric classes are the sets

Pz = {[x1, x2]T ∈ R2
≥0 | x2 = −x1 + z}

for z ∈ R+. Each positive stoichiometric class contains exactly one interior equilibrium point.
The sets E+ and Pz are depicted in Figure 6.6. The unique interior equilibrium point in Pz,
[z/2, z/2]T , is denoted by x∗ in the figure.

x1

x2

�
�

�
�

�
�

�
�
�

@
@

@
@

@@

E+

z

z

Pz

x∗

Figure 6.6: The sets E+ and Pz for Example 6.4.14

�

We remark that an example in [7] can be found, where a weakly reversible mass action
system with ` = 1 and δ = 2 admits exactly three positive equilibrium points in each positive
stoichiometric class.
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We conclude this section by providing a compact characterization of the set of equilibria
for weakly reversible mass action systems with δ = 0. The result is then used in Section 6.6.
The introduced characterization is due to E.D. Sontag [10].

Fix any i ∈ 1, c. Let us define the function qi : Rn
+ × Rn

+ → R by

qi(x, y) = 〈B·,i, logn(x)− logn(y)〉. (6.9)

Define the function Φ : Rn
+ × Rn

+ → R≥0 by

Φ(x, y) =
∑

(i,j)∈R

(qj(x, y)− qi(x, y))2.

It is clear from the definition of Φ that it is indeed nonnegative.

Proposition 6.4.15 Consider a system as in Theorem 6.4.9. Let x∗ ∈ E+ and x ∈ Rn
+.

Then x ∈ E+ if and only if Φ(x, x∗) = 0.

Proof Clearly, Φ(x, x∗) = 0 if and only if logn(x) − logn(x∗) ∈ S⊥. Theorem 6.4.9 then
implies the desired result. �

We remark that the above definition of the function Φ is slightly different than in [10].

6.5 Boundary equilibria

We introduce a construction in this section, which allows us to reduce the investigation of
the set of boundary equilibria to the examination of the set of interior equilibria of another
system.

We start by a proposition, which expresses that if (i, j) ∈ R and all the constituting
species of complex Ci are present in the system then each of the constituting species in
complex Cj is either present as well or not present, but biochemically being produced.

Proposition 6.5.1 Assume that (i, j) ∈ R. Pick any x ∈ Rn
≥0 such that supp(B·,i) ⊆

supp(x). Then supp(B·,j) ⊆ supp(x) ∪ {s ∈ 1, n | fs(x) > 0}.

Proof Suppose that there exists s ∈ 1, n for which Bs,j > 0 and xs = 0. We have to prove
that fs(x) > 0. Proposition 6.1.2 implies that in this case fs(x) = β0

s (x), where β0
s (x) is a

sum of nonnegative summands. It suffices to show that there exists a summand in β0
s (x),

which is positive. By the assumption of the proposition, Bs,i = 0 if xs = 0. By condition
(3.3), R(i,j)(x) > 0 and hence R(i,j)(x)Bs,j > 0. �

The following proposition is an immediate consequence of Proposition 6.5.1.

Proposition 6.5.2 Let H ⊆ 1, n be such that FH is forward invariant. Let x ∈ FH and
(i, j) ∈ R. Then supp(B·,i) ⊆ supp(x) implies that supp(B·,j) ⊆ supp(x).

Proof If H = ∅ then the statement is trivial. If H 6= ∅ then Theorem 6.3.7 implies that
fs(x) = 0 for all s ∈ H. It means that {s ∈ 1, n | fs(x) > 0} ⊆ supp(x). Finally, Proposition
6.5.1 yields the result. �

Repeated application of Proposition 6.5.2 yields the following result.
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Proposition 6.5.3 Let H ⊆ 1, n be such that FH is forward invariant. Let x ∈ FH and
(C,R) be the graph of complexes. Then, if there exists a directed path between i ∈ C and
j ∈ C then supp(B·,i) ⊆ supp(x) implies that supp(B·,j) ⊆ supp(x). In particular, if (C′,R′)

is a strongly connected subgraph of (C,R) then either supp(B·,i) ⊆ supp(x) for all i ∈ C′ or
supp(B·,i) * supp(x) for all i ∈ C′.

The following proposition shows that boundary equilibrium point can occur in FH only
if FH is forward invariant. Recall that Cr denotes the set of complexes in the rth linkage
class (r ∈ 1, `).

Proposition 6.5.4 Let ∅ 6= H ⊆ 1, n. Assume that FH ∩ E0 6= ∅. Then H is a siphon.

Proof Pick any ξ ∈ FH ∩ E0. Then f(ξ) = 0. In particular, fs(ξ) = 0 for all s ∈ H. Due
to Theorem 6.3.7, H is a siphon. �

The following proposition shows that in a special case the set of boundary equilibria has
a simple structure.

Proposition 6.5.5 Assume that no row of B vanishes and (C,R) is strongly connected.
Let ∅ 6= H ⊆ 1, n. Then either FH ∩ E0 = FH or FH ∩ E0 = ∅.

Proof Let ξ ∈ FH ∩ E0. Then H is a siphon by Proposition 6.5.4. By Proposition 6.5.3,
either supp(B·,i) * Hc for all i ∈ C or supp(B·,i) ⊆ Hc for all i ∈ C. As Hc ( 1, n and no row
of B vanishes, the latter is not possible. Hence, supp(B·,i) * Hc for all i ∈ C. This implies
that R(i,j)(x) = 0 for all x ∈ FH and for all (i, j) ∈ R. Hence, x ∈ E for all x ∈ FH . �

If H = 1, n and FH is a siphon then clearly 0 ∈ E0.
We introduce now a construction that associates a new reaction system to a reaction

system and a siphon. The advantage of this association will be clear. Let ∅ 6= H ( 1, n be a
siphon. Denote by K the linear space

K = {x ∈ Rn | xs = 0 if s ∈ H}. (6.10)

Define the linear homeomorphism P : K → Rn by (Px)s = xs for s ∈ Hc and for x ∈ K,
where n = |Hc|. (The coordinates of vectors in Rn are indexed by the elements of Hc.) From
now on, if H is a siphon then K and P always denotes the above defined objects.

Construction 6.5.6 Let (A, C,R, R) be a biochemical reaction system. Assume that ∅ 6=
H ( 1, n is a siphon. Denote by Hc the set 1, n\H. Quantities corresponding to the new
system will be indicated by upper bars. The complexes and species occurring in the new
system inherits their indices from the original system. Define the set of species for the new
system by

A = {As ∈ A | s ∈ Hc}.

Define the set of reactions by

R = {(i, j) ∈ R | supp(B·,i) ⊆ Hc}.

Note that if R = ∅ then all the reaction rates in the original system are zero at all x ∈ FH .
Hence, FH ∩ E0 = FH . Continue the construction only if R 6= ∅.
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Define the set of complexes for the new system by

C = {i ∈ 1, c | there exists (j1, j2) ∈ R such that j1 = i or j2 = i}.

Note that if R 6= ∅ then C 6= ∅.
Denote by n and c the number of species and the number of complexes in the new system.

Define the matrix of complexes B ∈ Rn×c for the new system by Bs,i = Bs,i for s ∈ Hc and
for i ∈ C.

It remains to define the kinetics of the new system. Denote by x the new state variable.
Define the rate functions of the new system by R(i,j)(x) = R(i,j)(P−1x) for (i, j) ∈ R and
x ∈ Rn. Define f(x) : Rn → Rn by

f(x) =
∑

(i,j)∈R

R(i,j)(x)(B·,j −B·,i)

for x ∈ Rn. The differential equation that governs the evolution of the new system is then
ẋ = f(x). �

From now on if an object with upper bar appears then we always implicitly assume
that a siphon is given and that object with upper bar corresponds to the new system in
Construction 6.5.6.

Proposition 6.5.7 Let ∅ 6= H ( 1, n be a siphon. Assume that R 6= ∅. Let i ∈ C. Then
supp(B·,i) ⊆ Hc.

Proof Let i ∈ C. If there exists j ∈ C such that (i, j) ∈ R then clearly supp(B·,i) ⊆ Hc.
If there exists j ∈ C such that (j, i) ∈ R then supp(B·,j) ⊆ Hc. By Proposition 6.5.2,

supp(B·,i) ⊆ Hc. �

Note that Proposition 6.5.7 implies that f(x) = Pf(P−1x) for all x ∈ Rn
+.

Note also that f inherits the local Lipschitz continuity from f . Let us denote by φ(·, ξ) :

J(ξ) → Rn the solution of the new differential equation ẋ = f(x) with initial value ξ ∈ Rn.
The following proposition shows that the dynamics of the original system and the new system
are essentially the same.

Proposition 6.5.8 Let ∅ 6= H ( 1, n be a siphon. Assume that R 6= ∅. Let ξ ∈ FH . Then
J(Pξ) ⊆ J(ξ), J≥0(Pξ) = J≥0(ξ) and P−1φ(t;Pξ) = φ(t; ξ) for all t ∈ J(Pξ).

Proof Define y : J(Pξ) → Rn by y(t) = P−1φ(t;Pξ) for t ∈ J(Pξ). Then y(0) =

P−1φ(0;Pξ) = P−1Pξ = ξ and

ẏ(t) = P−1φ̇(t;Pξ) = P−1f(φ(t;Pξ)) = P−1Pf(P−1φ(t;Pξ)) = f(y(t))

for t ∈ J(Pξ). Uniqueness of the solution of the initial value problem ẋ = f(x), x(0) = ξ

implies that J(Pξ) ⊆ J(ξ) and P−1φ(t;Pξ) = φ(t; ξ) for all t ∈ J(Pξ).
It remains to show that J≥0(Pξ) = J≥0(ξ). Suppose by contradiction that J≥0(Pξ) )

J≥0(ξ). Let t∗ = sup J≥0(Pξ). Then t∗ cannot be a finite explosion time for φ(·;Pξ), because
in this case it would be a finite explosion time for φ(·; ξ) as well. Hence, the solution of the new
differential equation must approach the boundary of Rn

+. But this is not possible, because
then φ(t∗; ξ) would be in cl(FH)\FH , which contradicts the forward invariance of FH . �

Denote by E+ the set of interior equilibria for the new system.
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Proposition 6.5.9 Let ∅ 6= H ( 1, n be a siphon. Assume that R 6= ∅. Then

E0 ∩ FH = {x ∈ FH | Px ∈ E+}.

Proof The result is an immediate consequence of Proposition 6.5.8. �

The advantage of introducing the new system is that the set E0∩FH can be examined by
investigating the set of interior equilibria E+ for the new system. Hence, investigating the
set of boundary equilibria can be reduced to the investigation of the set of interior equilibria
for the associated new system. We shall show that this technique can be used for instance
to establish propositions about the set of boundary equilibria for systems in Theorem 6.4.9.

Let us introduce the following notations for further reference. Let ∅ 6= H ( 1, n be a
siphon. Assume that R 6= ∅. Let

S = span{B·,j −B·,i ∈ Rn | (i, j) ∈ R}.

Due to Proposition 6.5.7,

P−1S = span{B·,j −B·,i ∈ Rn | (i, j) ∈ R}

holds.
The following two propositions express that the new system inherits certain properties

of the original system.

Proposition 6.5.10 Let ∅ 6= H ( 1, n be a siphon. Assume that R 6= ∅. If the original
network is weakly reversible then the new network is weakly reversible as well. Moreover,
the linkage classes of the new system are linkage classes of the original system.

Proof Assume that i ∈ C and r ∈ 1, ` are such that i ∈ Cr. Then supp(B·,i) ⊆ Hc by
Proposition 6.5.7. By Proposition 6.5.3, supp(B·,j) ⊆ Hc for all j ∈ Cr. Hence, Rr ⊆ R. In
other words, all the reactions in the rth linkage class are reactions in the new network as
well. �

Assume now that the original system is weakly reversible. Note that due to the above
proposition, the new network essentially consists of certain linkage classes of the original
network. Define the set G by

G = {r ∈ 1, ` | supp(B·,i) ⊆ Hc for all i ∈ Cr}.

Note that G = ∅ if and only if R = ∅. Denote by δ and by δr the deficiency of the new
network and deficiency of the rth linkage class of the new network (r ∈ G), respectively.

Proposition 6.5.11 Consider a weakly reversible reaction network. Let ∅ 6= H ⊆ 1, n be
a siphon. Assume that R 6= ∅. Then δr = δr for all r ∈ G. Moreover, if δ =

∑`
r=1 δr then

δ =
∑

r∈G δr.

Proof To prove the first statement it suffices to show that dim ker B̂r = dim ker B̂r for
all r ∈ G. By Proposition 6.5.7, Bs,i = 0 for all s ∈ H and for all i ∈ C. This implies that
B̂r can be obtained from B̂r by deleting identically zero rows (r ∈ G). Namely, one should
delete the rows with indices in H ∪ {n + r | r ∈ 1, `\G}. This means that ker B̂r = ker B̂r

for all r ∈ G.
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Assume now that δ =
∑`

r=1 δr. As we saw in Section 5.4, this is equivalent to

ran B̂ = ran B̂1 ⊕ · · · ⊕ ran B̂`.

As B̂r can be obtained from B̂r by deleting identically zero rows, it follows that

ran B̂ =
⊕
r∈G

ran B̂r.

This concludes the proof. �

We are now in the position to establish a theorem about the set of boundary equilibria
for certain systems. Note that for a mass action system the defined kinetics for the new
system in Construction 6.5.6 is the mass action kinetics corresponding to the new system.

Theorem 6.5.12 Consider a mass action system. Let ∅ 6= H ( 1, n be a siphon. Assume
that R 6= ∅. Assume that the constructed new system satisfies the conditions of Theorem
6.4.9. Then FH ∩ E0 6= ∅. Moreover, |(FH ∩ E0) ∩ (p + P−1S)| = 1 for all p ∈ FH .

Proof The stoichiometric subspace of the associated new system is S. Pick any p ∈ Rn
+.

By Theorem 6.4.12, |(p + S) ∩ E+| = 1. This observation and Proposition 6.5.9 yields the
result. �

The preceding theorem applies for systems in Theorem 6.4.9 in case R 6= ∅. This is
ensured by Proposition 6.5.10 and Proposition 6.5.11.

Proposition 6.5.13 Consider a mass action system. Let ∅ 6= H ⊆ 1, n be a siphon. Assume
that R 6= ∅. Assume that the constructed new system satisfies the conditions of Theorem
6.4.9. Then FH ∩E0 is a C∞ submanifold of Rn of dimension n− (c− `− δ), where ` is the
number of linkage classes in the new system.

Proof Due to Proposition 6.4.10, E+ is a C∞ submanifold of Rn of dimension n−(c−`−δ).
Proposition 6.5.9 then implies the desired result. �

Proposition 6.5.14 Consider a system as in Theorem 6.4.9. Then the set of equilibria E

is the disjoint union of finitely many C∞ submanifolds of Rn.

Proof Let H = {H ∈ 21,n\{∅} | H is a siphon}, where 21,n denotes the powerset of 1, n.
By Proposition 6.5.4,

E = E+ ∪

( ⋃
H∈H

(FH ∩ E0)

)
.

If R = ∅ for some ∅ 6= H ( 1, n siphon then FH ∩ E0 = FH , which is clearly a C∞

submanifold of Rn. If 1, n is a siphon then E0 ∩ F1,n = {0}, which is a C∞ submanifold of
Rn of dimension 0. These remarks, Proposition 6.4.10, and Proposition 6.5.13 then imply
the desired result. �

We provide now a useful proposition. Let ∅ 6= H ( 1, n be a siphon. Let n = |Hc|. Let
the function Q : Rn → Rn be the orthogonal projection to K, where K is defined by (6.10).

51



Proposition 6.5.15 Consider a weakly reversible mass action system, which satisfies δ =∑`
r=1 δr. Assume that x ∈ E and let ∅ 6= H ( 1, n be a siphon. Then Qx ∈ E0.

Proof By Proposition 5.4.7, fr(x) = 0 for all r ∈ 1, `. By Proposition 6.5.3, either
supp(B·,i) ⊆ Hc for all i ∈ Cr or supp(B·,i) * Hc for all i ∈ Cr (r ∈ 1, `).

Let r ∈ 1, ` such that supp(B·,i) * Hc for all i ∈ Cr. Then fr(Qx) = 0, because all the
rate functions corresponding to the rth linkage class have zero value at Qx.

Let r ∈ 1, ` such that supp(B·,i) ⊆ Hc for all i ∈ Cr. Then R(i,j)(x) = R(i,j)(Qx) for all
(i, j) ∈ Rr, because Bs,i = 0 for all s ∈ H and for all i ∈ Cr and hence the power x

Bs,i
s does

not depend on xs ∈ R≥0. Hence, 0 = fr(x) = fr(Qx).
Thus, we have obtained that fr(Qx) = 0 for all r ∈ 1, `. Clearly, Qx ∈ E0. �

We conclude this section by a compact characterization of the set of equilibria for systems
in Theorem 6.4.9. The proposition presented here can be found in [3] for the special case of
deficiency zero networks and with only one linkage class. The relaxation of the condition on
the deficiency does not cause any difficulty. However, the multiple linkage class case is a bit
more difficult than the case of one linkage class. It turns out that the result remains true
for the multiple linkage class case. We remark however that we do not consider the more
general rate functions of [3].

Let i ∈ 1, c. Let πi : Rn
≥0×Rn

+ → R≥0 as in (6.8). Define the function Ψ : Rn
≥0×Rn

+ → R≥0

by

Ψ(x, y) =
∑

(i,j)∈R

(eπj(x,y) − eπi(x,y))2.

Proposition 6.5.16 Consider a system as in Theorem 6.4.9. Let x∗ ∈ E+ and x ∈ Rn
≥0.

Then x ∈ E if and only if Ψ(x, x∗) = 0.

Proof Clearly, Ψ(x, x∗) = 0 is equivalent to πi(x, x∗) = πj(x, x∗) for all (i, j) ∈ R. The
latter is equivalent to πi(x, x∗) = πj(x, x∗) for all i, j ∈ Cr and for all r ∈ 1, `.

Suppose that πi(x, x∗) = πj(x, x∗) for all i, j ∈ Cr and for all r ∈ 1, `. The same calcula-
tion as at the end of the proof of Proposition 6.4.8 shows that x ∈ E.

To show the converse statement, let x ∈ E. If x ∈ E+ then qi(x, x∗) = qj(x, x∗) for all
(i, j) ∈ R, by Proposition 6.4.15 (recall (6.9)). This implies that πi(x, x∗) = πj(x, x∗) for all
(i, j) ∈ R.

Assume now that x ∈ E0 ∩ FH for some ∅ 6= H ⊆ 1, n. Due to Proposition 6.5.4, H is a
siphon. If H = 1, n then x = 0. Fix any r ∈ 1, `. In this case, due to Proposition 6.5.3 either
supp(B·,i) = ∅ for all i ∈ Cr or supp(B·,i) 6= ∅ for all i ∈ Cr. The first case is not possible,
because the zero complex cannot constitute a linkage class itself. In the latter case, clearly
πi(0, x∗) = 0 for all i ∈ Cr.

Assume for the rest of this proof that ∅ 6= H ( 1, n. Construct a new system as described
in Construction 6.5.6. If R = ∅ then supp(B·,i) * Hc for all i ∈ C and hence πi(x, x∗) = 0

for all i ∈ C. Assume for the rest of this proof that R 6= ∅.
Due to Proposition 6.5.9 and Proposition 6.5.15, both PQx and PQx∗ are interior equi-

librium points of the new system. Hence, using the already proven part of this proposition
for the new system, ∏

s∈Hc

(
xs

x∗s

)Bs,i

=
∏

s∈Hc

(
xs

x∗s

)Bs,j

(6.11)
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for all (i, j) ∈ R. Note that the facts that (PQx)s = xs and (PQx∗)s = x∗s for all s ∈ Hc

and Bs,i = Bs,i for all s ∈ Hc and for all i ∈ C were used.
Fix any r ∈ 1, `. Due to Proposition 6.5.3, either supp(B·,i) ⊆ Hc for all i ∈ Cr or

supp(B·,i) * Hc for all i ∈ Cr.
If supp(B·,i) * supp(x) = Hc for all i ∈ Cr then πi(x, x∗) = 0 for all i ∈ Cr.
Assume that supp(B·,i) ⊆ supp(x) = Hc for all i ∈ Cr. Then

∏
s∈Hc

(
xs

x∗s

)Bs,i

=
n∏

s=1

(
xs

x∗s

)Bs,i

for all i ∈ Cr. Equality (6.11) then implies the result. �

6.6 Stability

In this section we prove stability properties of weakly reversible deficiency zero mass action
systems. Hence, throughout this section, we assume that such a system is given. The pre-
sented ideas basically follow the line of [10] with minor changes. We restrict our attention
to mass action kinetics and do not consider here the more general rate function that can be
found in [10]. However, we examine the multiple linkage class case, while only the case ` = 1

is discussed in detail in [10]. We also investigate stability of boundary equilibrium points.
See [11] for a correction to [10].

We start by recalling some well known notions from the theory of ordinary differential
equations. Let D be a connected open subset of Rn. Let g : D → Rn be continuously
differentiable and ξ ∈ D. Consider the autonomous differential equation (6.12) with initial
value (6.13):

ẋ = g(x), (6.12)

x(0) = ξ. (6.13)

The initial value problem (6.12)-(6.13) has a unique solution on a maximal open interval
denoted by J(ξ). Denote this solution by φ(·; ξ) : J(ξ) → Rn. Let J+(ξ) = J(ξ) ∩ R+ and
J≥0(ξ) = J(ξ) ∩ R≥0.

Definition 6.6.1 Let p ∈ D. If g(p) = 0 then p is said to be an equilibrium point of (6.12).

Denote the open ball in Rn of radius η > 0 with centre p ∈ Rn by Bη(p).

Definition 6.6.2 An equilibrium point p ∈ D is said to be stable if for all ε > 0 there exists
η > 0 such that q ∈ D ∩Bη(p) implies that |φ(t; q)− p| < ε for all t ≥ 0.

Definition 6.6.3 An equilibrium point p ∈ D is said to be asymptotically stable if it is
stable and there exists η > 0 such that limt→∞ |φ(t; q)− p| = 0 whenever q ∈ D ∩Bη(p).

The open connected set D equals to Rn in the case of a reaction system and we are
interested in equilibrium points in the nonnegative orthant. Theorem 6.4.12 states that
each positive stoichiometric class contains exactly one interior equilibrium point. As it was
discussed in Section 6.2, the stoichiometric classes are forward invariant sets for (6.1). The
stoichiometric classes are lying in (rankS)-dimensional affine subspaces. If rank S < n then
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asymptotic stability of an interior equilibrium point is excluded by the forward invariance
of stoichiometric classes. Hence, in the case of biochemical reaction systems, it is necessary
to introduce stability notions relative to forward invariant sets.

Definition 6.6.4 Let F ⊆ Rn
≥0 be a forward invariant set for (6.1) and p ∈ F an equilibrium

point. Then p is said to be stable relative to F if for all ε > 0 there exists η > 0 such that
q ∈ F ∩Bη(p) implies that |φ(t; q)− p| < ε for all t ≥ 0.

Definition 6.6.5 Let F ⊆ Rn
≥0 be a forward invariant set for (3.52) and p ∈ F an equilib-

rium point. Then p is said to be asymptotically stable relative to F if it is stable relative to
F and there exists η > 0 such that q ∈ F ∩Bη(p) implies that limt→∞ |φ(t; q)− p| = 0.

In addition, we define global asymptotic stability of an equilibrium point relative to a
forward invariant set F .

Definition 6.6.6 Let F ⊆ Rn
≥0 be a forward invariant set for (6.1) and p ∈ F an equilibrium

point. Then p is said to be globally asymptotically stable relative to F , if it is stable relative
to F and limt→∞ |φ(t; q)− p| = 0 whenever q ∈ F .

We need several lemmas before stating the main results about the new notion of stability
relative to a stoichiometric class.

Lemma 6.6.7 Define the function γ : R → R by γ(h) = 1 + h− eh + h2

h2+4 . Then γ(h) ≤ 0

for all h ∈ R.

Proof For h ≥ 0 the statement is clear from the Taylor series of the exponential function.

Clearly, 1 + h + h2

h2+4 ≤ 0 for all h ≤ −2. Hence, the statement holds for h ≤ −2.

It remains to show that γ(h) ≤ 0 for all −2 < h < 0. It is well known that 1+h+ h2

2 + h3

6 ≤
eh for all h ∈ R. It suffices to show that h2

h2+4 ≤
h2

2 + h3

6 for all −2 < h < 0. The latter can
be checked easily. �

From now on we consider the differential equation (6.1), which corresponds to a weakly
reversible mass action system, which has deficiency zero. Recall from the end of Section
6.4 the definition of the functions qi : Rn

+ × Rn
+ → R for i ∈ 1, c and of the function

Φ : Rn
+ × Rn

+ → R≥0.

Lemma 6.6.8 Consider a weakly reversible mass action system with zero deficiency. Let
x∗ ∈ E+. Then there exists a continuous function a : Rn

+ → R+ such that

〈logn(x)− logn(x∗), f(x)〉 ≤ −a(x)Φ(x, x∗)
4 + Φ(x, x∗)

for all x ∈ Rn
+.

Proof Define the function a : Rn
+ → R+ by

a(x) = min

{
κ(i,j)

n∏
s=1

xBs,i
s

∣∣∣∣ (i, j) ∈ R

}
for x ∈ Rn

+.

Note that a is continuous.
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Let x ∈ Rn
+. By assumption, the underlying network has zero deficiency and x∗ is assumed

to be an equilibrium point. Hence, Proposition 6.4.2 implies that I ·R(x∗) = 0. Multiplying
this equality from the left by the row vector [eq1(x,x∗), . . . , eqc(x,x∗)] yields that

∑
(i,j)∈R

κ(i,j)

(
n∏

s=1

xBs,i
s

)
(eqj(x,x∗)−qi(x,x∗) − 1) = 0. (6.14)

Using Lemma 6.6.7 with h = qj(x, x∗)− qi(x, x∗) yields

〈logn(x)− logn(x∗), f(x)〉 =
∑

(i,j)∈R

κ(i,j)

(
n∏

s=1

xBs,i
s

)
(qj(x, x∗)− qi(x, x∗)) =

=
∑

(i,j)∈R

κ(i,j)

(
n∏

s=1

xBs,i
s

)
(qj(x, x∗)− qi(x, x∗)− eqj(x,x∗)−qi(x,x∗) + 1) ≤

≤ −
∑

(i,j)∈R

κ(i,j)

(
n∏

s=1

xBs,i
s

)
(qj(x, x∗)− qi(x, x∗))2

4 + (qj(x, x∗)− qi(x, x∗))2
≤

≤ −
∑

(i,j)∈R

a(x)
(qj(x, x∗)− qi(x, x∗))2

4 + Φ(x, x∗)
=

= −a(x)Φ(x, x∗)
4 + Φ(x, x∗)

.

�

Fix any y ∈ R+. Let us define the function vy : R≥0 → R by

vy(z) =
∫ z

y

log(τ)− log(y)dτ for z ∈ R≥0.

Then vy is continuous on R≥0 and continuously differentiable on R+. Moreover, v′y(z) =

log(z) − log(y), which strictly increases and is onto R on R+, hence vy is strictly convex,
strictly decreases for z ∈ [0, y], has a unique global minimum at y, and strictly increases to
∞ for z ∈ [y,∞). These properties imply that the set {z ∈ R≥0 | vy(z) ≤ q} is compact for
all q ∈ R. Note also that vy(z) ≥ 0 for all z ∈ R≥0 and vy(z) = 0 if and only if z = y.

Let x∗ ∈ E+. Define the function Vx∗ : Rn
≥0 → R by

Vx∗(x) =
n∑

s=1

vx∗s (xs) =
n∑

s=1

∫ xs

x∗s

log(τ)− log(x∗s)dτ. (6.15)

The following lemma summarizes important properties of Vx∗ .

Lemma 6.6.9 Define Vx∗ by (6.15). Then

(i) Vx∗(x) > Vx∗(x∗) = 0 for all x ∈ Rn
≥0\{x∗},

(ii) Vx∗ is continuously differentiable on Rn
+,

(iii) (gradVx∗)(x) = (logn(x)− logn(x∗))T for all x ∈ Rn
+,
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(iv) {x ∈ Rn
≥0 | Vx∗(x) ≤ q} is compact for all q ∈ R.

Proof All these properties follow directly from the discussion made for the function
vy : R≥0 → R. �

Proposition 6.6.10 Consider a weakly reversible mass action system with zero deficiency.
Let ξ ∈ Rn

≥0\E such that φ(t; ξ) ∈ Rn
+ for all t ∈ J+(ξ). Let x∗ ∈ E+. Then Vx∗(φ(·; ξ)) :

J(ξ) → R is strictly decreasing on J+(ξ).

Proof Since no solution can reach an equilibrium point in finite time, φ(t; ξ) ∈ Rn
+\E+

for all t ∈ J+(ξ). Then

d

dt
(Vx∗(φ(t; ξ))) = 〈logn(φ(t; ξ))− logn(x∗), f(φ(t; ξ))〉 ≤ −a(φ(t; ξ))Φ(φ(t; ξ), x∗)

4 + Φ(φ(t; ξ), x∗)

for all t ∈ J+(ξ). In the latter expression, the values of a are positive. The denominator
is positive as well. Moreover, Φ(φ(t; ξ), x∗) > 0 for all t ∈ J+(ξ), because of Proposition
6.4.15. This concludes the proof, because it means that Vx∗(φ(·; ξ)) has negative derivative
on J+(ξ). �

The implication of the above proposition remains true if we omit the condition that in
the future the solution is evolving in the interior of the nonnegative orthant.

Proposition 6.6.11 Consider a weakly reversible mass action system with zero deficiency.
Let ξ ∈ Rn

≥0\E. Let x∗ ∈ E+. Then Vx∗(φ(·; ξ)) : J(ξ) → R is strictly decreasing on J+(ξ).

Proof Due to Proposition 6.3.8 there exists H ⊆ 1, n\supp(ξ) such that FH is forward
invariant and φ(t; ξ) ∈ FH for all t ∈ J+(ξ). If H = ∅ then Proposition 6.6.10 can be applied
directly.

If H = 1, n then ξ = 0 and ξ ∈ E, which was excluded.

Suppose for the rest of this proof that ∅ 6= H ( 1, n. Then H is a siphon. Denote by Hc

the set 1, n\H. Let x ∈ FH . Then

Vx∗(x) =
∑

s∈Hc

∫ xs

x∗s

log(τ)− log(x∗s)dτ +
∑
s∈H

∫ 0

x∗s

log(τ)− log(x∗s)dτ.

The second addend in the above formula is not depending on x ∈ FH . Hence, it suffices to
show that

t 7→
∑

s∈Hc

∫ φs(t;ξ)

x∗s

log(τ)− log(x∗s)dτ

is strictly decreasing on J+(ξ).

Let us construct a new system as described in Construction 6.5.6. Recall the definition
of K, P, and Q from Section 6.5. If R = ∅ then ξ ∈ E, which is not possible. If R 6= ∅
then PQx∗ ∈ E+ by Proposition 6.5.15 and Proposition 6.5.9. Observe that for the function
V PQx∗ : Rn

≥0 → R, which is associated to the new system,

V PQx∗(φ(t;PQξ)) =
∑

s∈Hc

∫ φs(t;PQξ)

(PQx∗)s

log(τ)− log((PQx∗)s)dτ =
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=
∑

s∈Hc

∫ φs(t;ξ)

x∗s

log(τ)− log(x∗s)dτ

For all t ∈ J+(PQξ) = J+(ξ). Since φs(t; ξ) ∈ Rn
+\E+ for all t ∈ J+(PQξ) = J+(ξ),

application of Proposition 6.6.10 to the new system implies the desired result. �

We recall one more notion from the theory of ordinary differential equations. Consider
the initial value problem (6.12)-(6.13).

Definition 6.6.12 If J(ξ) ⊇ R≥0 and there exists a sequence (tN )∞N=1 ⊆ J(ξ) with

lim
N→∞

tN = ∞ and lim
N→∞

φ(tN ; ξ) = q

for some q ∈ Rn then q is said to be an ω-limit point of ξ. The set of ω-limit points of ξ is
called the ω-limit set of ξ and is denoted by ω(ξ).

Recall the definition of dist from Chapter 2. The following theorem is well known. The
proof of it can be found for example in [13].

Theorem 6.6.13 Let φ(·; ξ) : J(ξ) → Rn be the solution of the initial value problem (6.12)-
(6.13) for some ξ ∈ D. Assume that φ(t; ξ) ∈ K for all t ∈ J+(ξ), where K ⊆ Rn is a compact
set. Then J(ξ) ⊇ R≥0, the ω-limit set ω(ξ) is nonempty, compact, connected, and forward
invariant. Moreover,

lim
t→∞

dist(φ(t; ξ), ω(ξ)) = 0.

Theorem 6.6.14 Consider a weakly reversible mass action system with zero deficiency. Let
ξ ∈ Rn

≥0. Then J(ξ) ⊇ R≥0.

Proof If ξ ∈ E then J(ξ) ⊇ R≥0 obviously holds.

If ξ ∈ Rn
≥0\E then Vx∗(φ(·; ξ)) is strictly decreasing on J+(ξ) by Proposition 6.6.11. This

fact together with Lemma 6.6.9 implies that there exists a compact set K ⊆ Rn such that
φ(t; ξ) ∈ K for all t ∈ J+(ξ). Theorem 6.6.13 implies that J(ξ) ⊇ R≥0. �

We remark at this point that if the stoichiometric classes of a reaction system are compact
then, by Theorem 6.6.13, any solution is defined for all t ≥ 0. This holds for all reaction
systems.

The following theorem is the basis of the stability results.

Theorem 6.6.15 Consider a weakly reversible mass action system with zero deficiency. Let
P = (p + S) ∩Rn

≥0 be a positive stoichiometric class for some p ∈ Rn
+. Let ξ ∈ P. Let x∗ be

the unique interior equilibrium point in P. Then either ω(ξ) = {x∗} or ω(ξ) ⊆ E0 ∩ P.

Proof If ξ ∈ E then the statement clearly holds.

Let ξ ∈ P\E. Let Vx∗ : Rn
≥0 → R as before. By Theorem 6.6.14, J(ξ) ⊇ R≥0. Hence, the

ω-limit set ω(ξ) is defined. Due to the argument made in the proof of Theorem 6.6.14, there
exists a compact set K ⊆ Rn such that φ(t; ξ) ∈ K for all t ≥ 0. Due to Theorem 6.6.13,
ω(ξ) is nonempty and forward invariant. As P is closed and forward invariant, it is clear
that ω(ξ) ⊆ P.
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Pick any ζ ∈ ω(ξ). We show that ζ ∈ {x∗}∪(E0∩P). Connectedness of ω(ξ) then implies
the result.

Suppose by contradiction that ζ /∈ {x∗}∪(E0∩P). Consider the function φ(·, ζ) : J(ζ) →
Rn. As ζ ∈ Rn

≥0\E, by Proposition 6.6.11, Vx∗(φ(·, ζ)) : J(ζ) → R is strictly decreasing
on J+(ζ). This is a contradiction, because the forward invariant set ω(ζ) is a subset of
{x ∈ Rn

≥0 | Vx∗(x) = v} for some v ∈ R, because of the fact that the value of Vx∗ cannot
increase along trajectories. �

The following theorem is a direct consequence of Theorem 6.6.13 and Theorem 6.6.15.

Theorem 6.6.16 Consider a weakly reversible mass action system with zero deficiency. Let
P = (p + S) ∩Rn

≥0 be a positive stoichiometric class for some p ∈ Rn
+. Let ξ ∈ P. Let x∗ be

the unique interior equilibrium point in P. Then

lim
t→∞

dist(φ(t; ξ), E ∩ P) = 0.

Theorem 6.6.17 Consider a weakly reversible mass action system with zero deficiency. Let
P = (p + S)∩Rn

≥0 be a positive stoichiometric class for some p ∈ Rn
+. Let x∗ be the unique

interior equilibrium point in P. Then x∗ is stable. Moreover, x∗ is asymptotically stable
relative to P.

Proof Let ε > 0. It can be assumed that ε < min{x∗s | s ∈ 1, n}. Let Vx∗ : Rn
≥0 → R

as before. Let α = min{Vx∗(x) | ε = |x − x∗|}. Clearly, α > Vx∗(x∗). Let η > 0 such that
|x− x∗| < η implies that Vx∗(x) < α. This η satisfies the requirement in the definition of a
stable equilibrium point.

Clearly, stability of x∗ relative to P follows from its stability.

It remains to show that x∗ is asymptotically stable relative to P. Let 0 < η′ < min{x∗s | s ∈
1, n}. Let α = min{Vx∗(x) | η′ = |x − x∗|}. Let η > 0 such that |x − x∗| < η implies that
Vx∗(x) < α. We show that the ω-limit set ω(ξ) is {x∗} for all ξ ∈ Bη(x∗) ∩ P. This will
imply that x∗ is asymptotically stable relative to P.

Let y ∈ Rn
≥0. Assume that ys′ = 0 for some s′ ∈ 1, n. Then

Vx∗(y) =
n∑

s=1

∫ ys

x∗s

log(τ)− log(x∗s)dτ ≥

≥
∫ 0

x∗
s′

log(τ)− log(x∗s′)dτ >

∫ x∗
s′−η′

x∗
s′

log(τ)− log(x∗s′)dτ ≥ α > Vx∗(ξ)

for all ξ ∈ Bη(x∗). As Vx∗ cannot increase along the solution starting from ξ, ω(ξ) is a subset
of {x ∈ Rn

≥0 | Vx∗(x) = v} for some v ≤ Vx∗(ξ). Hence, ω(ξ) ∩ Rn
0 = ∅. By Theorem 6.6.15,

ω(ξ) = {x∗}. Theorem 6.6.13 then implies the result. �

Theorem 6.6.18 Consider a weakly reversible mass action system with zero deficiency. Let
P = (p + S)∩Rn

≥0 be a positive stoichiometric class for some p ∈ Rn
+. Let x∗ be the unique

interior equilibrium point in P. Then x∗ is globally asymptotically stable relative to P if
and only if P ∩ E0 = ∅.
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Proof Theorem 6.6.17 implies that x∗ is stable relative to P. By Theorem 6.6.15, if
P ∩E0 = ∅ then ω(ξ) = {x∗} for all ξ ∈ P. This implies global asymptotic stability relative
to P.

If ξ ∈ P ∩ E0 6= ∅ then φ(t; ξ) = ξ for all t ≥ 0. Hence, x∗ is not globally asymptotically
stable relative to P. �

Let ξ ∈ P for some positive stoichiometric class P in Example 6.4.13. Theorem 6.6.16
can be applied for this example to show that the solution starting from ξ approaches P ∩E.
It can also be seen in that example if ξ /∈ E0 then the solution starting from ξ converges to
the unique interior equilibrium point in the stoichiometric class of ξ.

Let ξ ∈ R2
≥0\{[0, 0]T } in Example 6.4.14. Theorem 6.6.18 implies that limt→∞ φ(t; ξ)

exists and is the unique interior equilibrium point in the stoichiometric class of ξ.
We conclude this section by providing a theorem about asymptotic stability of boundary

equilibrium points.

Theorem 6.6.19 Consider a weakly reversible mass action system with zero deficiency. Let
x∗ ∈ E0\{0}. Let H = 1, n\supp(x). (Then ∅ 6= H ( 1, n and H is a siphon by Proposition
6.5.4.) Suppose that R 6= ∅ in Construction 6.5.6. Then x∗ is asymptotically stable relative
to (x∗ + P−1S) ∩ cl(FH).

Proof Application of Theorem 6.6.17 for the new system in Construction 6.5.6 yields the
result. �

6.7 Periodic solutions

In the case of biochemical reaction systems we are always interested in trajectories starting
in the nonnegative orthant. Hence, we define nontrivial periodic orbits for nonnegative initial
values.

Definition 6.7.1 Let ξ ∈ Rn
≥0. A solution of the differential equation (6.1) starting from ξ

is called a nontrivial periodic solution if J(ξ) = R, there exists T > 0 such that φ(t; ξ) =

φ(t + T ; ξ) for all t ∈ R, and φ(·; ξ) : R → Rn is not constant.

The following two theorems show that for certain reaction systems the existence of non-
trivial periodic solutions is excluded.

Theorem 6.7.2 Consider a deficiency zero reaction network, which is not weakly reversible.
Then there is no periodic solution, which lies entirely in Rn

+.

Proof The proof is similar to the proof of Theorem 6.4.4. Suppose by contradiction that
ξ ∈ Rn

+ is such that J(ξ) = R and φ(·; ξ) : R → Rn is a nontrivial periodic solution. Let
T > 0 such that φ(0; ξ) = φ(T ; ξ). Then, by the forward invariance of the positive orthant,
φ(t; ξ) ∈ Rn

+ for all t ∈ [0, T ]. Hence, supp(φ(t; ξ)) = 1, n for all t ∈ [0, T ]. By condition
(3.3), this means that R(i,j)(φ(t; ξ)) > 0 for all (i, j) ∈ R and for all t ∈ [0, T ]. Hence,∫ T

0
R(i,j)(φ(τ ; ξ))dτ > 0 for all (i, j) ∈ R. Since φ(T ; ξ) = φ(0; ξ), formula (6.2) implies that

0 = B · I ·
∫ T

0

R(φ(τ ; ξ))dτ,
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where B is the matrix of complexes, I is the incidence matrix of the graph of complexes
(C,R), and the integral is taken coordinate-wise. Since the deficiency is zero, the above
equation implies that 0 = I ·

∫ T

0
R(φ(τ ; ξ))dτ . This means that there exists a positive circu-

lation on the graph of complexes (C,R). However, due to Theorem 4.3.3, this implies that
the reaction network is weakly reversible. Contradiction. �

We remark that Proposition 6.3.8 implies that a nontrivial periodic solution starting
from ξ ∈ Rn

≥0 can occur only if FH is forward invariant, where H = 1, n\supp(ξ).

Theorem 6.7.3 Consider a weakly reversible mass action system with zero deficiency. Then
there is no nontrivial periodic orbit.

Proof The result follows directly from Proposition 6.6.11. �
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Chapter 7

Concluding remarks

This thesis explored and developed fundamentals of the theory of biochemical reaction sys-
tems. We followed a graph theoretic approach. In Chapter 5 we provided details about the
deficiency, including three equivalent definitions for the deficiency. We also discussed the
notion of deficiency of linkage classes. We examined the notion of a siphon in more details
in Chapter 6. This is helpful in understanding the behaviour of a reaction system. It turned
out that the investigation of a siphon provides advantages in the analysis of the boundary
equilibria and also in the stability investigations. The author of this thesis plans to provide
a new proof for Theorem 6.4.7 using similar ideas as in Theorem 6.4.5.

Theorem 6.4.7 establishes the structure of the set of interior equilibria for weakly re-
versible mass action systems for which δr ≤ 1 for all r ∈ 1, ` and δ = δ1 + · · ·+ δ`. Further
directions of research may include the analysis of reaction systems which are not satisfying
these assumptions. The structure of the set of equilibria is of importance. Stability proper-
ties of equilibrium points could also be interesting. As periodic phenomena are pervasive in
nature, the examination of nontrivial periodic orbits of reaction systems seems to be a key
direction.

The examination of the reaction control system

ẋ(t) = f(t, x(t), u(t)) =
∑

(i,j)∈R

R(i,j)(x(t))u(i,j)(t)(B·,j −B·,i)

y(t) = h(t, x(t), u(t))

is gaining interest. Here, u(i,j)(t) represents enzyme concentration at time t corresponding to
reaction (Ci, Cj). Questions that naturally arise are concerning reachability, controllability,
observability, reconstructability, and stabilizability. Answering questions about realization,
identification, optimal control, and system reduction of reaction control systems could also be
of interest. The answers for the mentioned questions could have importance in biotechnology.
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