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Abstract

This paper presents a stability test for a class of interconnected nonlinear systems motivated
by biochemical reaction networks. The main result determines global asymptotic stability of
the network from the diagonal stability of a dissipativity matrix which incorporates information
about the passivity properties of the subsystems, the interconnection structure of the network,
and the signs of the interconnection terms. This stability test encompasses the secant criterion
for cyclic networks presented in [1], and extends it to a general interconnection structure rep-
resented by a graph. The new stability test is illustrated on a mitogen activated protein kinase
(MAPK) cascade model, and on a branched interconnection structure motivated by metabolic
networks. The next problem addressed is the robustness of stability in the presence of diffusion
terms. The authors use a compartmental model to represent the localization of the reactions
and present conditions under which stability is preserved despite the diffusion terms between
the compartments.

1 Introduction

This paper continues the development of passivity-based stability criteria for interconnected sys-

tems motivated by classes of biochemical reaction networks. In [1, 2] the authors studied a cyclic

interconnection structure in which the first subsystem of a cascade is driven by a negative feedback

from the last subsystem downstream. This cyclic feedback structure is ubiquitous in gene regulation
networks [3–14], cellular signaling pathways [15, 16], and has also been noted in metabolic path-

ways [17,18]. In [1,2] the authors first presented a passivity interpretation of the “secant criterion”

developed earlier in [8, 14] for the stability of linear cyclic systems, and next used this passivity

insight to extend the secant criterion to nonlinear systems. The notion of passivity evolved from

an abstraction of energy conservation and dissipation in electrical and mechanical systems [19,20],
into a fundamental tool routinely used for nonlinear system design and analysis [21,22].

The first contribution of this paper is to expand the analysis tool of [1] to a general interconnec-

tion structure, thus obtaining a broadly applicable stability criterion that encompasses the secant

criterion for cyclic systems as a special case. As in [1], our approach is to exploit the passivity
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properties and the corresponding storage functions [19] for smaller components that comprise the

network, and to construct a composite Lyapunov function for the interconnection using these stor-

age functions. The idea of using composite Lyapunov functions has been explored extensively in

the literature of large-scale systems as surveyed in [23, 24], and led to several network small-gain

criteria [25, 26] that restrict the strength of the interconnection terms. A distinguishing feature
of our passivity-based criterion, however, is that we take advantage of the sign properties of the

interconnection terms to obtain less conservative stability conditions than the small-gain approach.

To determine the stability of the resulting network of passive subsystems we follow the formalism

of [27,28], and construct a dissipativity matrix (denoted by E below) that incorporates information

about the passivity properties of the subsystems, the interconnection structure of the network, and
the signs of the interconnection terms. As a stability test for the interconnected system, we check

the diagonal stability [29] of this dissipativity matrix, that is, the existence of a diagonal solution

D > 0 to the Lyapunov equation ET D + DE < 0 which, if feasible, proves that the network is

indeed stable. In particular, the diagonal entries of D serve as the weights of the storage functions

in our composite Lyapunov function. Although similar results can be proven by combining the pure

input/output approach in [27,28] with appropriate detectability and controllability conditions (see
the discussion in Section 6 below), the direct Lyapunov approach employed in this paper allows us

to formulate verifiable state-space conditions that guarantee the desired passivity properties for the

subsystems. These conditions are particularly suitable for systems of biological interest because

they are applicable to models with nonnegative state variables, and do not rely on the knowledge

of the location of the equilibrium.
The second contribution of this paper is to accommodate state products which are disallowed

in the nonlinear model studied in [1]. This is achieved with a new storage function construction

for each subsystem which, in the absence of state products, coincides with the construction in [1].

Thanks to this extension, our stability criterion is now applicable to a broader class of models, even

in the case of cyclic systems. This class encompasses a mitogen activated protein kinase (MAPK)
cascade model with inhibitory feedback proposed in [15, 16], which is studied in Example 1 as an

illustration of our main result. The final result in the paper employs a compartmental model to

describe the spatial localization of the reactions, and proves that, if the passivity-based stability

criterion holds for each compartment and if the storage functions satisfy an additional convexity

property, then stability is preserved in the presence of diffusion terms between the compartments.

The paper is organized as follows: Section 2 gives an overview of the main results in [1]. Section
3 presents a general interconnection structure represented by a graph, and gives the main stability

result of the paper. Section 4 illustrates this result on biologically motivated examples. Section 5

studies robustness of stability in the presence of diffusion terms in a compartmental model. Section

6 develops an extension of the purely input/output-based proof in [2] of the secant criterion to the

general graphs studied in this paper. In doing so, it adapts a lemma from [27, 28] and compares
the input/output approach with the state-space results derived earlier in the paper. Section 7 gives

the conclusions.
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2 Overview of the Secant Criterion for Cyclic Systems

To evaluate stability properties of negative feedback cyclic systems, references [8, 14] analyzed the

Jacobian linearization at the equilibrium, which is of the form

A =



















−a1 0 · · · 0 −bn

b1 −a2
. . . 0

0 b2 −a3
. . .

...
...

. . .
. . .

. . . 0

0 · · · 0 bn−1 −an



















(1)

ai > 0, bi > 0, i = 1, · · · , n, and showed that A is Hurwitz if the following sufficient condition
holds:

b1 · · · bn

a1 · · · an
< sec(π/n)n. (2)

Unlike a small-gain condition which would restrict the right-hand side of (2) to be 1, the “secant
criterion” (2) also exploits the phase of the loop and allows the right-hand side to be as high as 8

(when n = 3). The secant criterion is also necessary for stability when the ai’s are identical.

Local stability of the equilibrium proven in [8, 14], however, does not rule out the possibility

of periodic orbits. Indeed, the Poincaré-Bendixson Theorem of Mallet-Paret and Smith for cyclic

systems [30,31] allows such periodic orbits to coexist with stable equilibria, as we illustrate on the

system:

ẋ1 = −x1 + ϕ(x3)

ẋ2 = −x2 + x1 (3)

ẋ3 = −x3 + x2

where

ϕ(x3) = e−10(x3−1) + 0.1sat(25(x3 − 1)), (4)

and sat(·) := sgn(·)min{1, |·|} is a saturation1 function. The function (4) is decreasing, and its slope

has magnitude b3 = 7.5 at the equilibrium x1 = x2 = x3 = 1. With a1 = a2 = a3 = b1 = b2 = 1

and n = 3, the secant criterion (2) is satisfied and, thus, the equilibrium is asymptotically stable.

However, simulations in Figure 1 show the existence of a periodic orbit in addition to this stable

equilibrium.
To study global stability properties of cyclic systems with negative feedback, in [1,2] the authors

first developed a passivity interpretation of the secant criterion (2), and next used this passivity

1One can easily modify this example to make ϕ(·) smooth while retaining the same stability properties.
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Figure 1: Trajectory of (3) starting from initial condition x = [1.2 1.2 1.2]T , projected onto the
x1-x2 plane.

insight to extend the secant criterion to the nonlinear model:

ẋ1 = −f1(x1) + hn(xn)

ẋ2 = −f2(x2) + h1(x1)
... (5)

ẋn = −fn(xn) + hn−1(xn−1)

in which xi ∈ IR≥0, fi(·), i = 1, · · · , n and hi(·), i = 1, · · · , n− 1 are increasing functions, and hn(·)

is a decreasing function which represents the inhibition of the formation of x1 by the end product

xn. When an equilibrium x∗ exists, [1] proves its global asymptotic stability under the following
condition:

∣

∣

∣

∂hi(xi)
∂xi

∣

∣

∣

∂fi(xi)
∂xi

≤ γi ∀xi ∈ IR≥0, i = 1, · · · , n, (6)

γ1 · · · γn < sec(π/n)n, (7)

which encompasses the linear secant criterion (2) with γi = bi/ai.

A crucial ingredient in the global asymptotic stability proof of [1] is the observation that the

secant condition (7) is necessary and sufficient for the diagonal stability of the matrix

Ecyclic =



















−1/γ1 0 · · · 0 −1

1 −1/γ2
. . . 0

0 1 −1/γ3
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 1 −1/γn



















(8)

that is, for the existence of a diagonal matrix D > 0 such that

ET
cyclicD + DEcyclic < 0. (9)
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The authors of [1] connect this diagonal stability property to the global asymptotic stability of

(5) by first noting that the assumption (6) guarantees an output strict passivity property, where

1/γi quantifies the excess of passivity in each xi-subsystem. They then incorporate this passivity

information in the diagonal terms of the dissipativity matrix (8), and represents the interconnection

structure with the off-diagonal terms. Finally, they use the diagonal stability condition (9), which
is equivalent to the secant criterion (7), to check whether the excess of passivity in each subsystem

overcomes the loss of passivity in the interconnection. In particular, the diagonal entries of D

constitute the weights of the storage functions in a composite Lyapunov function for (5).

3 From the Cyclic Structure to General Graphs

We now extend the diagonal stability procedure outlined above for cyclic systems to a general

interconnection structure, described by a directed graph without self-loops. The nodes represent
subsystems with possibly vector outputs, and a separate link is used for each output channel. For

the nodes i = 1, · · · , N and links l = 1, · · · ,M , we denote by L+
i ⊆ {1, · · · ,M} the subset of links

for which node i is the sink, and by L−
i the subset of links for which node i is the source. We

write i = source(l) if l ∈ L−
i , and i = sink(l) if l ∈ L+

i . Using this graph we introduce the dynamic

system:
ẋi = −fi(xi) + gi(xi)

∑

l∈L+
i

hl(xsource(l)) i = 1, · · · , N (10)

where xi ∈ IR≥0, and fi(·), gi(·), i = 1, · · · , N , hl(·), l = 1, · · · ,M are locally Lipschitz functions
further restricted by the following assumptions:

A1: fi(0) = 0 and, for all σ ≥ 0, gi(σ) > 0, hl(σ) ≥ 0.

Assumption A1 guarantees that the nonnegative orthant IRN
≥0 is forward invariant for (10). The

strict positivity of gi(xi) is also essential for our analysis since we exploit the sign properties of

hl(xsource(l)) which are multiplied by gi(xi) in (10).

A2: There exists an equilibrium x∗ ∈ IRN
≥0 for (10).

A3: For each node i, the function fi(xi)/gi(xi) satisfies the sector property:

(xi − x∗
i )

(

fi(xi)

gi(xi)
−

fi(x∗
i )

gi(x∗
i )

)

> 0 ∀xi ∈ IR≥0 − {x∗
i }. (11)

A4: For each node i, and for each link l ∈ L−
i , the function hl(xi) satisfies one of the following

sector properties for all xi ∈ IR≥0 − {x∗
i }:

(xi − x∗
i )[hl(xi) − hl(x

∗
i )] > 0 (12)

(xi − x∗
i )[hl(xi) − hl(x

∗
i )] < 0. (13)

To distinguish between positive and negative feedback signals we assign to each link l a positive

sign if (12) holds, and a negative sign if (13) holds, and rewrite (12)-(13) as

sign(link l)(xi − x∗
i )[hl(xi) − hl(x

∗
i )] > 0 (14)
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∀xi ∈ IR≥0 − {x∗
i }.

A5: For each link l ∈ L−
i there exists a constant γl > 0 such that, ∀xi ∈ IR≥0 − {x∗

i },

sign(link l)
hl(xi) − hl(x∗

i )
fi(xi)
gi(xi)

−
fi(x∗

i
)

gi(x∗
i
)

≤ γl. (15)

Theorem 1 Consider the system (10), and suppose assumptions A1-A5 hold. If the M × M

dissipativity matrix

Elk =







−1/γl if k=l

sign(link k) if source(l) = sink(k)

0 otherwise

(16)

is diagonally stable; that is, if there exists a diagonal matrix D > 0 such that

ET D + DE < 0, (17)

then the equilibrium x∗ is asymptotically stable. If, further, for each node i one of the following
two conditions holds, then x∗ is globally asymptotically stable in IRN

≥0:

a) L−
i is nonempty and there exists at least one link l ∈ L−

i such that

lim
xi→∞

∫ xi

x∗
i

hl(σ) − hl(x∗
i )

gi(σ)
= ∞, (18)

b) L−
i is empty; that is, the outdegree of node i is zero;

lim
xi→∞

∫ xi

x∗
i

σ − x∗
i

gi(σ)
= ∞, (19)

and there exists a class-K∞ function2 ω(·) such that

(xi − x∗
i )

(

fi(xi)

gi(xi)
−

fi(x∗
i )

gi(x∗
i )

)

≥ |xi − x∗
i |ω(|xi − x∗

i |) ∀xi ≥ 0. (20)

Proof: We first prove the theorem for the case when L−
i is nonempty for all i = 1, · · · , N ; that

is, when there are no nodes with outdegree equal to zero. In this case we construct a composite

Lyapunov function of the form

V (x − x∗) =
M
∑

l=1

dlVl(xsource(l) − x∗
source(l)) (21)

in which the components are

Vl(xsource(l) − x∗
source(l)) = sign(link l)

∫ xsource(l)

x∗
source(l)

hl(σ) − hl(x∗
source(l))

gsource(l)(σ)
dσ (22)

2
K is the class of functions IR≥0 → IR≥0 which are zero at zero, strictly increasing and continuous. K∞ is the

subset of class-K functions that are unbounded.
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and the coefficients dl > 0 are to be determined. The function (21) is positive definite because each

component Vl is a positive definite function of (xsource(l)−x∗
source(l)) due to the sign property (14) of

the integrand in (22), and because (xsource(l) − x∗
source(l)) = 0, l = 1, · · · ,M , guarantees x − x∗ = 0

by virtue of the fact that each node is the source for at least one link.

We now claim that the function Vl in (22) satisfies the dissipativity property

V̇l ≤ yl

M
∑

k=1

Elkyk (23)

where

yl := sign(link l)[hl(xsource(l)) − hl(x
∗
source(l))] (24)

l = 1, · · · ,M , and the coefficients Elk are as in (16). Before we prove this claim, we first note

that the diagonal stability property (17) and the estimate (23) together imply that the Lyapunov

function (21), with coefficients dl obtained from the diagonal elements of D, yields a negative definite

derivative from which asymptotic stability of x∗ follows. If, further, for each node i there exists at

least one link l ∈ L−
i such that (18) holds, then the Lyapunov function (21) grows unbounded as

|x| → ∞, thus proving global asymptotic stability.

If there exist nodes with outdegree equal to zero, then the arguments above prove that the

subsystem comprising of the nodes with outdegree one or more is asymptotically stable. The out-

puts hl from this subsystem serve as inputs to the nodes with outdegree equal to zero. Because

the dynamics of these nodes are of the form (10) and are asymptotically stable by A3, asymptotic
stability for the equilibrium x∗ follows from standard results on cascade interconnections of asymp-

totically stable systems (see e.g. [32, p. 275]). Likewise, when condition (b) holds, (20) and (19)

imply an input-to-state stability (ISS) property [33] for the driven subsystem of the cascade, and

global asymptotic stability follows because the cascade interconnection of an ISS system driven by

a globally asymptotically stable system is globally asymptotically stable [33].

We conclude the proof by showing that the claim (23) is indeed true. To this end we compute
from (22) and (10) the derivative

V̇l = sign(link l)[hl(xi) − hl(x
∗
i )]

(

−
fi(xi)

gi(xi)
+ ui

)

(25)

where i = source(l), and

ui :=
∑

k∈L+
i

hk(xsource(k)). (26)

Adding and subtracting

u∗
i :=

∑

k∈L+
i

hk(x
∗
source(k)) =

fi(x∗
i )

gi(x∗
i )

(27)

within the bracketed term in (25), we obtain

V̇l = sign(link l)[hl(xi) − hl(x
∗
i )]

(

−
fi(xi)

gi(xi)
+

fi(x∗
i )

gi(x∗
i )

+ ui − u∗
i

)

. (28)
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Next, noting that sign(link l)[hl(xi) − hl(x∗
i )] and

(

fi(xi)
gi(xi)

−
fi(x∗

i
)

gi(x∗
i
)

)

possess the same signs due to

(11) and (14), and using (15), we obtain the inequality

− sign(link l)[hl(xi) − hl(x
∗
i )]

(

fi(xi)

gi(xi)
−

fi(x∗
i )

gi(x∗
i )

)

≤ −
1

γl
[hl(xi) − hl(x

∗
i )]

2. (29)

Substituting (29) in (28), and using the variables yl defined in (24), we get

V̇l = −
1

γl
y2

l + yl(ui − u∗
i ). (30)

Finally, noting from (26) and (27) that

ui − u∗
i =

∑

k∈L+
i

sign(link k)yk, (31)

we rewrite (30) as

V̇l ≤ −
1

γl
y2

l + yl

∑

k∈L+
i

sign(link k)yk, (32)

which is equivalent to (23) by the definition of the coefficients Ekl in (16). !

The assumptions A3-A5 rely on the knowledge of the equilibrium x∗ which may not be available

in practice. When the functions fi(·), gi(·), and hl(·) are C1, the following incremental conditions

guarantee A3-A5, and do not depend on x∗:
A3’: For each i = 1, · · · , N , and ∀xi ≥ 0,

∂

∂xi

(

fi(xi)

gi(xi)

)

> 0. (33)

A4’: For each l = 1, · · · ,M , and ∀xi ≥ 0,

sign(link l)
∂hl(xi)

∂xi
> 0. (34)

A5’: For each link l ∈ L−
i there exists a constant γl > 0 such that

∣

∣

∣

∂hl(xi)
∂xi

∣

∣

∣

∂
∂xi

(

fi(xi)
gi(xi)

) ≤ γl ∀xi ≥ 0. (35)

Although the growth assumption (35) may appear restrictive, most biologically relevant nonlin-

earities satisfy this condition globally. If there exist closed intervals Xi ⊆ IR≥0 such that X1×· · ·×XN

is forward invariant for (10), a less conservative γl may be obtained by evaluating (35) on Xi, rather

than for all xi ≥ 0. This relaxation is particularly useful in biological applications where xi repre-

sents the amount of a substance which may be lower- and upper-bounded.
The dissipativity matrix E in (16) combines information about the interconnection structure of
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the network with the passivity properties of its components. Because the off-diagonal components

of this matrix are negative for links that represent inhibitory reaction rates, diagonal stability is less

restrictive than a networked small-gain condition [25,26] which ignores the signs of the off-diagonal

terms. In the case of a cyclic graph where each link l = 1, · · · , n connects source i = l to sink

i = l+1 (mod n), and where only link n has a negative sign, (16) assumes the form (8). Theorem 1
thus recovers the result of [1] as a special case, and further relaxes it by accommodating the gi(xi)

functions in (10) which are not allowed in [1].

4 Examples

Example 1 To illustrate Theorem 1 we first study a simplified model of mitogen activated protein

kinase (MAPK) cascades with inhibitory feedback, proposed in [15,16]:

ẋ1 = −
b1x1

c1 + x1
+

d1(1 − x1)

e1 + (1 − x1)

µ

1 + kx3
(36)

ẋ2 = −
b2x2

c2 + x2
+

d2(1 − x2)

e2 + (1 − x2)
x1 (37)

ẋ3 = −
b3x3

c3 + x3
+

d3(1 − x3)

e3 + (1 − x3)
x2. (38)

The variables xi ∈ [0, 1] denote the active forms of the proteins, and the terms 1 − xi indicate

the inactive forms (after nondimensionalization and assuming that the total concentration of each

of the proteins is 1). The second term in each equation indicates the rate at which the inactive

form of the protein is being converted to active form, while the first term models the inactivation

of the respective protein. For the proteins xi, i = 2, 3, the activation rate is proportional to the

concentration of the active form of the protein xi−1 upstream, which facilitates the conversion.
The activation of the first protein x1, however, is inhibited by x3 as represented by the decreasing

function µ/(1 + kx3).

The model (36)-(38) is of the form (10) with

fi(xi) =
bixi

ci + xi
, gi(xi) =

di(1 − xi)

ei + (1 − xi)
, i = 1, 2, 3,

hi(xi) = xi, i = 1, 2, h3(x3) =
µ

1 + kx3
. (39)

Because the underlying graph is cyclic with each link l = 1, 2, 3 connecting source i = l to sink

i = l + 1(mod3), and because h3(·) is strictly decreasing, the dissipativity matrix E in (16) is of

the form (8) and, as proved in [1], its diagonal stability is equivalent to the secant criterion (7).

However, unlike the model (5) of [1] which disallows state products, Theorem 1 above accommodates

the functions gi(xi), and is applicable to (36)-(38).

To reduce conservatism in the estimates for the γi’s in Theorem 1 we further restrict the intervals
[0, 1] in which xi’s evolve by noting that h3(x3) takes values within the interval [ µ

1+k , µ]. Because

9



h3(x3) is the input to the x1-subsystem, and because the function θi : [0, 1] → [0,∞) defined by

θi(xi) :=
fi(xi)

gi(xi)
, (40)

is strictly increasing, it follows from the bounds on the input signal that the interval X1 =

[x1,min, x1,max] := [θ−1
1 (µ/(1 + k)), θ−1

1 (µ)] is an invariant and attractive set for the x1-subsystem.

Since x1 and x2 serve as inputs to the x2- and x3-subsystems respectively, the same conclusion
holds for the intervals X2 = [x2,min, x2,max] and X3 = [x3,min, x3,max], where

xi,min := θ−1
i (xi−1,min) xi,max := θ−1

i (xi−1,max) (41)

i = 2, 3. With the following coefficients from [34]:

b1 = e1 = c1 = b2 = 0.1, c2 = e2 = c3 = e3 = 0.01,

b3 = 0.5, d1 = d2 = d3 = 1, µ = 0.3,

we obtained γi’s numerically by maximizing the left-hand side of (35) on Xi for various values of the

parameter k. This numerical experiment showed that the secant condition γ1γ2γ3 < 8 is satisfied

in the range k ≤ 4.35 (for k = 4.36 we get γ1γ2γ3 = 11.03). Reference [34] gives a small-gain

estimate k ≤ 3.9 for stability, and shows that a Hopf bifurcation occurs at around k = 5.1. The

estimate k ≤ 4.35 obtained from Theorem 1 thus reduces the gap between the unstable range and
the small-gain estimate.

Example 2 A common form of feedback inhibition in metabolic networks occurs when several

end metabolites in different branches of a pathway inhibit a reaction located before the branch
point [18, 35]. As an example of this situation we consider the network in Figure 2 where the end

metabolites with concentrations x4 and x6 inhibit the formation of x1 from an initial substrate x0.

Assuming that x0 is kept constant, and that its conversion to x1 is regulated by two isofunctional

x1 x2

x3 x4

x5 x6

1
2

3

4

5

6

7

Figure 2: Feedback inhibition in a branched network. The dashed links 4 and 7 indicate negative
(inhibitory) feedback signals. The dissipativity matrix obtained from (16) for this network is (43).
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enzymes each of which is selectively sensitive to x4 or x6, we represent this network as in (10):

ẋ1 = −f1(x1) + h4(x4) + h7(x6)

ẋ2 = −f2(x2) + h1(x1)

ẋ3 = −f3(x3) + h2(x2)

ẋ4 = −f4(x4) + h3(x3) (42)

ẋ5 = −f5(x5) + h5(x2)

ẋ6 = −f6(x6) + h6(x5),

where the functions h4(x4) and h7(x6) are decreasing due to the inhibitory effect of x4 and x6,

while hl(·), l = 1, 2, 3, 5, 6 and fi(·), i = 1, · · · , 6 are increasing.

Rather than study specific forms for these functions, we assume that A1 and A2 hold, and that
γl’s exist as in (35). An application of Theorem 1 then proves global asymptotic stability of the

equilibrium if the dissipativity matrix

E =

























− 1
γ1

0 0 −1 0 0 −1

1 − 1
γ2

0 0 0 0 0

0 1 − 1
γ3

0 0 0 0

0 0 1 − 1
γ4

0 0 0

1 0 0 0 − 1
γ5

0 0

0 0 0 0 1 − 1
γ6

0

0 0 0 0 0 1 − 1
γ7

























(43)

is diagonally stable. Note that the 4 × 4 principal submatrices obtained by deleting row-column

pairs {5, 6, 7} and {2, 3, 4} each exhibit a cyclic structure for which, as shown in [1], diagonal

stability is equivalent to the secant criteria

γ1γ2γ3γ4 < sec(π/4)4 = 4 and γ1γ5γ6γ7 < 4, (44)

respectively. Because principal submatrices of a diagonally stable matrix are also diagonally stable,
we conclude that (44) is a necessary condition for the diagonal stability of (43). In fact, we prove

the following necessary and sufficient condition:

Lemma 2 The matrix E in (43) is diagonally stable iff

γ1γ2γ3γ4 + γ1γ5γ6γ7 < sec(π/4)4 = 4 . (45)

Proof: We prove the sufficiency of this condition as a consequence of a more general fact. Consider
the following diagonal matrix:

D = diag

(

1 ,
γ3γ4

2
,

γ4

γ2
,

2

γ2γ3
,

γ6γ7

2
,

γ7

γ5
,

2

γ5γ6

)

(46)
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and the matrix

M := ET D + DE.

We will prove that condition (45) implies that M ≤ 0. Diagonal stability of E follows from this

claim in view of the following argument: Given any γi’s satisfying the constraint (45), we can
find γ̃i > γi that still satisfy the constraint, and under this transformation E gets transformed to

Ẽ = E + ∆, where ∆ is some positive diagonal matrix. Now let D̃ be defined for Ẽ as in (46)

with γi’s replaced by γ̃i’s. Since ET D̃ + D̃E < ẼT D̃ + D̃Ẽ = M̃ , and since M̃ ≤ 0, it follows that

ET D̃ + D̃E < 0, which means that E is diagonally stable.

To prove that (45) implies M ≤ 0, we let Eε := E − εI for each ε > 0, and show that
Mε = ET

ε D + DEε is negative definite for small enough ε > 0. By continuity, this last property

implies that M ≤ 0. In order to check negative definiteness of Mε, we consider the principal minors

µi(ε), i = 1, . . . , 7 of Mε, and ask that they all have sign (−1)i for small ε > 0. Each µi is a

polynomial of degree ≤ 7 on ε. The determinant of Mε can be expanded as follows:

µ7(ε) =
8γ4γ7(γ5 + 2γ6 + γ7)(γ2 + 2γ3 + γ4)

γ1γ3
2γ3γ3

5γ6
∆ ε2 + O(ε3), (47)

where ∆ = γ1γ2γ3γ4 + γ1γ5γ6γ7 − 4. Similarly, we have:

µ6(ε) =
−2γ4γ2

7(γ2 + 2γ3 + γ4)

γ1γ3
2γ3γ2

5

∆ ε + O(ε2),

µ5(ε) =
2γ4γ6γ7(γ2 + 2γ3 + γ4)

γ1γ3
2γ3γ5

∆ ε + O(ε2),

µ4(ε) =
−2γ4(γ2 + 2γ3 + γ4)

γ1γ3
2γ3

∆1 ε + O(ε2),

where ∆1 = γ1γ2γ3γ4 − 4,

µ3(ε) =
γ2
4

2γ1γ2
2

∆1 + O(ε),

µ2(ε) =
−γ3γ4

4γ1γ2
(∆1 − 4) + O(ε),

and

µ1(ε) = −
2

γ1
− 2ε.

Since ∆1 < ∆, we conclude that the matrix Mε is negative definite for all small enough ε > 0 if

and only if ∆ < 0. In particular, condition (45) implies that M ≤ 0, as claimed.
Finally, we prove the necessity of (45) for the diagonal stability of E in (43). To this end, we

define Ê = diag (γ1, · · · , γ7)E which has all diagonal components equal to −1, and characteristic

polynomial equal to:

(s + 1)3[(s + 1)4 + k],

where k := γ1γ2γ3γ4 + γ1γ5γ6γ7. For k ≥ 0, the roots of (s + 1)4 = −k have real part ± 4
√

k/4 − 1;

hence k < 4 is necessary for these real parts to be negative. Because (45) is necessary for the

12



Hurwitz property of Ê, it is also necessary for its diagonal stability. Since diagonal stability of Ê is

equivalent to diagonal stability of E, we conclude that (45) is necessary for the diagonal stability

of E.

5 Stability of a Compartmental Model with Diffusion

A compartmental model is appropriate for describing the spatial localization of processes when each

of a finite set of spatial domains (“compartments”) is well-mixed, and can be described by ordinary
differential equations. Instead of the lumped model (10), we now consider n compartments, and

represent their interconnection structure with a new graph in which the links k = 1, · · · ,m indicate

the presence of diffusion between the compartments j = 1, · · · , n they interconnect. Although the

graph is undirected, for notational convenience we assign an orientation to each link and define the

n × m incidence matrix S as

sjk :=







+1 if node j is the sink of link k

−1 if node j is the source of link k
0 otherwise.

(48)

The particular choice of the orientation does not change the derivations below.

We first prove a general stability result (Theorem 3 below) for a class of compartmental models
interconnected as described by the incidence matrix S. We then apply this result in Corollary 4 to

the situation where the individual compartments possess dynamics of the form studied in Section

3. We let

Xj := (xj,1, · · · , xj,N )T

be the state vector of concentrations xj,i in compartment j, and let Ẋj = Fj(Xj) represent the

dynamics of the jth compartment in the absence of diffusion terms. Next, for each link k =

1, · · · ,m, we denote by

µk,i(xsink(k),i − xsource(k),i) (49)

the diffusion term for the species i, flowing from source(k) to sink(k), and assume the functions

µk,i(·), k = 1, · · · ,m, i = 1, · · · , N , satisfy

σµk,i(σ) ≤ 0, ∀σ ∈ R. (50)

Then, the coupled dynamics of the compartments become:

Ẋj = Fj(Xj) + (Sj,· ⊗ IN )µ((ST ⊗ IN )X) j = 1, · · · , n (51)

where Sj,· is the jth row of the incidence matrix S, IN is the N ×N identity matrix, “⊗” represents

the Kronecker product,

X := [XT
1 · · ·XT

n ]T (52)
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and µ : RmN → RmN is defined as

µ(z) := [µ1,1(z1) · · · µ1,N (zN ) · · · · · · µm,1(z(m−1)N+1) · · ·µm,N (zmN )]T. (53)

We now prove stability of the coupled system (51) under the assumption that a common Lya-

punov function exists for the decoupled models Ẋj = Fj(Xj), j = 1, · · · , n, and that this common

Lyapunov function consists of a sum of convex functions of individual state variables:

Theorem 3 Consider the system (51) where the function µ(·) is as in (53) and (50). If there exists

a Lyapunov function V : RN → R of the form

V (x) = V1(x1) + · · · + VN (xN ) (54)

where each Vi(xi) is a convex, differentiable and positive definite function, satisfying

∇V (x)Fj(x) ≤ −α(|x|) j = 1, · · · , n (55)

for some class-K function α(·), then the origin X = 0 of (51) is asymptotically stable. If, further,

V (·) is radially unbounded, then X = 0 is globally asymptotically stable.

Proof: We employ the composite Lyapunov function

V(X) =
n

∑

j=1

V (Xj), (56)

and obtain from (51) and (55):

V̇(X) ≤ −
n

∑

j=1

α(|Xj |) + [∇V (X1) · · ·∇V (Xn)](S ⊗ IN )µ((ST ⊗ IN )X). (57)

We next rewrite the second term in the right-hand side of (57) as






(ST ⊗ IN )







∇V T (X1)
...

∇V T (Xn)













T

µ((ST ⊗ IN )X), (58)

and note from (48) that (58) equals

m
∑

k=1

[∇V T (Xsink(k)) −∇V T (Xsource(k))]







µk,1
...

µk,N






(59)

where µk,i, i = 1, · · · , N , denotes the diffusion function (49), and the argument is dropped for
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brevity. Next, using (54), we rewrite (59) as

m
∑

k=1

N
∑

i=1

[∇Vi(xsink(k),i) −∇Vi(xsource(k),i)]µk,i. (60)

Because Vi(·) is a convex function, its derivative ∇Vi(·) is a nondecreasing function and, hence,

∇Vi(xsink(k),i) −∇Vi(xsource(k),i) possesses the same sign as (xsink(k),i − xsource(k),i). We next recall
from the sector property (50) that the function µk,i in (49) possesses the opposite sign of its

argument (xsink(k),i − xsource(k),i). This means that each term in the sum (60) is nonpositive and,

hence, (57) becomes

V̇(x) ≤ −
n

∑

j=1

α(|Xj |), (61)

from which the conclusions of the theorem follow. !

Theorem 3 is applicable when each compartment is as described in Section 3, hl(·) satisfies (34),

and gi(·)’s, i = 1, · · · , N , are nonincreasing functions. This is because the Lyapunov construction

(21) in Section 3 consists of a sum of terms as in (54), each of which is convex when the derivative

of (22) is nondecreasing:

Corollary 4 Consider the system (51) where the function µ(·) is as in (53) and (50), and Fj(x),

j = 1, · · · , n, are identical and represent the right-hand side of (10). If all assumption of Theorem

1 hold and if, in addition, hl(·) satisfies (34), and gi(·)’s, i = 1, · · · , N , are nonincreasing functions,

then the equilibrium X = [x∗T , · · · , x∗T ]T is globally asymptotically stable.

6 Comparison of the State-Space and Input/Output Approaches

The earlier paper [2] gave a purely input/output (instead of state-space) version of the secant

criterion, phrased in the language of passivity of L2 operators. We now explain how to extend this

I/O approach to the general graphs studied in this paper. The result follows easily by imposing an

appropriate diagonal stability condition, combined with a key lemma due to Moylan and Hill [27],

and Vidyasagar [28]. Below we give a streamlined version of this lemma, and compare it with the
state space approach employed earlier in this paper.

We denote by L2
e the extended space of signals (thought of as time functions) w : [0,∞) → R

which have the property that each restriction wT = w|[0,T ] is in L2(0, T ), for every T > 0. Given

an element w ∈ L2
e and any fixed T > 0, we write ‖w‖T for the L2 the norm of this restriction wT ,

and given two functions v,w ∈ L2
e and any fixed T > 0, the inner product of vT and wT is denoted

by 〈v,w〉T . The same notation is used for vector functions.

We view the M subsystems to be interconnected as operators Σi : L2
e → L2

e : ui /→ yi, and

impose the following strict passivity property: there exist constants γi > 0 (“secant gains” in [2])

such that

‖yi‖
2
T ≤ γi〈yi, ui〉T for each i = 1, . . . ,M and each T > 0 . (62)
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We then consider the interconnection where

ui(t) = vi(t) + Aiy(t) , (63)

or just u = v + Av, where the vi’s are external inputs, y = col(y1, . . . , yM ), v = col(v1, . . . , vM ),

and the Ai, i = 1, . . . ,M are the rows of an interconnection matrix A ∈ RM×M . In other words,

the ith subsystem receives as inputs an external input plus an appropriate linear combination of

outputs from the remaining systems (including possibly feedback from itself, if the corresponding

diagonal entry of A is nonzero). We introduce:

E := A − Γ

where Γ = diag ( 1
γ1

, . . . , 1
γM

).

Lemma. Suppose that there exists a diagonal positive definite matrix D ∈ RM×M such that

DE + E′D < 0 .

Then, the system obtained from the systems Σi using the interconnection matrix A is L2 stable as

a system with input v and output y. More precisely, there is some constant ρ > 0 such that, for
any u, v, y ∈ (L2

e)
M such that (62) and (63) hold, necessarily ‖y‖T ≤ ρ ‖v‖T for all T > 0 (and

therefore also ‖y‖ ≤ ρ‖v‖, if v ∈ (L2)M ).

Proof: We pick an α > 0 such that DE + E′D < −2αI, and observe that, for any T > 0 and any

function z ∈ L2(0, T ), it holds that

〈Dz,Ez〉 =

∫ T

0
z(s)′DEz(s) ds =

∫ T

0

1

2
z′(s)(DE+E′D)z(s) ds ≤ −α

∫ T

0
z′(s)z(s) ds = −α‖z‖2.

Fix an arbitrary T > 0, and write D = diag (d1, . . . , dM ). Since, for each i, 〈yi, ui −
1
γi

yi〉T ≥ 0, it

follows that also 〈diyi, ui −
1
γi

yi〉T ≥ 0, or, in vector form:

〈Dy, u − Γy〉T ≥ 0.

Substituting u = v + Ay, we obtain: 〈Dy, v + Ey〉T ≥ 0, from which, using the Cauchy-Schwartz
inequality:

β ‖v‖T ‖y‖T ≥ 〈Dy, v〉T ≥ −〈Dy,Ey〉T ≥ α ‖y‖2
T

for some β > 0. So ‖y‖T ≤ ρ ‖u‖T , with ρ = β
α , as desired. !

State-space stability results may be obtained as corollaries, by combining this I/O result with

appropriate detectability and controllability conditions, as discussed in [2]. However, the direct

Lyapunov approach employed earlier in this paper allowed us to formulate verifiable state-space

conditions that guarantee the desired passivity properties for the subsystems. These conditions are

particularly suitable for systems of biological interest because they are applicable to models with

nonnegative state variables, and do not rely on the knowledge of the location of the equilibrium.
The state-space approach further made it possible to prove robustness of our stability criterion in
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the presence of diffusion terms.

7 Conclusions

We have presented a passivity-based stability criterion for a class of interconnected systems, which

encompasses the secant criterion for cyclic systems [1] as a special case. Unlike the result in [1],

we have further allowed the presence of state products in our model. Our main result (Theorem 1)

determines global asymptotic stability of the network from the diagonal stability of the dissipativity
matrix (16) which incorporates information about the passivity properties of the subsystems, the

interconnection structure of the network, and the signs of the interconnection terms. Although

diagonal stability can be checked numerically with efficient linear matrix inequality (LMI) tools [36],

it is of interest to derive analytical conditions that make explicit the role of the reaction rate

coefficients on stability properties. Indeed our earlier paper [1] showed that the diagonal stability
of negative feedback cyclic systems is equivalent to the secant criterion of [8,14]. In Example 2 we

have derived a similar analytical condition for a branched cyclic interconnection structure. Further

studies for deriving analytical conditions for practically important interconnection structures would

be of great interest. Another research topic is to extend the stability result for compartmental

models with diffusion in Section 5 to partial differential equation models. On this topic we have
reported preliminary results applicable to cyclic systems in [37], and are currently studying more

general interconnection structures.
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[30] J. Mallet-Paret and H.L. Smith. The Poincaré-Bendixson theorem for monotone cyclic feedback
systems. J. of Dynamics and Differential Equations., 2:367–421, 1990.
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