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MULTIPLE EQUILIBRIA IN COMPLEX CHEMICAL REACTION
NETWORKS: II. THE SPECIES-REACTION GRAPH∗

GHEORGHE CRACIUN† AND MARTIN FEINBERG‡

Abstract. For mass action kinetics, the capacity for multiple equilibria in an isothermal homo-
geneous continuous flow stirred tank reactor is determined by the structure of the underlying network
of chemical reactions. We suggest a new graph-theoretical method for discriminating between com-
plex reaction networks that can admit multiple equilibria and those that cannot. In particular, we
associate with each network a species-reaction graph, which is similar to reaction network represen-
tations drawn by biochemists, and we show that, if the graph satisfies certain weak conditions, the
differential equations corresponding to the network cannot admit multiple equilibria no matter what
values the rate constants take. Because these conditions are very mild, they amount to powerful
(and quite delicate) necessary conditions that a network must satisfy if it is to have the capacity to
engender multiple equilibria. Broad qualitative results of this kind are especially apt, for individual
reaction rate constants are rarely known fully for complex reaction networks (if they are known at
all). Some concluding remarks address connections to biology.
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1. Introduction. The purpose of this article is to provide theory for distin-
guishing between complex chemical reaction networks that have the capacity to admit
multiple positive equilibria and those that do not. In particular, we shall be interested
in networks governed by mass action kinetics and operating in the context of what
chemical engineers call the continuous flow stirred tank reactor (CFSTR [1]). Models
in cell biology sometimes invoke pictures and mathematics reminiscent of CFSTRs
[9, 12, 17, 14], so it not unreasonable to expect that theory presented here might
ultimately provide insight that is useful in biological applications. Indeed, in biology
one rarely has detailed knowledge of reaction rate constants; at the outset, then, it is
especially appropriate to seek a qualitative understanding of the relationship between
reaction network structure and the capacity for various kinds of behavior (e.g., bista-
bility). As we indicated in the first article of this series [4], the connection between the
two is quite delicate. The theory offered here is intended to render the relationship
between reaction network structure and behavior more concrete.

Our principal results will serve to describe very large classes of networks, includ-
ing highly complex ones, that cannot give rise to multiple steady states regardless
of parameter values. These results provide very strong necessary conditions that a
network must satisfy if it is to have the capacity to give rise, for example, to bistable
behavior.
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Denial of the capacity of a reaction network to admit multiple equilibria follows
from inspection of what we call the Species-Reaction Graph (or SR graph [3]) for
the network, which is similar to the reaction diagram often drawn by biochemists.
Properties of the SR graph and results about it are similar to those in earlier work
[8, 15, 16] on properties of a related graph, called the Species-Complex-Linkage Graph
(or SCL graph). However, the newer results presented here are substantially more
generous in the information they give. Inspection of the SR graph often tells one
very quickly that the network under study is, in the sense of a previous article [4],
injective, which in turn implies that multiple positive equilibria are impossible. That
is, inspection of the SR graph for a reaction network will often tell one that the
complex nonlinear system of differential equations associated with the network cannot
admit multiple positive equilibria, no matter what values the (generally unknown)
parameter values might take.

Our aim in this introductory section is to present, in an informal way, the main
theorem of this article, largely motivated by a single example. More formal definitions
are given in section 2, which will prepare the groundwork for proofs.

A CFSTR consists of a perfectly stirred vessel along with two streams, a feed
stream that carries reactants to the vessel and an outflow stream that leaves the
vessel, carrying away mixture having the same instantaneous composition as that
within the vessel. Hereafter we suppose that the mixtures involved are liquids, all
of which have the same time-invariant density, that the mixture within the vessel is
maintained at a fixed temperature, and that the feed and outflow streams have the
same volumetric flow rate, g (volume/time). For the purposes of an example, we will
suppose that (1.1) is a network of chemical reactions among species A, B, M , N , R,
X, Y , and Z:

A + M � X, B + N � Y → 2A + N, B + X � Z → R + M.(1.1)

By virtue of the occurrence of chemical reactions, the molar concentrations of the
various species within the vessel will generally depend on time. These we denote by
cA(t), cB(t), . . . , cZ(t), which, by supposition, are identical to the species concentra-

tions in the outflow stream. We denote by cfA, c
f
B , . . . , c

f
Z the (fixed) concentrations

of the species in the feed stream. We assume hereafter that the rates of the chemical
reactions are governed by mass action kinetics [4, 6, 7, 10, 11]. In this case, the system
of differential equations associated with network (1.1) is the following:

ċA = (g/V )(cfA − cA) − kA+M→XcAcM + kX→A+McX + 2kY→2A+NcY ,(1.2)

ċB = (g/V )(cfB − cB) − kB+X→ZcBcX + kZ→B+XcZ + kY→B+NcY

− kB+N→Y cBcN ,

ċM = (g/V )(cfM − cM ) − kA+M→XcAcM + kX→A+McX + kZ→R+McZ ,

ċN = (g/V )(cfN − cN ) − kB+N→Y cBcN + kY→B+NcY + kY→2A+NcY ,

ċR = (g/V )(cfR − cR) + kZ→R+McZ ,

ċX = (g/V )(cfX − cX) − kX→A+McX + kA+M→XcAcM − kB+X→ZcBcX

+ kZ→B+XcZ ,

ċY = (g/V )(cfY − cY ) − kY→B+NcY + kB+N→Y cBcN − kY→2A+NcY ,

ċZ = (g/V )(cfZ − cZ) + kB+X→ZcBcX − kZ→B+XcZ − kZ→R+McZ ,

where g is the volumetric flow rate (volume/time), V is the reactor volume, kA+M→X

is the rate constant of the reaction A+M → X, kX→A+M is the rate constant of the
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Fig. 1.1. The SR graph Γ of the reaction network (1.1).

reaction X → A+M , and so on. See [4, 6] for a detailed explanation of how, given a
reaction network, we obtain such a system of differential equations.

We say that the reaction network (1.1) has the capacity for multiple positive
equilibria if there exist some positive flow rate g, positive volume V , nonnegative feed
concentrations cfA, . . . , c

f
Z , and positive rate constants kA+M→X , . . . , kZ→R+M such

that the system of differential equations (1.2) has two or more distinct equilibria at
which the species concentrations are positive.

In preparation for a description of how to draw the SR graph for a reaction
network, we need a little vocabulary: By the complexes [10] of a reaction network we
mean the objects at the heads and tails of the reaction arrows. Thus, the complexes
of network (1.1) are A + B, X, B + N , Y , 2A + N , B + X, Z, and R + M .

The SR graph for a reaction network has two kinds of nodes: species nodes and
reaction nodes. There is a species node for each species in the network (A, B, M , N ,
R, Y , and Z in (1.1)). Moreover, there is a reaction node for each reaction or reversible
reaction pair in the network. That is, reversible reactions such as A + M � X share
the same node. Edges join species nodes to reaction nodes as follows: If a species (such
as A) appears in a complex (such as A+M) at the head or tail of a reaction (such as
A + M � X), then an (unoriented) edge joins the species node to the reaction node
and is labeled with the name of the complex in which that species appears. (Thus,
for example, an edge would join the species node corresponding to A to the reaction
node corresponding to A+M � X, and the edge would be labeled A+M .) The SR
graph for network (1.1) is shown in Figure 1.1.

We now need to define some features of SR graphs that are especially relevant to
our problem. Pairs of edges that meet at a reaction node and have the same complex
label are called c-pairs (complex pairs). For example, the two edges labeled A + M
that meet at the reaction node A + M � X in Figure 1.1 form a c-pair.

Notice that cycles might appear in the SR graph. Cycles that contain an odd
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number of c-pairs are called o-cycles (odd cycles). For example, the outer cycle in
Figure 1.1 is an o-cycle, since it contains three c-pairs, centered at the reaction nodes
A+M � X, B +N � Y , and Y → 2A+N . Cycles that contain an even number of
c-pairs are called e-cycles (even cycles). In particular, cycles that contain no c-pairs
are e-cycles.

The stoichiometric coefficient of an edge is the coefficient of the species adjacent
to that edge in the complex label of the edge. For the reader’s convenience, we have
labeled each edge of the SR graph in Figure 1.1 with its stoichiometric coefficient.
For example, the stoichiometric coefficient of the edge from A to A + M � X in
Figure 1.1 is 1, and the stoichiometric coefficient of the edge from A to Y → 2A +
N is 2. Cycles for which alternately multiplying and dividing the stoichiometric
coefficients along the cycle gives the final result 1 are called s-cycles (stoichiometric
cycles). For example, for the outer cycle that begins at A and visits N , B, Z M , the
stoichiometric coefficients along the cycle are 2, 1, 1, 1, 1, 1, 1, 1, 1, 1 (see Figure 1.1).
Then, by alternately multiplying and dividing the stoichiometric coefficients along the
cycle, we get 2 · 1−1 · 1 · 1−1 · 1 · 1−1 · 1 · 1−1 · 1 · 1−1 = 2, and thus this cycle is not an
s-cycle. On the other hand, for the cycle that visits N,Y we get 1 · 1−1 · 1 · 1−1 = 1,
and thus this cycle is an s-cycle.

We say that two cycles in the SR graph have a species-to-reaction (S-to-R) in-
tersection if the common edges of the two cycles constitute a path that begins at a
species node and ends at a reaction node, or if they constitute a disjoint union of such
paths.

For example, the common edges of the cycle that visits N,Y with the cycle that
visits A,X,B, Y in Figure 1.1 form a path that begins at a reaction node and ends
at a reaction node, and so they do not have an S-to-R intersection.

Then the main result of this article is the following.
Theorem 1.1. Consider a reaction network such that in its SR graph
(i) each cycle is an o-cycle or an s-cycle,
(ii) no two e-cycles have an S-to-R intersection.
Then, taken with mass action kinetics, the reaction network does not have the

capacity for multiple positive equilibria.
In particular, the theorem above implies that the reaction network (1.1) does not

have the capacity for multiple equilibria. Indeed, all cycles in the SR graph of (1.1)
are o-cycles, except for two cycles (the cycle that visits N,Y and the cycle that visits
M,Z,X), which are s-cycles, and so condition (i) is satisfied. Also, these two e-cycles
do not have an S-to-R intersection, so condition (ii) is satisfied. On the other hand,
previous results in [8, 15, 16] give no information about network (1.1).

In general, if there are no cycles in the SR graph, or if all cycles are o-cycles, then
conditions (i) and (ii) are satisfied. Or, if all stoichiometric coefficients in a network
are one, then all cycles are s-cycles, and so condition (i) is satisfied. Also, if no species
node is adjacent to three or more reaction nodes, then no two cycles have an S-to-
R intersection, and so condition (ii) is satisfied. Note then that for some reaction
networks it is not even necessary to draw the SR graph in order to conclude that they
do not have the capacity for multiple equilibria: If all the stoichiometric coefficients
are one and no species appears in three or more reactions, then the reaction network
does not have the capacity for multiple equilibria. For example, if we replace 2A+N
by A + N in (1.1), then the new reaction network has all stoichiometric coefficients
equal to one, and no species appears in three or more reactions. Therefore, without
having to draw its SR graph, it follows that this new reaction network does not have
the capacity for multiple equilibria.



MULTIPLE EQUILIBRIA IN CHEMICAL REACTION NETWORKS 1325

In the next section we begin our proof of Theorem 1.1. In particular, we will
eventually want to connect the SR graph to network injectivity, an idea introduced
in [4].

2. Reaction networks and injectivity. Let us first give a precise definition
of a reaction network in terms of the set of species, the set of complexes, and the set
of reactions. Recall that the complexes of a reaction network are to be understood
as the objects at the head or tail of reaction arrows. We denote by R the set of
real numbers, by R+ the set of positive numbers, and by R̄+ the set of nonnegative
numbers. Also, given a set I, we denote by R

I the vector space of formal linear
combinations

∑
i∈I λii, generated by the elements of i ∈ I, with coefficients λi ∈ R.

By R̄
I
+ we mean the members of R

I with λi ≥ 0 for all i ∈ I. By R
I
+ we mean the

members of R
I with λi > 0 for all i ∈ I. By the support of an element x ∈ R

I
+ we

mean the set supp(x) = {i ∈ I : xi �= 0}.
As in [4], we can regard a chemical reaction network as an abstract structure

given by the following definition.

Definition 2.1 (see [6, 7]). A chemical reaction network N = (S ,C ,R) con-
sists of three finite sets:

(i) a set S of species of the network,
(ii) a set C ⊂ R̄

S
+ of complexes of the network,

(iii) a set R ⊂ C × C of reactions, with the following properties:
(a) (y, y) /∈ R for any y ∈ C ,
(b) for each y ∈ C there exists y′ ∈ C such that (y, y′) ∈ R or such that

(y′, y) ∈ R.

We write the more suggestive y → y′ in place of (y, y′) when (y, y′) is a member
of R. Also, if {y → y′, y′ → y} ⊂ R, we will denote the set {y → y′, y′ → y} by the
more suggestive y � y′ and will say that y � y′ is a reversible reaction. If y → y′ ∈ R
and y′ → y /∈ R, we say that y → y′ is an irreversible reaction. For example, consider
the reaction network

A + B � C, A → 2B.(2.1)

In this case S = {A,B,C}, C = {A + B,C,A, 2B}, R = {A + B → C, C → A + B,
A → 2B}.

Definition 2.2. By a mass action system we mean a reaction network (S ,C ,R)
taken together with an element k ∈ R

R
+ . The number ky→y′ is the rate constant for

the reaction y → y′.

In the next definition we use the following notation: for two vectors in R̄
S
+ , say

u =
∑

s∈S uss and v =
∑

s∈S vss, we denote by uv the product
∏

s∈S (us)
vs . Here

we use the convention that 00 = 1.

Our aim now is to write the differential equation that, for a mass action system,
governs the evolution of composition vector c ∈ R̄

S
+ .

Definition 2.3. For a mass action system (S ,C ,R, k) the associated differen-
tial equation is

ċ =
∑

y→y′∈R

ky→y′cy(y′ − y).(2.2)

In components, the differential equations associated with a mass action system
derived from network (2.1) are
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ċA = −kA+B→CcAcB − kA→2BcA + kC→A+BcC ,(2.3)

ċB = −kA+B→CcAcB + kC→A+BcC + 2kA→2BcA,

ċC = kA+B→CcAcB − kC→A+BcC .

Note that these are not the differential equations one would write for a CFSTR,
for they take no account of the effects of the feed and outflow streams. The appropriate
CFSTR differential equations are

ċA = (g/V )(cfA − cA) − kA+B→CcAcB − kA→2BcA + kC→A+BcC ,(2.4)

ċB = (g/V )(cfB − cB) − kA+B→CcAcB + kC→A+BcC + 2kA→2BcA,

ċC = (g/V )(cfC − cC) + kA+B→CcAcB − kC→A+BcC .

As we indicated in [4], however, the appropriate CFSTR equations do derive from
a mass action system associated with the augmented network

A + B � C, A → 2B, 0 → A, 0 → B, 0 → C, A → 0, B → 0, C → 0.(2.5)

Here 0 is the zero complex, which is understood to be the zero vector of R̄
S
+ . As

explained in [4], the added outflow reactions A → 0, B → 0, and C → 0 serve to
model the contributions of the outflow stream to the CFSTR differential equations
(taking each rate constant to be g/V ), while the feed reactions 0 → A, 0 → B, and
0 → C serve to model the contributions of the feed stream (taking the rate constants

to be, respectively, gcfA/V , gcfB/V , and gcfC/V ).
In general, to obtain the augmented network, one adds to the network of true

chemical reactions an outflow reaction s → 0 for each s ∈ S , and a feed reaction
0 → s for each species s deemed to be in the feed stream. Hereafter, when we
speak of a reaction network (S ,C ,R), it will be understood that we have in mind
the augmented network constructed to generate the CFSTR differential equations. In
particular, the full set of reactions R will contain the “true” set of chemical reactions
(denoted Rt) and a reaction s → 0 for each s ∈ S .

Definition 2.4. A reaction network (S ,C ,R) has the capacity to admit mul-
tiple positive equilibria if there is a k ∈ R

R
+ such that, for the mass action sys-

tem (S ,C ,R, k), the associated differential equation admits two distinct equilibria in
R

S
+ .

Remark. Our aim will be to describe networks that do not have the capacity for
multiple positive equilibria. For our study of classical CFSTRs this is apparently a
little more than we need: In Definition 2.4, we permit the rate constants associated
with the outflow reactions (i.e., reactions of the form s → 0 for all s ∈ S ) to take
arbitrary positive values, while for the classical CFSTRs such rate constants should
all be identical (and equal to g/V ).

We are interested in what we call injective reaction networks because injective
reaction networks do not have the capacity for multiple positive equilibria (see [4]).
The characterization of injectivity we use here is the one given by Theorem 3.3 in [4].

Definition 2.5. A reaction network N = (S ,C ,R) with n species is injective
if

det(y1, . . . , yn) det(y1 − y′1, . . . , yn − y′n) ≥ 0

for all choices of reactions1 y1 → y′1, . . . , yn → y′n in R.

1Some of these reactions could be feed or outflow reactions.
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Therefore, we need to study the relationship between the signs of det(y1, . . . , yn)
and det(y1 − y′1, . . . , yn − y′n). For this, our main tool will be the SR graph.

3. The SR graph.
Definition 3.1. Consider some reaction network N = (S ,C ,R). The SR

graph ΓN of N is an unoriented graph defined as follows. Each node of ΓN is
either a species node or a reaction node. There is one species node for each species
in S . There is one reaction node for each reversible reaction in Rt, and there is
one reaction node for each irreversible reaction in Rt.

2 Each edge in the graph ΓN
connects a species node to a reaction node (so ΓN is a bipartite graph) according to
the following prescription: Consider a species node s and a reaction node r given by
y → y′ or y � y′. If s ∈ supp(y), then there is an edge between s and r and we label
it with the complex y. Similarly, if s ∈ supp(y′), then there is an edge3 between s and
r and we label it with the complex y′.

For example, for the reaction network (2.1) there are three species nodes and two
reaction nodes, and we get the SR graph in Figure 3.1.

Fig. 3.1. The SR graph of reaction network (2.1).

In an SR graph there are some configurations of edges and cycles that are espe-
cially important to us. The following definition describes them.

Definition 3.2. Consider the SR graph ΓN of some reaction network N . A
pair of edges in ΓN that meet at a reaction node and have the same complex label
is called a c-pair. A cycle that contains an odd number of c-pairs is called an o-
cycle. A cycle that contains an even number of c-pairs is called an e-cycle. The
stoichiometric coefficient of an edge is the coefficient of the species adjacent to that
edge in the complex label of the edge. An s-cycle is one for which, if we alternately
multiply and divide the stoichiometric coefficients of edges along the cycle, we get the
final result 1. An S-to-R chain in an SR graph is a simple path from a species node

2Recall that Rt is the set of true chemical reactions—that is, the set of reactions before the
addition of reactions such as s → 0 or 0 → s.

3If s is contained in both supp(y) and supp(y′) (as in A + B → 2A), then there are two edges
joining the species node s to the reaction node y → y′, one carrying the label y and the other carrying
the label y′.
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to a reaction node. We say that two cycles in ΓN have an S-to-R intersection if their
common edges constitute an S-to-R chain or a disjoint union of two or more S-to-R
chains.

Recall that we gave another example of an SR graph in section 1.

4. The OSR graph. In this section we define the oriented species-reaction graph
(OSR graph), which will be the main tool for proving the results in the rest of this
article. For this and the next section, we consider a fixed reaction network N =
(S ,C ,R). Recall that any complex y in C is a linear combination y =

∑
s∈S yss,

where ys ≥ 0 for all s ∈ S . Recall too that the support of y is defined by supp(y) =
{s ∈ S : ys > 0}. In view of our interest in network injectivity (Definition 2.5), we
consider a fixed ordered set of reactions4 R = {y1 → y′1, . . . , yn → y′n} ⊂ R, where
n is the number of species for the network N . We seek to determine the conditions
under which the product

det(y1, . . . , yn) det(y1 − y′1, . . . , yn − y′n)

is positive when it is not zero. Hereafter, then, we assume that, for the ordered set of
reactions R under consideration, the product above is not zero.

In this case the complexes y1, . . . , yn are linearly independent vectors. Then it is
not difficult to see that one can make a bijective association between the n species of
the network N and the n complexes y1, . . . , yn, which associates with each complex
a particular species in its support. In other words, there exists a (not necessarily
unique) bijection f : {y1, . . . , yn} → S such that f(yi) ∈ supp(yi), i = 1, 2, . . . , n.

Hereafter, we choose one such bijection and denote by ei the species f(yi). Thus,
the set of species of the network N becomes {e1, . . . , en}, and we have ei ∈ supp(yi),
i = 1, 2, . . . , n. For the sake of concreteness, we suppose that the determinant function
is such that det(e1, . . . , en) > 0. (In what follows, some readers might wish to associate
{e1, . . . , en} with the standard basis of R

n, in which case the complexes y1, . . . , yn
would be associated with vectors in R

n.)
Definition 4.1. The OSR graph of R is an oriented graph GR, defined as follows.

The set of nodes of GR is S ∪ (R ∩ Rt). The nodes in S are called species nodes,
and the nodes in R∩Rt are called reaction nodes. Each (oriented) edge in the graph
GR connects a species node to a reaction node or a reaction node to a species node
in the following way. Consider some true reaction yj → y′j. There is exactly one
incoming edge toward the node yj → y′j in GR, and it comes from the node of the
species ej. We label this edge with the complex yj. There is one outgoing edge from
the reaction node yj → y′j toward each species node ei ∈ supp(yj), except for ej. We
label these edges with the complex yj as well. There is one outgoing edge from the
reaction node yj → y′j toward each species node ei ∈ supp(y′j). We label these edges
with the complex y′j.

For example, if in the reaction network (2.1) we choose the reactions that make
up the set R to be y1 → y′1 = A → 2B, y2 → y′2 = A + B → C, y3 → y′3 = C → 0
and we identify A,B,C with e1, e2, e3, then we get the OSR graph in Figure 4.1.

Since the OSR graph is defined similarly to the SR graph, we can also refer to
s-cycles, o-cycles, and e-cycles in the OSR graph, their definitions being analogous
to those in the SR graph. However, whenever we mention a cycle in an OSR graph,
that cycle will have to be an oriented cycle. In particular, the s-cycles, o-cycles, and
e-cycles in an OSR graph have to be oriented cycles, and a c-pair has to be an oriented

4Some of these reactions might be outflow reactions.
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Fig. 4.1. An OSR graph for some reactions in (2.1).

pair of edges as well (i.e., one of the two adjacent edges that form a c-pair should
point toward their common reaction vertex, and the other should point away from
their common reaction vertex).

Remark. Note that each (oriented) edge in the OSR graph GR, connecting some
species node and some reaction node, corresponds uniquely to some (unoriented)
edge in the SR graph ΓN of N connecting the same species node to the corresponding
reaction node in ΓN , and has the same complex label. In other words, the OSR graph
GR is an (oriented) subgraph of the SR graph ΓN .

Remark. Suppose that R contains only outflow reactions, i.e., R = {A1 → 0, . . . ,
An → 0}. Then the OSR graph GR has n species vertices, has no reaction vertices,
and has no edges.

5. Properties of the OSR graph. To be able to formulate properties of the
OSR graph we first need to introduce more definitions and notation.

Note that, for each yi → y′i ∈ R, the complex yi has a decomposition of the form

yi =
∑

ek∈supp(yi)

yikek,

which defines numbers yik > 0. In particular, recall that ei ∈ supp(yi); i.e., we obtain
yii > 0.

In view of Definition 2.5, we will now define a special multilinear expansion of
det(y1−y′1, . . . , yn−y′n). For each yi → y′i ∈ R the vector yi−y′i has a decomposition
of the form

yi − y′i =
∑

ek∈supp(yi)

yikek −
∑

ek∈supp(y′
i
)

y′ikek,

where yik > 0 were mentioned above. We want now to consider the multilinear
expansion of det(y1 − y′1, . . . , yn − y′n) obtained by expanding each yi − y′i in terms
of the basis elements e1, . . . , en, with one exception: If supp(yi) ∩ supp(y′i) �= ∅ for
some i (as in a reaction of the form A + B → 2A), we do not want to confuse
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the contribution of yi with the contribution of y′i. For this reason, we represent the
multilinear expansion of det(y1 − y′1, . . . , yn − y′n) as the sum of all terms of the form

det(δ1k1ek1 , . . . , δnknekn),

where ek1
∈ supp(y1) ∪ supp(y′1), . . . , ekn

∈ supp(yn) ∪ supp(y′n), and

δiki =

⎧⎨
⎩

yiki if eki ∈ supp(yi)\supp(y′i),
−y′iki

if eki ∈ supp(y′i)\supp(yi),
either yiki or − y′iki

if eki ∈ supp(yi) ∩ supp(y′i).

Definition 5.1. By a term in the expansion of the determinant det(y1 − y′1, . . . ,
yn − y′n) we mean a term in the multilinear expansion of det(y1 − y′1, . . . , yn − y′n)
described above.

Note that a term might have the value zero. We will describe an important
relationship between nonzero terms in the expansion of det(y1 − y′1, . . . , yn − y′n) and
the graph GR. Let us denote by Δ the term det(y11e1, . . . , ynnen). Of course, Δ is a
(nonzero) term in the expansion of det(y1−y′1, . . . , yn−y′n) in the sense of the previous
definition. Suppose that there is an edge ε in GR from the reaction node yi → y′i to
some species node ek and having the complex label yi. Let us denote by Δε the
result of replacing yiiei by yikek in Δ and leaving everything else unchanged. Note
that, according to the definition above, Δε is a (zero-valued) term in the expansion
of det(y1 − y′1, . . . , yn − y′n). Similarly, suppose there is an edge ε′ in GR from the
reaction node yi → y′i to some species node ek and having the complex label y′i. Let
us denote by Δε′ the result of replacing yiiei by −y′ikek in Δ and leaving everything
else unchanged. According to the definition above, Δε′ is also a (zero-valued) term
in the expansion of det(y1 − y′1, . . . , yn − y′n).

If L is a cycle in GR, let us denote by ΔL the term resulting from making re-
placements in Δ as above, simultaneously for all edges in L that go from a reaction
node to a species node. (See the example after the proof of the following lemma.)
Then ΔL is also a (nonzero) term in the expansion of det(y1 − y′1, . . . , yn − y′n). If L
is a set of disjoint cycles in GR, let us denote by ΔL the term resulting from making
replacements in Δ as above, simultaneously for all edges in L that go from a reac-
tion node to a species node. Then ΔL is also a (nonzero) term in the expansion of
det(y1−y′1, . . . , yn−y′n). Lemma 5.1 will show that all nonzero terms in the expansion
of det(y1 − y′1, . . . , yn− y′n) are of the form ΔL for some set L of disjoint cycles in GR.

The case of det(y1, . . . , yn) is similar, but simpler. We have

det(y1, . . . , yn) =
∑

ek1
∈supp(y1),...,ekn∈supp(yn)

det(y1k1
ek1

, . . . , ynkn
ekn

),

and we state the following definition.
Definition 5.2. By a term in the expansion of the determinant det(y1, . . . , yn)

we mean a term in the multilinear expansion of det(y1, . . . , yn) above.
Note now that, according to the two definitions above, each term in the expansion

of the determinant det(y1, . . . , yn) is also a term in the expansion of the determinant
det(y1−y′1, . . . , yn−y′n). Note also that Δε defined as above is a term in the expansion
of det(y1, . . . , yn), since the complex label of ε is yi, while Δε′ defined as above will
not be a term in the expansion of det(y1, . . . , yn), since the complex label of ε′ is y′i.
Let us refer to edges similar to ε′ as product edges. In other words, an edge ε′ is a
“product edge” if it is oriented from a reaction node yi → y′i to a species node, and
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the complex label of the edge ε′ is y′i. Then, if a cycle L in GR contains no product
edges, ΔL is also a (nonzero) term in the expansion of det(y1, . . . , yn). Similarly, if
L is a set of disjoint cycles in GR that contain no product edges, then ΔL is also a
(nonzero) term in the expansion of det(y1, . . . , yn).

The following lemma associates with each nonzero term in the expansion of
det(y1 − y′1, . . . , yn − y′n) a set of mutually disjoint cycles in the OSR graph GR,
in a bijective way (also note the example after the proof).

Lemma 5.1. There is a bijective correspondence that associates with each nonzero
term Δ∗ in the expansion of det(y1 − y′1, . . . , yn − y′n) a set L of disjoint cycles in
GR such that Δ∗ = ΔL. In particular, if L is the collection of all sets of mutually
disjoint cycles in GR, we have

det(y1 − y′1, . . . , yn − y′n) =
∑
L∈L

ΔL.

Proof. Consider some nonzero term Δ∗ = det(δ1k1ek1 , . . . , δnknekn) in the expan-
sion of det(y1 − y′1, . . . , yn − y′n). Then (k1, k2, . . . , kn) is a permutation of the set
{1, 2, . . . , n}. We denote this permutation by σ, i.e., σ(i) = ki, i = 1, . . . , na. Recall
that if ek ∈ supp(yi) ∪ supp(y′i) and i �= k, then there is an edge in GR from the
reaction node yi → y′i to the species node ek. Also, recall that for any i there is an
edge in GR from the species node ei to the reaction node yi → y′i.

Suppose that the permutation σ has a cycle of length two, C = (ij), i �= j.
In this case δij �= 0 and δji �= 0. Then ej ∈ supp(yi) ∪ supp(y′i) and i �= j, so
there is an edge in GR from the reaction node yi → y′i to the species node ej . Also,
ei ∈ supp(yj) ∪ supp(y′j) and j �= i, so there is an edge in GR from the reaction node
yj → y′j to the species node ei. These two edges together with the edge from ei to
yi → y′i and the edge from ej to yj → y′j form an (oriented) cycle LC of length four in
GR. Also, note that ΔLC is the same as Δ∗ at its ith and jth entries. Similarly, with
any other cycle C of σ of length k we associate an (oriented) cycle of length 2k in GR.

Then it is not difficult to see that we have Δ∗ = ΔL, where L is the set of all
cycles LC with C a cycle of σ.

Finally, note that if we begin from some set L of disjoint cycles in GR, construct
the term ΔL, and then construct a set L̃ of disjoint cycles in GR from the term ΔL,
as described above, then L = L̃. This shows that the correspondence described above
is bijective.

Example. Consider the ordered set of five reactions

2A → B, A + B → C, C + D → B + E, D → 2C, E → 0.(5.1)

We identify the species sequence A,B,C,D,E with e1, e2, e3, e4, e5. The correspond-
ing OSR graph appears in Figure 5.1.

There are three oriented cycles: l1, which passes through the species nodes A and
B; l2, which passes through the species nodes B and C; and l3, which passes through
the species nodes C and D.

We have det(y1−y′1, . . . , y5−y′5) = det(2e1−e2, e1+e2−e3, e3+e4−e2−e5, e4−2e3,
e5). The term det(y11e1, . . . , ynnen) in the multilinear expansion of det(y1 − y′1, . . . ,
y5 − y′5) is in this case det(2e1, e2, e3, e4, e5). This term equals Δ∅; i.e., it corresponds
to the set L of disjoint cycles being the empty set.

We will now check that there is a one-to-one correspondence between all other
nonzero terms in the multilinear expansion of det(y1 − y′1, . . . , y5 − y′5) and nonempty
sets of disjoint cycles in the OSR graph.
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Fig. 5.1. An OSR graph for the set of reactions (5.1).

The cycle l1 corresponds to replacing 2e1 in det(2e1, e2, e3, e4, e5) by −e2, and re-
placing e2 in det(2e1, e2, e3, e4, e5) by e1, since the cycle l1 visits the species node B af-
ter leaving A and visits the species node A after leaving B. The corresponding term in
the multilinear expansion of det(y1−y′1, . . . , y5−y′5) is therefore det(−e2, e1, e3, e4, e5).
Similarly, the cycle l2 corresponds to replacing e2 in det(2e1, e2, e3, e4, e5) by −e3,
and replacing e3 in det(2e1, e2, e3, e4, e5) by −e2, since the cycle l2 visits the species
node C after leaving B and visits the species node B after leaving C. The corre-
sponding term in the multilinear expansion of det(y1 − y′1, . . . , y5 − y′5) is therefore
det(2e1,−e3,−e2, e4, e5). Similarly, the cycle l3 corresponds to the term det(2e1, e2,
e4,−2e3, e5). There is one more nonzero term in the expansion of det(y1 − y′1, . . . ,
y5 − y′5). This term is det(−e2, e1, e4,−2e3, e5), and it corresponds to the set {l1, l3}
of disjoint cycles.

To formulate an analogous lemma for det(y1, . . . , yn) let us denote by Lnp the
collection of all sets of mutually disjoint cycles in GR that have no product edges.
Then we have the following result.

Lemma 5.2. There is a bijective correspondence that associates with each nonzero
term Δ∗ in the expansion of det(y1, . . . , yn) a set L ∈ Lnp such that Δ∗ = ΔLnp

. In
particular, we have

det(y1, . . . , yn) =
∑

L∈Lnp

ΔL.

Proof. The proof here is analogous to that of the previous lemma.
Let us now look more closely at the connection between the SR graph and the

OSR graph, as follows.
Lemma 5.3. If two (oriented) cycles l1 and l2 in GR have a common vertex, then

their (unoriented) versions lSR
1 and lSR

2 in ΓN have an S-to-R intersection.
Proof. Suppose that l1 and l2 have a species node s in common. Since they are

oriented cycles, each one of them has to contain an outgoing edge from s. However,
there is a unique outgoing edge adjacent to s in GR. Therefore that edge is common
to the two cycles, and the corresponding edge in ΓN is common to lSR

1 and lSR
2 .

Analogously, if l1 and l2 have a reaction node r in common, each one of them has to



MULTIPLE EQUILIBRIA IN CHEMICAL REACTION NETWORKS 1333

contain the unique incoming edge adjacent to r in GR. This shows that lSR
1 and lSR

2

have at least one edge in common.
Suppose now that we travel along the two cycles l1 and l2 in GR, beginning from

some common edge and following the orientation of that edge. The first node where
the two cycles separate from each other has to be a reaction node, since all species
nodes have just one outgoing edge in GR. On the other hand, if we travel along the two
cycles l1 and l2 in GR, beginning from some common edge, in the direction opposite
to the orientation of that edge, then the first node where the two cycles separate from
each other has to be a species node, since all reaction nodes have just one incoming
edge in GR. In conclusion, the common edges of lSR

1 and lSR
2 form one or more S-to-R

chains (see Definition 3.2); i.e., lSR
1 and lSR

2 have an S-to-R intersection.
Before we can prove our main result we have to prove a few lemmas about special

types of cycles in OSR graphs.
Lemma 5.4. Consider a set L of disjoint o-cycles in GR. Then ΔL > 0.
Proof. If L = ∅, we have Δ∅ = det(y11e1, . . . , ynnen) > 0. Consider now the case

when L contains exactly one cycle l. Denote by ei1 , ei2 , . . . , eik , ei1 (in this order) the
species vertices visited by the oriented cycle l. Then the term Δ{l} is the same as
det(y11e1, . . . , ynnen) except that the entry yi1i1ei1 in det(y11e1, . . . , ynnen) is replaced
by δi1i2ei2 , the entry yi2i2ei2 is replaced by δi2i3ei3 , and so on, until the entry yikikeik
is replaced by δiki1ei1 .

Since all yii > 0 it follows that the sign of Δ{l} equals the sign of the cyclic
permutation (i1i2 . . . ik) times the sign of the product δi1i2δi2i3 . . . δiki1 . According to
the standard decomposition of a cyclic permutation into a product of transpositions5

the sign of the cyclic permutation (i1i2 . . . ik) is (−1)k−1. On the other hand, note
that if the edge of l from the reaction node yij → y′ij to the species node eij+1 has the
complex label yij , then δijij+1

is positive, and if the edge of l from the reaction node
yij → y′ij to the species node eij+1 has the complex label y′ij , then δijij+1

is negative.6

Recall that the other edge of l adjacent to yij → y′ij has to have the complex label
yij . In conclusion, the number of positive δijij+1

’s equals the number of c-pairs along
l. However, according to the hypothesis, l has an odd number of c-pairs, say 2p + 1.
Then the sign of the product δi1i2δi2i3 . . . δiki1 is (−1)k−2p−1, which implies that the
sign of Δ{l} is (−1)k−1(−1)k−2p−1, i.e., Δ{l} > 0.

For arbitrary L let us notice that since the cycles in L are mutually disjoint it
follows that ΔL can be written as a product of determinants, one for each cycle in
L, and the considerations above apply for each one of these determinants. Then
ΔL > 0.

Lemma 5.5. Suppose that l is an e-cycle and an s-cycle in GR, and L is a set of
cycles in GR that are disjoint from each other and disjoint from l. Then ΔL+ΔL∪{l} =
0.

Proof. Case 1. Suppose that the set L is empty. We have Δ∅ = det(y11e1,
. . . , ynnen). As in the proof of the previous lemma, the term Δ{l} is the same as
det(y11e1, . . . , ynnen) except that the entry yi1i1ei1 in det(y11e1, . . . , ynnen) is replaced
by δi1i2ei2 , the entry yi2i2ei2 is replaced by δi2i3ei3 , and so on, until the entry yikikeik
is replaced by δiki1ei1 . Note that the stoichiometric coefficient of the edge of l from
the species node eij to the reaction node yij → y′ij is yijij , and the stoichiometric

coefficient of the edge of l from the reaction node yij → y′ij to the species node eij+1 is
δijij+1

. Therefore if we alternately multiply and divide the stoichiometric coefficients

5I.e., the decomposition (i1i2 . . . ik) = (i1i2)(i2i3) . . . (ik−1ik).
6Here we are using cyclic notation: By δikik+1

we mean δiki1 , and by eik+1
we mean ei1 .
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of the edges along the cycle l, we get

(yi1i1/δi1i2)(yi2i2/δi2i3) . . . (yik−1ik−1
/δik−1ik)(yikik/δiki1).

Since l is an s-cycle the product above equals 1, and we obtain yi1yi2 . . . yik =
δi1δi2 . . . δik . Then the absolute value of Δ{l} is the same as the absolute value of
det(y11e1, . . . , ynnen). Since l is an e-cycle we reason as in the proof of the previous
lemma to conclude that Δ{l} is negative. Then

Δ∅ + Δ{l} = det(y11e1, . . . , ynnen) + Δ{l} = 0.

Case 2. Suppose that L contains at least one cycle. Since l is disjoint from all
cycles in L, we can argue exactly as in Case 1 that ΔL and ΔL∪{l} have the same
absolute value and different signs.

6. The main result. We can now prove the following theorem.
Theorem 6.1. Consider some reaction network N such that in its SR graph ΓN

all cycles are o-cycles or s-cycles, and no two e-cycles have an S-to-R intersection.
Then the reaction network N is injective.

Proof. Consider some set R = {y1 → y′1, . . . , yn → y′n} of n reactions in N such
that det(y1, . . . , yn) det(y1 − y′1, . . . , yn − y′n) �= 0. We want to show that

det(y1, . . . , yn) det(y1 − y′1, . . . , yn − y′n) > 0.

By reordering the basis vectors ei, we can suppose that ei ∈ supp(yi); i.e., the set
R obeys the conditions imposed in the previous sections. (We are using here the
“standard” determinant, for which det(e1, . . . , en) > 0.)

We will show first that det(y1 − y′1, . . . , yn − y′n) > 0. Recall from Lemma 5.1
that the determinant can be calculated as a sum of terms, one for each member of
the class L of all possible sets (including the empty set) of disjoint cycles taken from
the OSR graph GR:

det(y1 − y′1, . . . , yn − y′n) =
∑
L∈L

ΔL.(6.1)

Let {O1, . . . ,Op} be the collection of all possible sets (including the empty set) of
disjoint o-cycles that can be taken from GR. We partition the class L of all possible
sets of disjoint cycles into p subclasses {L1,L2, . . . ,Lp}, according to the particular
subset of o-cycles that each cycle-set in L contains. That is, Li might contain several
sets of cycles, but for each set of cycles in Li the subset of o-cycles is precisely Oi,
i = 1, . . . , p. In light of this partition, (6.1) can be rewritten as

det(y1 − y′1, . . . , yn − y′n) =

p∑
i=1

∑
L∈Li

ΔL.(6.2)

To show that the (presumed nonzero) det(y1 − y′1, . . . , yn − y′n) is in fact positive, it
will suffice to show that

∑
L∈Li

ΔL ≥ 0 for all i = 1, . . . , p.
With this in mind, we consider a particular collection Li of disjoint cycle-sets,

with Oi the common subset of o-cycles for each cycle-set in Li. If no cycle-set in Li

contains an e-cycle, then, by virtue of Lemma 5.4, ΔL > 0 for every L ∈ Li. (This
is true even if Oi is empty.) Thus, it remains to consider only the case for which
at least one cycle-set in Li contains an e-cycle (which, by hypothesis, must be an
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Fig. 6.1. SR graph for the reaction network (6.4).

s-cycle). Let le be some fixed e-cycle residing in a cycle-set of Li. Since le is disjoint
from all members of Oi and from every other e-cycle (by virtue of the hypothesis
and Lemma 5.3), it follows that, for each cycle-set L ∈ Li that does not have le
as a member, the cycle-set L ∪ {le} also belongs to the family Li. Note that from
Lemma 5.5 we have

ΔL + ΔL∪{le} = 0.(6.3)

By partitioning Li into such cycle-set pairs—one member distinguished from the other
only by the presence of le—we can deduce in this case that

∑
L∈Li

ΔL = 0.
The proof that det(y1, . . . , yn) > 0 is virtually identical, except that we consider

only cycles containing no product edges.
Remark. We will say that two cycles have an orientable S-to-R intersection if the

two cycles have an S-to-R intersection and also have the following additional property:
There are directions along the two cycles, consistent on their intersection, such that,
for each S-to-R connected component of the intersection of the two cycles, its species
end node occurs before its reaction end node. Note then that in Lemma 5.3 one can
replace “S-to-R intersection” by “orientable S-to-R intersection.” It is then possible
to strengthen Theorem 6.1 by replacing “S-to-R intersection” by “orientable S-to-R
intersection.”

The following example shows a reaction network for which Theorem 6.1 gives
no information, but for which this strengthened version of Theorem 6.1 does give
information. Consider the reaction network

A + X � B + Y, A � B, M + N � A, M + N � B.(6.4)

The SR graph of this reaction network is shown in Figure 6.1. The middle cycle and
the outer cycle are e-cycles that have an S-to-R intersection, but they do not have an
orientable S-to-R intersection.

7. Split c-pairs. A different approach to showing that a reaction network does
not have the capacity for multiple equilibria was described in [8, 15, 16] and is based
on a different graph associated with the reaction network, called the SCL graph. That
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approach introduced the notion of a split c-pair. The same notion of split c-pair makes
sense for SR graphs as well: We say that two cycles in an SR graph split a c-pair if
each edge of the c-pair appears in at least one of the two cycles, and if one of the two
cycles contains one edge of the c-pair but not the other edge. (The other cycle might
contain just the other edge, or both.) We have the following claim.

Lemma 7.1. Consider some reaction network N and its SR graph ΓN . Suppose
that there are two cycles l1 and l2 in ΓN that have an S-to-R intersection. Then l1
and l2 split a c-pair.

Proof. Denote by r the reaction node ending of a component of the intersection
of l1 and l2. Note that there are exactly three edges of l1 and l2 adjacent to the node
r, precisely one of which is common to both cycles. Then at least two of these three
edges have the same complex label, because there are at most two different complex
labels on all edges adjacent to r. These two edges that have the same complex label
(say ε1 and ε2) form a c-pair. It is not possible that each one of l1 and l2 contains
both ε1 and ε2, since r is the ending of a component of the intersection of l1 and l2.
On the other hand, each one of l1 and l2 has to contain at least one of ε1 and ε2,
because, of their three edges adjacent to r, only one edge is common to both ε1 and
ε2. Therefore l1 and l2 split a c-pair.

Then our main result implies a criterion based on split c-pairs, but for the SR
graph instead of the SCL graph, as follows.

Corollary 7.2. Consider some reaction network N such that in its SR graph
ΓN all cycles are o-cycles or s-cycles and no two e-cycles split a c-pair. Then the
reaction network N is injective.

8. Concluding remarks and implications for biology. Theorem 1.1 pro-
vides rather easily satisfied conditions for the preclusion of multiple equilibria based
on reaction network structure alone. The first condition will be satisfied in the very
common situation for which every nonzero stoichiometric coefficient is 1 (in which
case every cycle in the SR graph is an s-cycle). Further, violation of the second con-
dition requires not only that there be two cycles in the SR graph but also that there
be two even cycles that intersect in a prescribed way. Indeed, Theorem 1.1 goes a
long way toward explaining just why, despite the great variety of reaction networks
that might arise in nature, there are so few experimental reports in the chemical engi-
neering literature of multiple stationary states in an isothermal homogeneous CFSTR
context.

At the same time, we believe that the theorem provides reasons to believe that
enzyme-driven biochemical reaction networks, written at the mechanistic mass action
level, might be far more prone than others to exhibit multiple equilibria (and partic-
ularly bistability [2, 13, 18]). The fact is that enzyme catalysis promotes the presence
of cycles in the SR graph, as might be seen by constructing the SR graph for even
the simplest possible mechanism of enzyme catalysis:

S + E � SE → P + E.

Here, E is an enzyme, S is a substrate, P is a product, and SE represents S bound to
the enzyme. (The enzyme E serves as a catalyst for the “overall reaction” S → P .)
For more intricate enzyme-catalyzed reaction networks, written at the mechanistic
level, it is easy to see how an abundance of cycles in the SR graph might arise (so
that the second condition of Theorem 1.1 becomes more likely to be violated).

Extensions to biology are somewhat more complicated than might first appear,
for the classical CFSTR model as described in this article might not be entirely ap-



MULTIPLE EQUILIBRIA IN CHEMICAL REACTION NETWORKS 1337

propriate in biological settings, not even as a crude metaphor. Even if we think of
the stirred reactor vessel as a surrogate for a cell and even if we imagine that sub-
strates and products (S and P in the example above) are transported readily through
the cell membrane, it might be inappropriate to suppose that high molecular weight
enzyme-related molecules (E and ES in the example) are also transported through
the cell membrane. That is, the heavy enzyme-related species might be regarded as
“entrapped” within the cell. For the entrapped species picture, the classical homoge-
neous CFSTR equations, which presume an outflow of all species, might not always
be suitable. (Note that this presumption played a substantive role in proofs contained
in this paper and in its predecessor [4].)

In some cases, it might be appropriate to imagine that enzymes are synthesized
within the cell at constant rate (i.e., constant relative to the rapid time scale of other
reactions) and that all enzyme-containing species degrade within the cell at rates pro-
portional to their concentrations. In such cases, the mathematics becomes essentially
identical to the mathematics of the classical CFSTR: Constant-rate enzyme synthesis
plays the role of a constant enzyme feed rate to the cell, while the degradation of
enzyme-containing species replaces the outflow of these species from the cell.

In other cases, when such suppositions of enzyme supply and degradation are
deemed inappropriate, the resulting mathematical structure is similar but not identical
to that studied in this article; in particular, there are no outflow reactions, such as
E → 0 for the enzymatic species. It happens that the absence of these outflows gives
rise to surprisingly delicate mathematical questions when one tries to extend the
results of Theorem 1.1 to entrapped enzyme models. Indeed, one must reframe the
very question of multiple equilibria to take into account the fact that one is interested
only in equilibria consistent with a fixed enzyme supply.

Nevertheless, there is a sense in which results in this paper and its predecessor
[4] carry over to the entrapped species case. Even when the kinetics is not mass
action, it can be shown that if a reaction network does not have the capacity for
multiple equilibria when all species are in the outflow, then, in the entrapped species
case, the network cannot give rise to multiple equilibria that are, in a certain sense,
nondegenerate [5].
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