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MULTIPLE EQUILIBRIA IN COMPLEX CHEMICAL REACTION
NETWORKS: I. THE INJECTIVITY PROPERTY∗
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Abstract. The capacity for multiple equilibria in an isothermal homogeneous continuous flow
stirred tank reactor is determined by the reaction network. Examples show that there is a very
delicate relationship between reaction network structure and the possibility of multiple equilibria.
We suggest a new method for discriminating between networks that have the capacity for multiple
equilibria and those that do not. Our method can be implemented using standard computer al-
gebra software and gives answers for many reaction networks for which previous methods give no
information.
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1. Introduction. We are interested in studying the uniqueness of positive equi-
librium points of a special but large class of systems of nonlinear ordinary differential
equations (ODEs): those that derive from chemical reaction networks. In order to
understand how these equations arise, we will first look informally at an example of
a reaction network and see how it induces a system of ODEs.

Consider some chemical species A, B, C, D, W, X, Y, and Z, and suppose that
the chemical reactions occurring among these species are

A + B � C, X � 2A + D � Y, D � C + W, B + D � Z.(1.1)

We will study a particular kind of reactor, called a continuous flow stirred tank
reactor (CFSTR; see [3]) by chemical engineers. Think of a CFSTR as just some
enclosed volume endowed with a feed stream and an outflow stream. Suppose that its
contents are kept at constant temperature and are spatially uniform. Now imagine
that a liquid mixture of species A, B, C, D, W, X, Y, and Z is continuously supplied to
some CFSTR at a constant volumetric flow rate g (volume/time). Also, the contents
of the CFSTR are continuously removed at the same volumetric flow rate g. Chemical
reactions occur in the CFSTR, according to (1.1). We would like to investigate the
temporal evolution of the composition of the mixture within the CFSTR. Let us denote
by cfA, c

f
B , . . . , c

f
Z the molar concentrations (moles/volume) in the feed stream and

by cA(t), cB(t), . . . , cZ(t) the molar concentrations within the CFSTR (and effluent
stream) at time t. We will denote the vector of all molar concentrations within the
CFSTR by c(t). We get the picture shown in Figure 1.1.

One source of change in composition is the occurrence of chemical reactions. It
is generally assumed that the occurrence rate of each reaction at time t depends just
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Fig. 1.1. The CFSTR of the reaction network (1.1).

on the mixture composition c(t). For example, for the reaction A + B → C there
exists a nonnegative real-valued rate function KA+B→C such that KA+B→C(c) is the
occurrence rate of reaction A+B → C per unit volume of mixture when the mixture
composition is given by the vector c. Let us now think about the instantaneous rate
of change of cA. Whenever the reaction A+B → C occurs we lose one molecule of A.
Also, whenever the reaction C → A+B occurs we gain one molecule of A. Similarly,
whenever the reaction X → 2A + C occurs we gain two molecules of A, and so on.

The other source of changes in composition is the difference between the com-
position cf in the feed stream and the composition c in the effluent stream. (Note
that the composition of the effluent stream is presumed to be identical to that of
the homogeneous mixture within the vessel.) If V is the total volume of the mixture
within the CFSTR,1 we get

V ċA = g(cfA − cA) − V KA+B→C(c) + V KC→A+B(c)(1.2)

− 2V K2A+D→X(c) + 2V KX→2A+D(c)

− 2V K2A+D→Y (c) + 2V KY→2A+D(c).

We will now look more closely at the structure of the rate functions. In most cases
chemists suppose the rate functions to be of mass-action type (see [26]). This means
that, for example, for the reaction A+B → C, the more A there is in the CFSTR, the
more occurrences of the reaction there will be, and similarly for B. More precisely,
we presume that the occurrence rate of the reaction A + B → C is proportional to
the probability of A and B meeting in the CFSTR, which, in turn, is proportional to
the value of cAcB . Thus, we write

KA+B→C(c) = kA+B→CcAcB ,

where kA+B→C is a positive rate constant for the reaction A + B → C. For the
reaction 2A + D → X an occurrence requires two molecules of A and one molecule
of D to meet in the CFSTR, and we consider the probability of this encounter to be
proportional to c2AcD. Therefore we get

K2A+D→X(c) = k2A+D→Xc2AcD,

1We assume hereafter that the densities of the feed and the effluent streams are identical and time-
invariant. This implies that V is constant in time. We also assume throughout that the temperature
of the reacting mixture is held constant.



1528 GHEORGHE CRACIUN AND MARTIN FEINBERG

where k2A+D→X is the rate constant for the reaction 2A + D → X. In the case of
a reaction such as D → C + W it is presumed that the occurrence rate is simply
proportional to the molar concentration of D, i.e.,

KD→C+W (c) = kD→C+W cD.

The rate constants are usually either approximated on the basis of chemical prin-
ciples or are deduced from experiments. If we assume mass-action kinetics for the
network (1.1), then we get the following associated system of differential equations:

ċA = (g/V )(cfA − cA) − kA+B→CcAcB + kC→A+BcC − 2k2A+D→Xc2AcD(1.3)

+ 2kX→2A+DcX − 2k2A+D→Y c
2
AcD + 2kY→2A+DcY ,

ċB = (g/V )(cfB − cB) − kA+B→CcAcB + kC→A+BcC

+ kZ→B+DcZ − kB+D→ZcBcD,

ċC = (g/V )(cfC − cC) + kA+B→CcAcB − kC→A+BcC

+ kD→C+W cD − kC+W→DcCcW ,

ċD = (g/V )(cfD − cD) + kX→2A+DcX − k2A+D→Xc2AcD

+ kY→2A+DcY − k2A+D→Y c
2
AcD − kD→C+W cD + kC+W→DcCcW

− kB+D→ZcBcD + kZ→B+DcZ ,

ċW = (g/V )(cfW − cW ) + kD→C+W cD − kC+W→DcCcW ,

ċX = (g/V )(cfX − cX) − kX→2A+DcX + k2A+D→Xc2AcD,

ċY = (g/V )(cfY − cY ) + k2A+D→Y c
2
AcD − kY→2A+DcY ,

ċZ = (g/V )(cfZ − cZ) + kB+D→ZcBcD − kZ→B+DcZ .

Therefore we obtain a system of ODEs where all equations are determined by
the reaction network up to some constants: cfA, cfB , . . . , c

f
Z , g/V , and kA+B→C ,

kC→A+B , . . . , kZ→B+D. We are now going to ask the question: does this system
of ODEs have no more than one positive equilibrium for all positive values of g/V ,
all positive values of the rate constants, and all nonnegative values of the feed con-
centrations cfA, cfB , . . . , c

f
Z?

This question is motivated by experiments. For homogeneous liquid phase CF-
STRs, there are very few reports of reaction networks with more than one positive
equilibrium, despite hundreds of reaction networks being studied (see [9] for one such
report). We are asking this question for all positive rate constants since in practice
there is poor knowledge of the rate constants of reactions.

This question is not easy to answer, in general. Even if, for the simple example
above, we could decide one way or the other by some ad-hoc method, there will be
thousands of other reaction networks for which we will still not know the answer.
There are important reaction networks with hundreds of reactions. Ideally, there will
be a simple way to decide on the uniqueness of equilibria.

We say that a mass-action network has the capacity for multiple positive equilibria
(in an isothermal homogeneous CFSTR context) if there are positive values of the flow
rate, the volume, the rate constants, and nonnegative values of the feed concentrations
such that the resulting differential equations admit two or more distinct positive
equilibria.

According to [30], there are examples of very similar reaction networks with very
different capacities for multiple positive equilibria (see Table 1.1). Networks (i) and
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Table 1.1

Some examples of reaction networks and their capacity for multiple positive equilibria [30].

Reaction Has the capacity for
network multiple equilibria?

(i) A + B � P
B + C � Q Yes
C � 2A

(ii) A + B � P
B + C � Q No
C + D � R
D � 2A

(iii) A + B � P
B + C � Q
C + D � R Yes
D + E � S
E � 2A

(iv) A + B � P
B + C � Q No

C � A

(v) A + B � F
A + C � G Yes
C + D � B
C + E � D

(vi) A + B � 2A No

(vii) 2A + B � 3A Yes

(viii) A + 2B � 3A No

(iii) in Table 1.1 have the capacity for multiple positive equilibria, but the “middle
case” network (ii) does not. Similarly, network (iv) is almost identical to (i), but
does not have the capacity for multiple positive equilibria. Moreover, network (v) is
an example that shows that we don’t need two or more copies of the same species
to appear in the same reaction for the network to admit multiple positive equilibria.
Also, changing (vi) to (vii) does bring in multiple positive equilibria, but changing (vi)
to (viii) does not. Therefore, a good theory of multiple positive equilibria in CFSTRs
should be able to differentiate between these subtle differences.

Let us look again at the system of ODEs in (1.3). If we are just interested in
equilibria, we set all the left-hand side terms equal to zero, and we get a system of
polynomial (algebraic) equations. Let us also move the feed terms cfA, . . . , c

f
Z to the

other side of the equations. We choose units such that g/V = 1. If we now change
signs in both sides and rearrange terms, then we get the following system of eight
polynomial equations:

cfA = cA + kA+B→CcAcB − kC→A+BcC + 2k2A+D→Xc2AcD(1.4)

− 2kX→2A+DcX + 2k2A+D→Y c
2
AcD − 2kY→2A+DcY ,

cfB = cB + kA+B→CcAcB − kC→A+BcC − kZ→B+DcZ

+ kB+D→ZcBcD,

cfC = cC − kA+B→CcAcB + kC→A+BcC − kD→C+W cD

+ kC+W→DcCcW ,
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cfD = cD − kX→2A+DcX + k2A+D→Xc2AcD − kY→2A+DcY

+ k2A+D→Y c
2
AcD + kD→C+W cD − kC+W→DcCcW

+ kB+D→ZcBcD − kZ→B+DcZ ,

cfW = cW − kD→C+W cD + kC+W→DcCcW ,

cfX = cX + kX→2A+DcX − k2A+D→Xc2AcD,

cfY = cY − k2A+D→Y c
2
AcD + kY→2A+DcY ,

cfZ = cZ − kB+D→ZcBcD + kZ→B+DcZ .

Let us denote by k the vector formed by the parameters kA+B→C , kC→A+B , . . . ,
kZ→B+D. Now we denote by p(c, k) the vector of right-hand sides of the system of
polynomial equations (1.4), and we call it the polynomial function associated to the
reaction network (1.1). We regard p(c, k) as a vector-valued function of a (positive)
composition vector c and depending on a (positive) vector of rate constants k.

We say that the reaction network (1.1) is an injective reaction network if the
function c → p(c, k) is injective for all positive k.

The following simple fact is a key observation: If a reaction network has the
capacity for multiple positive equilibria, then there exists some choice of positive vector
k0 such that the function c → p(c, k0) is not injective. In particular, p(c∗, k0) =
p(c#, k0) = cf for some feed composition cf and some distinct compositions c∗, c#.
In other words, an injective reaction network does not have the capacity for multiple
positive equilibria; i.e., injectivity is a sufficient condition for the absence of multiple
positive equilibria.

Remark 1.1. Injectivity is not a necessary condition for the absence of multiple
positive equilibria. The reason is that, for a network to admit multiple positive
equilibria, there must be a k0 such that p(·, k0) maps two distinct compositions not
only into the same vector, but, in fact, also into a nonnegative feed composition cf

(see (1.4), (3.10)). Were it not for this nonnegativity condition, injectivity would be
equivalent to uniqueness of equilibria.

Nevertheless, the class of injective reaction networks subsumes the largest class
of reaction networks for which the answer was previously found in [20, 30, 31]. The
main purpose of this paper is to describe a method that allows us to decide whether a
given reaction network is injective or not.

Remark 1.2. In general, it is of course very difficult to check whether a given
multidimensional polynomial function is injective or not. Moreover, the function
c → p(c, k) involves several unknown parameters. Our method derives, first, from a
theoretical observation about the function p(·, ·) and, second, from a rather remarkable
empirical observation.

The theoretical observation, discussed in section 3, is that a reaction network is

injective whenever its associated polynomial function has the property that ∂p(c,k)
∂c

is nonsingular for all positive c and all positive k. (There is no claim here that any
such assertion is true for polynomial functions in general; rather, the assertion is
made specifically for polynomial functions that derive, in the manner indicated, from
chemical reaction networks.)

To describe the empirical observation, we first note that the nonsingularity prop-

erty is, of course, equivalent to the requirement that det(∂p(c,k)
∂c ) be nonzero for

all positive c and all positive k. For moderately large networks, the calculation of

det(∂p(c,k)
∂c ) will result in hundreds or thousands of terms, even after combining all

similar monomials. Each resulting nonzero term will be a monomial in the (positive)
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species concentrations and the (positive) rate constants, with each term containing
an integer coefficient. Thus the sign of each term is carried by the sign of its integer
coefficient. The empirical observation is this: For very large and robust classes of
networks it is the case that, despite the huge number of terms, the integer coefficient

in every term is positive! In this case, det(∂p(c,k)
∂c ) cannot vanish, and injectivity of

the network is ensured (as is the impossibility of multiple positive equilibria). In fact,
we will show that positivity of all nonzero coefficients is both necessary and sufficient
for injectivity of the network.

In a subsequent article we intend to characterize, in graph-theoretical terms, large
classes of networks for which all coefficients are positive. In the meantime, we observe
that, for a given network of interest, checking for positivity of the coefficients is a
matter that can be resolved by presently available computer algebra systems.

By way of example, we show in (1.5) the first few terms of the expansion of

det(∂p(c,k)
∂c ) for network (1.1):

det

(
∂p(c, k)

∂c

)
(1.5)

= 10kC→A+BkD→C+W k2A+D→XcAc
2
DkW→0kB+D→ZkX→0kY→0kZ→0

+ 4kC→A+BkD→0k2A+D→XcAc
2
DkW→0kB+D→ZkX→0kY→2A+DkZ→0

+ 4kC→A+BkD→0k2A+D→Y cAcDkW→0kB→0kX→0kY→0kZ→0

+ kC→A+Bk2A+D→Xc2AkA→0kW→0kB+D→ZcDkX→0kY→2A+DkZ→0

+ 4kC→A+BkD→0k2A+D→Y cAcDkW→0kB→0kX→2A+DkY→0kZ→0

+ 6kC→A+BkD→C+W k2A+D→Y cAcDkW→0kB→0kX→2A+DkY→0kZ→B+D

+ 9kC→0k2A+D→Y c
2
AcDkA+B→CkC+W→DcCkB+D→ZcBkZ→0kX→0kY→0

+ 9kC→0k2A+D→Y c
2
AcDkA+B→CkC+W→DcCkB+D→ZcBkZ→0kX→2A+DkY→0

+ · · · .

In Table 1.2 we exhibit the (computer-generated) set of all coefficients that would
have resulted had the expansion been completed. Note that all the entries are positive.
Thus, we conclude that network (1.1) does not have the capacity for multiple positive
equilibria in an isothermal CFSTR context.

Our claim that, across wide varieties of reaction networks, it is common for all
coefficients to be positive is consistent with the paucity of experimental observations
of multiple equilibria in isothermal homogeneous CFSTRs.

In section 3 we provide elaboration on the remarks made here.
Before we describe our results we would like to specify their place in the general

landscape of chemical reaction network theory.
Stability results are discussed in [6, 7, 8, 11, 12, 13, 14, 15, 16, 18, 20, 24].
In [12, 13, 14, 15, 16, 17, 18, 19, 20, 25] reaction networks are classified by means

of a nonnegative integer index called the deficiency. It is then shown how, for reac-
tion networks of small deficiency, one can decide whether they have the capacity for
multiple positive equilibria (see also the software package [21]).

On the other hand, it is also shown (see [27]) that the deficiency-oriented theory
is not likely to give information for a large class of isothermal homogeneous CFSTRs.
Work that is complementary to the deficiency-oriented theory, and aimed specifically
at CFSTRs, was originated in [29] and then substantially broadened in [30, 31].

In [30, 31] Schlosser and Feinberg associate to any reaction network a graph called
the Species-Complex-Linkage (SCL) graph of the reaction network. Then they describe
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Table 1.2

The list of all nonzero coefficients in the expansion of the determinant of the Jacobian of the
function c → p(c, k) for the reaction network (1.1). Note that they are all positive.

10 4 4 1 4 6 9 9 4 4 4 1 4 1 4 4 4 4 9 4 4
1 4 4 1 1 4 4 1 1 1 4 4 4 4 4 4 6 4 4 4 4
1 1 4 1 1 4 1 1 1 4 4 1 1 15 4 1 4 4 4 1 1
9 1 4 9 4 4 4 1 1 4 15 4 1 9 1 1 1 1 1 1 1
3 3 3 4 1 4 4 4 1 1 4 4 9 1 1 4 4 4 4 15 1
1 4 4 1 1 4 1 6 4 4 4 4 1 1 4 4 4 4 10 1 4
4 4 4 4 6 1 1 4 4 4 6 4 2 1 2 1 1 1 4 10 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 3 1 3 1 1 4
4 4 1 1 1 1 1 4 4 1 1 6 4 4 1 4 1 1 9 1 1
1 4 1 1 1 1 4 1 4 4 4 2 1 10 4 4 4 4 1 4 1
1 1 4 1 1 1 1 4 1 4 2 1 1 6 4 4 4 15 1 1 6
2 4 1 1 4 4 1 4 1 4 4 1 4 4 4 4 1 4 1 1 2
4 4 4 4 4 4 4 1 4 4 1 1 1 1 4 4 1 4 1 1 1
1 4 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 3 1 1 1 1 3 1 1 1 1 4 4 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 4 1 1 1 1 1 1 1 1 1 1 1 4 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1

a criterion in terms of the SCL graph that implies that the CFSTR associated to the
reaction network does not have the capacity for multiple positive equilibria. This SCL
graph criterion of [30, 31] describes large classes of reaction networks that do not have
the capacity for multiple positive equilibria. On the other hand, it is not conclusive
for some reaction networks (including (1.1)), and it is not easy to implement as a
computer algorithm.

In Theorems 3.1–3.3 we describe equivalent formulations of the injectivity crite-
rion that allow us to decide whether a given reaction network is injective or not using
a simple computer algorithm (recall that an injective reaction network cannot have
the capacity for multiple positive equilibria). Moreover, the injectivity criterion is less
restrictive than the SCL graph criterion in [30, 31]: if the SCL graph criterion can
be applied, then our criterion can be applied as well, but sometimes the SCL graph
criterion is not conclusive, while our criterion is conclusive.

Applications of chemical reaction network theory are very diverse. There has been
a recent surge of interest in applications of dynamics arising from complex reaction
networks in biology. A very interesting discussion of biological applications appears in
[4]. Also, recent articles address the role of reaction networks in cellular biochemistry
[1, 2, 5, 10], in genetics [22, 23, 33], in bioengineering [32], and immunology [34].

In section 2 we give a precise definition of a reaction network, and we discuss
some associated ideas. In section 3 we prove equivalent formulations of injectivity
for reaction networks (recall that injectivity implies the absence of multiple positive
equilibria). We will see that some of these equivalent formulations of injectivity allow
us to test whether a given reaction network is injective or not, using a very sim-
ple algorithm. In section 4 we describe a condition which implies that a reaction
network does have the capacity for multiple positive equilibria. Section 5 contains
concluding remarks.
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2. Definitions and notation. We denote by R+ the set of strictly positive real
numbers, and by R̄+ the set of nonnegative real numbers. For an arbitrary finite set
I we denote by R

I the real vector space of all formal sums
∑

i∈I αii for all αi ∈ R.
Note that I becomes a basis of R

I . By R
I
+ we mean the set of sums

∑
i∈I αii in which

all αi are strictly positive. By R̄
I
+ we mean the set of sums

∑
i∈I αii in which all αi

are nonnegative.

In the following definition the complexes of a reaction network are to be under-
stood as the objects (such as A + B) at the heads and tails of the reaction arrows.

Definition 2.1 (see [14, 18]). A chemical reaction network consists of three
finite sets:

(i) a set S of species of the network;
(ii) a set C ⊂ R̄

S
+ of complexes of the network;

(iii) a set R ⊂ C × C of reactions, with the following properties:
(a) (y, y) /∈ R for any y ∈ C ;
(b) for each y ∈ C there exists y′ ∈ C such that (y, y′) ∈ R or such that

(y′, y) ∈ R.

When (y, y′) ∈ R we say that the complex y reacts to complex y′. When this is
the case we will write y → y′, since it is the usual notation in chemistry.

If we look at the differential equations in (1.3), it is clear that, for CFSTRs in
general, there will be not only terms that derive from the occurrence of chemical
reactions but also linear terms (such as −(g/V )cA) that derive from the presence

of the outflow stream, and constant terms (such as (g/V )cfA) that derive from the
presence of the feed stream. So that all such terms can be brought into a common
reaction network theory framework, it will be useful to regard such “flow” terms as
having derived from formal chemical “reactions” such as A → 0 (corresponding to
the outflow of A) and 0 → A (corresponding to the feed of A); see [12, 25]. Here we
view “0” as the zero vector of R

S . If we imagine A → 0 to be governed by mass-
action kinetics with rate constant kA→0 = g/V , then the contribution to ċA in (1.3)
will be precisely −(g/V )cA. We adopt the convention that the mass-action rate of
a reaction of the form 0 → A is constant (and equal to the associated rate constant

k0→A). Thus, if we choose k0→A = (g/V )cfA, then the contribution of the reaction

0 → A to ċA is just (g/V )cfA. In this way, the formal “flow reactions” A → 0 and
0 → A account for the flow terms that appear in the equation for ċA. More generally,
there are advantages to viewing CFSTR mass-action differential equations as having
derived from a mass-action system in which the set of “true” reactions is augmented
with the set of “flow reactions,” with appropriately chosen rate constants. (Recall
that we have chosen units such that g/V = 1 so that, for us, ks→0 = 1 for all s ∈ S .)

Hereafter, we shall regard the operative reaction network under discussion to be
the augmented one. If, for example, all species are present in the feed stream, then
we augment the set of reactions in (1.1) by adding the following flow reactions:

0 → A, 0 → B, 0 → C, 0 → D, 0 → W, 0 → X, 0 → Y, 0 → Z,(2.1)

A → 0, B → 0, C → 0, D → 0, W → 0, X → 0, Y → 0, Z → 0.

If a certain species, say W , is deemed absent from the feed stream (i.e., if cfW = 0), then
the reaction 0 → W would be omitted. (With respect to injectivity considerations,
the presence or absence of certain species in the feed is of no consequence.) Flow
reactions of type 0 → A are called feed reactions, and flow reactions of type A → 0
are called outflow reactions. As Figure 1.1 indicates, all species are deemed present
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in the effluent stream, so there is an outflow reaction for each species. (In a future
paper we will discuss the implications of relaxing this assumption.)

So, the augmented network corresponding to the reaction network (1.1) has
the set of species S = {A,B,C,D,W,X, Y, Z} and the set of complexes C =
{A,B,C,D,W,X, Y, Z, 0, A + B, 2A + D,C + W,B + D}. It contains the ten true
reactions in (1.1) and, when all species are deemed to be in the feed, the sixteen flow
reactions in (2.1).

In general, we denote by Rt the set of true reactions, by Rf the set of feed
reactions, and by Ro the set of outflow reactions.

Definition 2.2. A mass-action system is a reaction network (S ,C ,R) taken
together with an element k ∈ R

R
+ . The number ky→y′ is the rate constant of the

reaction y → y′ ∈ R.
For two vectors in R̄

S
+ , say u =

∑
s∈S uss and v =

∑
s∈S vss, we denote

uv =
∏

s∈S (us)
vs . Here we use the convention that 00 = 1.

We will now show how, by using the notation above, we can express the system
of ODEs associated to a reaction network as a very compact formula. For example,
note that the term kA+B→CcAcB on the first line in (1.3) can be written as ky→y′cy;
here y = A + B and y′ = C are regarded as vectors in R

S , where S is the set of
species. Also, the term −2k2A+D→Y c

2
AcD on the second line in (1.3) can be written

as −2ky→y′cy, where y = 2A + D, y′ = Y .
If we look for all appearances of k2A+D→Y c

2
AcD in (1.3), we notice that they

take place in equations corresponding to species A,D, Y , i.e., exactly the species that
appear in the complexes y, y′. Moreover, the coefficient of each species in the reaction
2A + D → Y is equal (up to sign) to the coefficient of the monomial k2A+D→Y c

2
AcD

in the equation corresponding to that species. The sign is minus for species in y and
plus for species in y′. Therefore the factor k2A+D→Y c

2
AcD contributes to the right side

of the (vector) ODE precisely as the term ky→y′cy(y′−y), where y = 2A+D, y′ = Y .
Then we get the following two definitions (see [14, 19]).
Definition 2.3. The species-formation-rate function (or simply the rate func-

tion) for a mass-action system (S ,C ,R, k) is the function r(·, k) : R̄
S
+ → R

S , defined
by

r(c, k) =
∑

y→y′∈R

ky→y′cy(y′ − y).

Definition 2.4. The system of differential equations associated to a mass-action
system (S ,C ,R, k) is given by

ċ = r(c, k).

We see here again that the reaction network (S ,C ,R) and the vector k uniquely
determine the system of differential equations associated to a mass-action system.

Definition 2.5. A positive equilibrium of a mass-action system (S ,C ,R, k) is
an element c ∈ R

S
+ such that r(c, k) = 0.

Definition 2.6. We say that a reaction network (S ,C ,R) has the capacity for
multiple positive equilibria if there exist k ∈ R

R
+ , a ∈ R

S
+ , b ∈ R

S
+ , a �= b, such that

r(a, k) = r(b, k) = 0.
To formulate the following definition recall that we have R = Rf ∪Ro∪Rt, where

Rf ∪ Ro is the set of flow reactions (Rf is the set of feed reactions, Ro is the set of
outflow reactions), and Rt is the set of true reactions.
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Definition 2.7. Given a chemical reaction network N = (S ,C ,R), its associ-
ated polynomial function pN (·, ·) : R

S
+ × R

Rt∪Ro
+ → R

S is

pN (c, k) =
∑

y→y′∈Rt∪Ro

ky→y′cy(y − y′).

Note that

r(c, k) = −pN (c, k) +
∑

y→y′∈Rf

ky→y′cy(y′ − y).

With Sf denoting the set of species in the feed stream, note also that∑
y→y′∈Rf

ky→y′cy(y′ − y) =
∑
s∈Sf

k0→ss.

The last equation results from the fact that Rf = {0 → s : s ∈ Sf} and, for y = 0,
cy = 1. Finally, note that the equilibrium equation r(c, k) = 0 is equivalent to

pN (c, k) =
∑
s∈Sf

k0→ss,(2.2)

and the sum on the right side of (2.2) is constant. Therefore, if the polynomial
function c → pN (c, k) is injective for every value of the parameter k ∈ R

Rt∪Ro
+ , then

there cannot exist multiple positive equilibria.
Definition 2.8. We say that a chemical reaction network N = (S ,C ,R) is

injective if the polynomial function c → pN (c, k) is injective for all k ∈ R
Rt∪Ro
+ .

Remark 2.9. Our consideration of CFSTRs suggests that, for the outflow re-
actions (i.e., those of the form s → 0), we should require the rate constants to be
identical for all s ∈ S . Recall that these rate constants were identified with g/V ,
which we set to 1. It would appear then that our requirement of injectivity of pN (·, k)
for all k ∈ R

Rt∪Ro
+ is stronger than it need be for the application we have in mind.

However, it is not hard to show that if pN (·, k) is injective for all k ∈ R
Rt∪Ro
+ sat-

isfying the restriction ks→0 = 1 for every s ∈ S , then pN (·, k) is injective for all
k ∈ R

Rt∪Ro
+ .

In fact, suppose that, for some k∗ ∈ R
Rt∪Ro
+ , there are distinct a∗ ∈ R

S
+ , b∗ ∈ R

S
+

such that pN (a∗, k∗) = pN (b∗, k∗). Now choose k#, a#, b# as follows:

a#
s = a∗sk

∗
s→0 ∀s ∈ S ,

b#s = b∗sk
∗
s→0 ∀s ∈ S ,

k#
y→y′ = k∗y→y′/

∏
s∈S

k∗s→0
ys ∀y → y′ ∈ Rt ∪ Ro.

Then k#
s→0 = 1 for all s ∈ S , and pN (a#, k#) = pN (b#, k#). This is to say that if

pN (·, k∗) is not injective for some unrestricted k∗, then there is a restricted k# such
that pN (·, k#) also fails to be injective.

3. Characterizations of the injectivity property. In this section we prove
some equivalent characterizations of the injectivity property that make it possible
to check whether a given reaction network is injective by using standard computer
algebra software.
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Recall that for each reaction network N = (S ,C ,R) we defined its associated
polynomial function pN (·, ·) : R

S
+ × R

Rt∪Ro
+ → R

S .
Theorem 3.1. A reaction network N is injective if and only if we have

det

(
∂pN
∂c

(c, k)

)
�= 0 ∀c ∈ R

S
+ and ∀k ∈ R

Rt∪Ro
+ .(3.1)

Remark 3.1. Note that there is some similarity between this theorem and the
Jacobian conjecture2 over the field of real numbers, since we are concluding injectivity
from the nonsingularity of the Jacobian of a polynomial function. Of course, there
are also important differences, e.g., the fact that the domain of the function p(·, k) is
restricted to R

S
+ , and (3.1) holds for all positive values of the parameter k.

Proof. We will show a chain of equivalences from the negation of (3.1) to the
noninjectivity of pN (·, k). The derivative of pN (·, k) at some point c ∈ R

S
+ is a

linear transformation from R
S to R

S . According to [18], the result of applying the
derivative of pN (·, k) to an arbitrary vector γ ∈ R

S can be written as(
∂pN
∂c

(c, k)

)
(γ) =

∑
y→y′∈Rt∪Ro

ky→y′cy(y ∗ γ)(y − y′),

where “∗” is a special scalar product in R
S , defined by

v ∗ w =
∑
s∈S

(vsws/cs).

(Here we use the fact that all the components of c are strictly positive.) Note that to
say that (3.1) is not true is equivalent to(

∂pN
∂c

(c, k)

)
(γ) = 0 for some c ∈ R

S
+ , k ∈ R

Rt∪Ro
+ , γ ∈ R

S , γ �= 0,(3.2)

which is also equivalent to∑
y→y′∈Rt∪Ro

ky→y′cy(y ∗ γ)(y − y′) = 0 for some c ∈ R
S
+ , k ∈ R

Rt∪Ro
+ and(3.3)

some γ ∈ R
S , γ �= 0.

Using the change of variables ηy→y′ = ky→y′cy and δs = γs/cs we notice that condition
(3.3) is equivalent to∑

y→y′∈Rt∪Ro

ηy→y′(y · δ)(y − y′) = 0 for some η ∈ R
Rt∪Ro
+ and(3.4)

some δ ∈ R
S , δ �= 0,

where “·” is the usual scalar product in R
S . The condition (3.4) in turn is equivalent

to ∑
y→y′∈Rt∪Ro

Ky→y′(ey·δ − 1)(y − y′) = 0 for some K ∈ R
Rt∪Ro
+ and(3.5)

some δ ∈ R
S , δ �= 0,

2The Jacobian conjecture over the field of real numbers says that if a polynomial function
f : R

m → R
m has nonsingular Jacobian everywhere, then f is injective. This conjecture was

proved to be false in [28].
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since the signs of y · δ and ey·δ − 1 are the same, regardless of the value of y · δ. Then
the condition (3.5) is equivalent to

∑
y→y′∈Rt∪Ro

Ky→y′

(
by

ay
− 1

)
(y − y′) = 0 for some K ∈ R

Rt∪Ro
+ and(3.6)

some a �= b ∈ R
S
+

via another change of variables, such that bs
as

= eδs for all s ∈ S . Note that a �= b if
and only if δ �= 0. Condition (3.6) is equivalent to∑

y→y′∈Rt∪Ro

κy→y′(by − ay)(y − y′) = 0 for some κ ∈ R
Rt∪Ro
+ and(3.7)

some a �= b ∈ R
S
+ ,

where κy→y′ =
Ky→y′

ay . Now, note that this is equivalent to saying that for some value

of κ ∈ R
Rt∪Ro
+ the function pN (·, κ) is not injective on R

S
+ . Therefore, we showed

that the reaction network N is injective if and only if (3.1) is true.
It is perhaps worthwhile to consider a small example, which is easily worked by

hand. Consider network (3.8):

A + B � C, A → 2B.(3.8)

The system of CFSTR differential equations associated to (3.8) is

ċA = cfA − cA − kA+B→CcAcB + kC→A+BcC − kA→2BcA,(3.9)

ċB = cfB − cB − kA+B→CcAcB + kC→A+BcC + 2kA→2BcA,

ċC = cfC − cC + kA+B→CcAcB − kC→A+BcC ,

where we supposed that g/V = 1. If we now again look for equilibria and rearrange
terms, we get

cfA = cA + kA+B→CcAcB − kC→A+BcC + kA→2BcA,(3.10)

cfB = cB + kA+B→CcAcB − kC→A+BcC − 2kA→2BcA,

cfC = cC − kA+B→CcAcB + kC→A+BcC .

Therefore the associated polynomial function for the reaction network (3.8) is

p(c, k) = (cA + kA+B→CcAcB − kC→A+BcC + kA→2BcA,(3.11)

cB + kA+B→CcAcB − kC→A+BcC − 2kA→2BcA,

cC − kA+B→CcAcB + kC→A+BcC).

Then, for the reaction network (3.8), we have

det

(
∂p

∂c
(c, k)

)
(3.12)

= det

⎡
⎣ 1 + kA+B→CcB + kA→2B kA+B→CcA −kC→A+B

kA+B→CcB − 2kA→2B 1 + kA+B→CcA −kC→A+B

−kA+B→CcB −kA+B→CcA 1 + kC→A+B

⎤
⎦

= 1 + kC→A+B + kA+B→CcA + kA+B→CcB

+ 3kA→2BkA+B→CcA + kA→2BkC→A+B .
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Notice that in (3.12) all coefficients3 of the monomials in the expansion of the deter-
minant are 1, except the coefficient of kA→2BkA+B→CcA, which is 3. In particular,
they are all positive numbers. Therefore, in this case, det(∂f∂c (c, k)) > 0 for all c ∈ R

n
+

and for all k ∈ R
m
+ , so the reaction network (3.8) is injective as well.

Compare this to det(∂p∂c (c, k)) for the polynomial function associated to the reac-
tion network (vii) in Table 1.1, which is

det
(
∂p

∂c
(c, k)

)
= 1 + k2A+B→3Ac

2
A − 2k2A+B→3AcAcB + 3k3A→2A+Bc

2
A.(3.13)

The reaction network (vii) in Table 1.1 does admit multiple positive equilibria, and,
as we have seen above, the determinant of the Jacobian of its associated polynomial
function has a monomial with a negative coefficient.

Now we are in a position to review and elaborate further on what was said in
Remark 1.2. It is worth repeating here that det(∂p∂c (c, k)) can be calculated using cur-
rently available computer algebra software and that the result of such a computation
will sometimes have hundreds or even thousands of terms, each a monomial in the
(positive) species concentrations and the (positive) rate constants. It is remarkable
that, more often than not, all such monomials will have positive coefficients, so that
det(∂p∂c (c, k)) is positive for all positive c and all positive k (recall Table 1.2). Indeed,
for large networks the positivity of the monomial coefficients can also be checked with
computer algebra software. In this way, Theorem 3.1 provides a (surprisingly robust)
way to ensure that a given network is injective and, therefore, incapable of multiple
positive equilibria.

In fact, Theorem 3.1 provides the information that networks (ii) and (iv) in Table
1.1 cannot give rise to multiple positive equilibria. On the other hand, Theorem 3.1 by
itself stands silent on the capacity for multiple positive equilibria of the very similar
networks (i) and (iii). In section 4 we will discuss extensions of Theorem 3.1 that do
give information about networks (i) and (iii).

For polynomials in general, it is not necessary that each coefficient be positive in
order for the polynomial to take strictly positive values for all positive values of the
variables. (The polynomial x2 − xy + y2 is, of course, an elementary counterexam-
ple.) On the other hand, we will show that, for the class of polynomials considered
here, positivity of the numerical coefficients is also necessary if positive values of the
polynomial are to result for all positive values of the variables (i.e., the species concen-
trations and rate constants). In turn, this will imply that positivity of all (nonzero)
coefficients is not only sufficient but also necessary for a network’s injectivity (see
Theorem 3.3).

In the following theorem we draw a relationship between the underlying network
of chemical reactions and the numerical coefficients in the expansion of det(∂p∂c (c, k)).
This relationship will have some importance not only here but also in a subsequent
paper, in which we describe large classes of networks for which all (nonzero) coefficients
are positive.

Theorem 3.2. Consider some reaction network N with n species. Then for
each coefficient in the expansion of det(∂pN

∂c (c, k)) there is a set of n reactions {y1 →
y′1, . . . , yn → y′n} (taken from the true and outflow reactions) such that the coefficient
is equal to

det([y1, . . . , yn]) det([y1 − y′1, . . . , yn − y′n]).(3.14)

3We are looking at coefficients of monomials with respect to the coordinates of c and k.
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Moreover, for each choice of n reactions such that (3.14) is not zero, there is a corre-
sponding coefficient in the expansion of det(∂pN

∂c (c, k)).
Proof. Recall that, with the notation from the proof of Theorem 3.1, we have(

∂pN
∂c

(c, k)

)
(γ) =

∑
y→y′∈Rt∪Ro

ηy→y′(y ∗ γ)(y − y′),

where ηy→y′ = ky→y′cy. With {e1, . . . , en} denoting the canonical basis of R
S , we

have

det

(
∂pN
∂c

(c, k)

)

= det

⎡
⎣ ∑
y→y′∈Rt∪Ro

ηy→y′(y ∗ e1)(y − y′), . . . ,
∑

y→y′∈Rt∪Ro

ηy→y′(y ∗ en)(y − y′)

⎤
⎦ ,

and, according to the definition of “∗”, it follows that(
n∏

i=1

ci

)
det

(
∂pN
∂c

(c, k)

)

= det

⎡
⎣ ∑
y→y′∈Rt∪Ro

ηy→y′(y · e1)(y − y′), . . . ,
∑

y→y′∈Rt∪Ro

ηy→y′(y · en)(y − y′)

⎤
⎦ .

Therefore the coefficients in the expansion of det(∂pN
∂c (c, k)) are exactly the coefficients

in the expansion of

det

⎡
⎣ ∑
y→y′∈Rt∪Ro

ηy→y′(y · e1)(y − y′), . . . ,
∑

y→y′∈Rt∪Ro

ηy→y′(y · en)(y − y′)

⎤
⎦ .

Note now that each term in the expansion of the determinant above is a scalar multiple
of a product of the form

∏n
i=1 ηyi→y′

i
, where y1 → y′1, . . . , yn → y′n are some reactions

in Rt ∪ Ro.
Let us look at some fixed set {y1 → y′1, . . . , yn → y′n} ⊂ Rt ∪ Ro. With Sn

denoting the set of all permutations of {1, . . . , n}, the coefficient of
∏n

i=1 ηyi→y′
i

in
the expansion of the determinant above is∑

σ∈Sn

det[(yσ(1) · e1)(yσ(1) − y′σ(1)), . . . , (yσ(n) · en)(yσ(n) − y′σ(n))]

=
∑
σ∈Sn

det[y1
σ(1)(yσ(1) − y′σ(1)), . . . , y

n
σ(n)(yσ(n) − y′σ(n))]

=
∑
σ∈Sn

y1
σ(1)y

2
σ(2) . . . y

n
σ(n) det[(yσ(1) − y′σ(1)), . . . , (yσ(n) − y′σ(n))]

=
∑
σ∈Sn

y1
σ(1)y

2
σ(2) . . . y

n
σ(n)sgn(σ) det[(y1 − y′1), . . . , (yn − y′n)]

=

( ∑
σ∈Sn

y1
σ(1)y

2
σ(2) . . . y

n
σ(n)sgn(σ)

)
det[(y1 − y′1), . . . , (yn − y′n)]

= det[y1, . . . , yn] det[(y1 − y′1), . . . , (yn − y′n)].
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Therefore all coefficients in the expansion of det(∂pN
∂c (c, k)) are of the form

det[y1, . . . , yn] det[y1 − y′1, . . . , yn − y′n]

for some set {y1 → y′1, . . . , yn → y′n} ⊂ Rt ∪ Ro.
Remark 3.2. In a future paper we will use the result of Theorem 3.2 to explain

why, for large classes of reaction networks, all coefficients of the monomials in the
expansion of det(∂pN

∂c (c, k)) are nonnegative (i.e., our empirical observation).

Note that Theorem 3.2 gives us a way of computing the coefficients of det(∂pN
∂c (c, k))

one by one. In particular, it suggests a simple parallel computation algorithm for
checking injectivity.

We prove now that the injectivity of a reaction network N is completely charac-
terized by the signs of the coefficients of det(∂pN

∂c (c, k)).
Theorem 3.3. A reaction network N is injective if and only if all the coefficients

in the expansion of det(∂pN
∂c (c, k)) are nonnegative.

Proof. Suppose that all the coefficients in the expansion of det(∂pN
∂c (c, k)) are

nonnegative. We want to show that N is injective.
Consider the function f : R

S
+ × R

Rt∪Ro
+ → R defined by

f(c, k) =

(∏
s∈S

cs

)
det

(
∂pN
∂c

(c, k)

)
.

Note that f vanishes if and only if det(∂pN
∂c (c, k)) vanishes. As in the proof of Theorem

3.2, the terms in the expansion of f(c, k) are of the form

det[y1, . . . , yn] det[y1 − y′1, . . . , yn − y′n]

(
n∏

i=1

ηyi→y′
i

)
,(3.15)

where ηy→y′ = ky→y′cy, and with each term corresponding to some choice of n reac-
tions from the set Rt ∪Ro. Note that

∏
s∈S cs and

∏n
i=1 ηyi→y′

i
are strictly positive,

since c and k are regarded to have strictly positive coordinates. Then, to show injectiv-
ity, it is enough to show that there exists some set {y1 → y′1, . . . , yn → y′n} ⊂ Rt∪Ro

such that det[y1, . . . , yn] det[y1 − y′1, . . . , yn − y′n] �= 0. But if we just choose the set
{y1 → y′1, . . . , yn → y′n} to be Ro, we have

det[y1, . . . , yn] det[y1 − y′1, . . . , yn − y′n] = 1,

because, up to a permutation, yi = ei and y′i = 0 for i = 1, . . . , n. Therefore (3.1) is
true, and, according to Theorem 3.1, N is injective.

Suppose now that N is injective. We want to show that all the coefficients in
the expansion of det(∂pN

∂c (c, k)) are nonnegative. Of course, the coefficients in the

expansion of det(∂pN
∂c (c, k)) are the same as the coefficients in the expansion of f(c, k).

We will show that all the coefficients in the expansion of f(c, k) are nonnegative. Note
that f(c, k) equals a homogeneous polynomial of degree n of the coordinates of η. Note
also that, since we can write the terms in the expansion of f(c, k) as in (3.15), it follows
that each monomial in this expansion contains a product

∏n
i=1 ηyi→y′

i
for some set of

n distinct reactions {y1 → y′1, . . . , yn → y′n}, and there is no other monomial with the
same set of n reactions. Suppose now that there is some monomial with a negative
coefficient in the expansion of f(c, k). Then, by choosing some η ∈ R

Rt∪Ro
+ such

that the coordinates of η that appear in the negative monomial are very large, and
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all other coordinates of η are very small (i.e., very close to zero), we conclude that
f takes a negative value somewhere in its domain. Similarly, by using a monomial
with a positive coefficient (for example, the monomial with the coefficient “1” that
we mentioned above) we conclude that f takes a positive value somewhere in its
domain. Since the domain of f is connected, it follows that f is zero somewhere
in its domain. According to Theorem 3.1, this contradicts the hypothesis that N is
injective. Therefore there cannot exist any monomial with a negative coefficient in the
expansion of f(c, k), so there cannot exist any monomial with a negative coefficient
in the expansion of det(∂pN

∂c (c, k)).

Remark 3.3. Theorem 3.3 allows us to show that, although injectivity is sufficient
to conclude that a reaction network does not admit multiple positive equilibria, it is
not a necessary condition. One such example is the reaction network (vi) in Table 1.1.
Indeed, that reaction network does not admit multiple positive equilibria but has

det

(
∂p

∂c
(c, k)

)
= 1 + kA+B→2AcA − kA+B→2AcB + 2k2A→A+BcA,

which does have one negative coefficient, so the network is not injective.

Remark 3.4. Theorems 3.2 and 3.3 imply that, given a reaction network with
n species and m reactions, it is only the structure of its subnetworks of exactly n
reactions (some of which could be outflow reactions) that dictates whether the reaction
network is injective or not. Also, given some reaction network that does admit multiple
positive equilibria, Theorems 3.2 and 3.3 allow us to pinpoint the subnetwork or
subnetworks that create the capacity for multiple positive equilibria as exactly the
ones for which the product of determinants det[y1, . . . , yn] det[y1 − y′1, . . . , yn − y′n]
is negative. Or, consider some finite family of reaction networks, each containing
exactly n species. According to Theorem 3.2, we can enumerate all possible “bad”
subnetworks in that family (i.e., subnetworks that have exactly n reactions, and for
which the product of determinants above is negative). Then, in that family, only
the reaction networks that contain a copy of some “bad” subnetwork can have the
capacity for multiple positive equilibria.

Remark 3.5. Up to now we have considered only reaction networks where all
species are in the outflow. If N is a reaction network such that not all species are in
the outflow, but there are n reactions {y1 → y′1, . . . , yn → y′n} in N (some of which
could be outflow reactions) such that det[y1, . . . , yn] det[y1−y′1, . . . , yn−y′n] > 0, then
Theorem 3.3 remains valid.

4. Sufficient conditions for existence of multiple positive equilibria. Re-
call that, as we mentioned in section 1, the injectivity property is not a necessary
condition for the absence of multiple positive equilibria (see also Remark 3.3). In
other words, if a network N is not injective, this does not imply that N has the
capacity for multiple positive equilibria. Theorems 4.1 and 4.2 below say that if N is
not injective and satisfies an additional condition, then N does have the capacity for
multiple positive equilibria. We begin with a lemma.

Lemma 4.1. Let N = (S ,C ,R) be some reaction network (augmented to include
the flow reactions). Suppose that there is some c ∈ R

S
+ and some k ∈ R

Rt∪Ro
+ such

that

det

(
∂pN
∂c

(c, k)

)
= 0



1542 GHEORGHE CRACIUN AND MARTIN FEINBERG

and ∑
y→y′∈Rt∪Ro

ky→y′cy(y − y′) ∈ R
S
+ .

Then N does have the capacity for multiple positive equilibria.
Proof. The reaction network N admits multiple positive equilibria if and only if

there is some κ ∈ R
Rt∪Ro
+ and some a �= b ∈ R

S
+ such that∑

y→y′∈Rt∪Ro

κy→y′ay(y − y′) =
∑

y→y′∈Rt∪Ro

κy→y′by(y − y′) = cf

for some cf ∈ R̄
S
+ (recall Remark 1.1). Consider η ∈ R

Rt∪Ro
+ such that ηy→y′ =

ky→y′cy for each reaction y → y′ ∈ Rt ∪ Ro, where c and k are as in the theorem
statement. Then, as in the proof of Theorem 3.1, there exists some δ ∈ R

S , δ �= 0,
such that ∑

y→y′∈Rt∪Ro

ηy→y′(y · δ)(y − y′) = 0.

Consider a ∈ R
S
+ given by as = 1 for every s ∈ S , and consider b ∈ R

S
+ given

by bs = eδs for every s ∈ S . Note that δ �= 0 implies a �= b. Denote by κ ∈ R
Rt∪Ro
+

the vector given by κy→y′ = y·δ
ey·δ−1

ηy→y′ for all y → y′ ∈ Rt ∪ Ro with y · δ �= 0, and
κy→y′ = ηy→y′ for all y → y′ ∈ Rt ∪ Ro with y · δ = 0.

Then we have∑
y→y′∈Rt∪Ro

κy→y′(by − ay)(y − y′) =
∑

y→y′∈Rt∪Ro

ηy→y′(y · δ)(y − y′) = 0.

Note that, without loss of generality, we can suppose that the norm of δ is very
small. On the other hand we have

lim
δ→0

⎛
⎝ ∑

y→y′∈Rt∪Ro

κy→y′ay(y − y′)

⎞
⎠

= lim
δ→0

⎛
⎝ ∑

y→y′∈Rt∪Ro

κy→y′(y − y′)

⎞
⎠

=
∑

y→y′∈Rt∪Ro

ηy→y′(y − y′)

=
∑

y→y′∈Rt∪Ro

ky→y′cy(y − y′) ∈ R
S
+ .

Then, for small enough δ, it follows that
∑

y→y′∈Rt∪Ro
κy→y′ay(y − y′) ∈ R

S
+ .

Theorem 4.1. Consider some reaction network N = (S ,C ,R) (augmented to
include the flow reactions). For η ∈ R

Rt∪Ro
+ let Tη : R

S → R
S be defined by

Tη(δ) =
∑

y→y′∈Rt∪Ro

ηy→y′(y · δ)(y − y′),(4.1)

and let

f(η) = det(Tη).(4.2)
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Suppose that for some η∗ ∈ R
Rt∪Ro
+ we have

f(η∗) < 0,(4.3) ∑
y→y′∈Rt∪Ro

η∗y→y′(y − y′) ∈ R
S
+ .(4.4)

Then N has the capacity for multiple positive equilibria.

Proof. Consider some η# ∈ R
Rt∪Ro
+ such that for all y → y′ ∈ Ro the num-

ber η#
y→y′ is very large, and for all y → y′ ∈ Rt the number η#

y→y′ is very small.

Then condition (4.4) holds for η#, and, for reasons similar to those in the proof of
Theorem 3.3, f(η#) > 0.

Suppose now that there is some η∗ ∈ R
Rt∪Ro
+ such that both (4.3) and (4.4)

are true. Because the set of vectors η that satisfy (4.4) is convex, and because the
function f is continuous, it follows that on the line segment that connects η# and η∗

there will be some η̃ such that condition (4.4) holds for η̃, and f(η̃) = 0.

Now, for some fixed c̃ ∈ R
S
+ , choose k̃ ∈ R

Rt∪Ro
+ such that η̃y→y′ = k̃y→y′ c̃y for

all y → y′ ∈ Rt ∪Ro. According to the chain of equivalences in the proof of Theorem
3.1 (from (3.1) to (3.4)) we have

det

(
∂pN
∂c

(c̃, k̃)

)
= 0.

Also, note that

∑
y→y′∈Rt∪Ro

k̃y→y′ c̃y(y − y′) ∈ R
S
+ .

Then the hypothesis of Lemma 4.1 is satisfied, so its conclusion is also true.

Remark 4.1. Note that if some vector η∗ ∈ R
Rt∪Ro
+ satisfies (4.3) and (4.4), then

λη∗ also satisfies (4.3) and (4.4) for any positive number λ. Therefore, if there is some
η∗ that satisfies (4.3) and (4.4) and has all coordinates positive, then there is some
η∗∗ that satisfies (4.3) and (4.4) and has all coordinates positive and of total sum 1.
Then Theorem 4.1 can be implemented by considering the polynomial optimization
problem (4.5)–(4.8), with linear constraints on a compact domain:

minimizef(η)(4.5)

subject to the constraints

ηy→y′ ≥ ε ∀y → y′ ∈ Rt ∪ Ro,(4.6) ∑
y→y′∈Rt∪Ro

ηy→y′ = 1,(4.7)

∑
y→y′∈Rt∪Ro

ηy→y′(ys − y′s) ≥ ε ∀s ∈ S ,(4.8)

where ε is some very small positive number. Note that, from the point of view of
applying Theorem 4.1, it is enough to find some vector η∗ satisfying (4.6)–(4.8) and
such that f(η∗) < 0 (i.e., we don’t need to find the global minimum, as we are just
interested in knowing if the minimum is negative).
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Theorem 4.2. Consider some reaction network N = (S ,C ,R) (augmented
to include the flow reactions). Suppose that there is a set of n reactions {y1 →
y′1, . . . , yn → y′n} (where n is the number of species) such that

det(y1, . . . , yn) det(y1 − y′1, . . . , yn − y′n) < 0(4.9)

and

n∑
i=1

ηi(yi − y′i) ∈ R
S
+ for some positive numbers η1, . . . , ηn.(4.10)

Then N does have the capacity for multiple positive equilibria.

Proof. Consider some η∗ ∈ R
Rt∪Ro
+ such that for all y → y′ ∈ {y1 → y′1, . . . , yn →

y′n} the number η∗y→y′ is very large, and for all other y → y′ the number η∗y→y′ is very
small. Then, as in the proof of Theorem 3.3, it follows that f(η∗) < 0, because in
the expansion of det(Tη∗) the negative term corresponding to the subnetwork {y1 →
y′1, . . . , yn → y′n} dominates all other terms.

Suppose in particular that η∗yi→y′
i

= ληi for some (very large) number λ. Then

(4.4) holds for this η∗, since
∑n

i=1 ηi(yi − y′i) ∈ R
S
+ , and

∑
y→y′∈Rt∪Ro

η∗y→y′(y − y′)

is very close to λ
∑n

i=1 ηi(yi − y′i). Therefore we can apply Theorem 4.1.

Remark 4.2. Note that if some numbers η1, . . . , ηn satisfy
∑n

i=1 ηi(yi−y′i) ∈ R
S
+ ,

then the numbers λη1, . . . , ληn satisfy
∑n

i=1 ληi(yi−y′i) ∈ R
S
+ for any positive number

λ. Then, when implementing Theorem 4.2, we can replace condition (4.10) with the
systems of inequalities

ηi ≥ 1 for i = 1, . . . , n,(4.11)
n∑

i=1

ηi(yis − y′is) ≥ 1 ∀s ∈ S .(4.12)

Remark 4.3. For networks (i), (iii), (v) in Table 1.1 the less powerful but easily
applied Theorem 4.2 already affirms the capacity for multiple positive equilibria. For
network (vii) Theorem 4.1 affirms the capacity for multiple positive equilibria, while
Theorem 4.2 stands silent.

Remark 4.4. Suppose that we are given a reaction network N having n species,
and we would like to know if N has the capacity for multiple positive equilibria (in
the isothermal homogeneous CFSTR context). An algorithm that investigates this
problem proceeds as follows: First, check4 if there is any subnetwork of n reactions
such that (4.9) holds. If (4.9) is false for all such subnetworks, then, according to
Theorems 3.2 and 3.3, N does not have the capacity for multiple positive equilibria.
If one or more subnetworks of N satisfy (4.9), then check5 if Theorem 4.2 applies for
any such subnetwork. If Theorem 4.2 remains indecisive, then try to apply the more
computationally intensive method given by Theorem 4.1 and described in Remark
4.1.

4For example, this can be done by computing det(
∂pN (c,k)

∂c
) in order to recover the coefficients

for the various subnetworks (recall Theorem 3.2).
5This will be very easy, since we only have to check the feasibility of the system of linear inequal-

ities (4.11) and (4.12).
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5. Concluding remarks. We believe that the theorems presented here have
broad utility in deciding the capacity of a complex mass-action system to engender
multiple positive steady states in a homogeneous isothermal CFSTR context. That
these techniques should be robust relies heavily on our assertion that, despite the

presence of hundreds or even thousands of terms in the expansion of det(∂pN (c,k)
∂c ) for

a complex reaction network, it will typically be the case that all (nonzero) coefficients
are positive. (When there are negative coefficients for a given network, they will
typically be very few in number.) Although we have given examples to support this
assertion, we have not, in this paper, tried to explain why positivity of the coefficients
is to be expected broadly. Nor have we tried to identify those aspects of reaction
network structure that give rise to negative coefficients. We intend to take up these
questions in a future paper. There we will show how certain representations of reaction
networks in graph-theoretical terms give surprisingly rapid and incisive information.
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National Science Foundation.
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