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8. Sum of Squares

e Polynomial nonnegativity

e Sum of squares (SOS) decomposition

e Example of SOS decomposition

e Computing SOS using semidefinite programming
e Necessary conditions

e Newton Polytopes and Sparsity

e Positivity in one variable

e Background

e Global optimization

e Optimizing in parameter space

e Lyapunov functions
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Polynomial Programming

So far

e Polynomial equations over the complex field

Objectives

e General quantified formulae

e Boolean connectives

e Polynomial equations, inequalities, and inequations over the reals

e.g., does there exist x such that for all y

(f(z,y) >0) A (g(z,y) =0) V (h(z,y) # 0)
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Polynomial Nonnegativity

First, consider the case of one inequality; given f € Rlzq, ..., xp]

does there exist x € R" such that f(x) < 0

e |f not, then f is globally non-negative

f(x) >0 forall z e R"
and f is called positive semidefinite or PSD
e The problem is NP-hard, but decidable

e Many applications
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Certificates

Primal decision problem

does there exist z € R" such that f(z) < 0

e Answer yes is easy to verify; exhibit  such that f(z) < 0

e Answer no is hard: we need a certificate or a witness
I.e, a proof that there is no feasible point
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Sum of Squares Decomposition

If there are polynomials g1, ..., g9s € R|xq,...,xy] such that
S
2
flz)=> " gi(z)
1=1

then f is nonnegative

A purely syntactic, easily checkable certificate, called a sum-of-squares

(SOS) decomposition

e How do we find the g;

e When does such a certificate exist?
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Example

We can write any polynomial as a quadratic form on monomials

f= Ag? + 4x3y — 7x2y2 — 2xy3 + 1Oy4

277 T 4 2 A [2?]
= |2y 2 =742\ —1| |xy

v A -1 10 7]
= 21'Q(\)z

which holds for all A € R

If for some A we have QQ(\) = 0, then we can factorize ()
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Example, continued

e.g., with A = 6, we have

4 2 —6 0 2
QN =] 2 5-1| =12 1 [g f_?l)]
—6 -1 10| |1-3
SO
22 o 2” e
0 2 1
f=|zy 2 1 Ty
/ 2 1 -3| [
/0 B Rt LY
B 2:13y+y2 -
227 + 2y — 3y?

= (Qxy + y2)2 + (23:2 +xy — 3y2)2

which is an SOS decomposition
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Sum of Squares and Semidefinite Programming

Suppose f € Rlxy,...,zy|, of degree 2d

Let z be a vector of all monomials of degree less than or equal to d

f is SOS if and only if there exists () such that

Q=0
f:zTQz

e This is an SDP in standard primal form

e T[he number of components of z is (nilrd)

e Comparing terms gives affine constraints on the elements of ()
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Sum of Squares and Semidefinite Programming

If () is a feasible point of the SDP, then to construct the SOS representation
factorize () = VVT, and write V' = [vl .. .vr], so that

f=2vvly
= [[V* 2|

= > wley
1=1

e One can factorize using e.g., Cholesky or eigenvalue decomposition

e The number of squares r equals the rank of ()
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Example

f= 20 -+ 2:133y — :C2y2 + 5y4

p— :L‘y
2

Y

T

11 912 q13)
412 @22 @23

413 923 433

LY

Y

2
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A 5 9 A
= gzt + 2q102°y + (go2 + 2q13)2%Y* + 2q932Y° + q33Y

So f is SOS if and only if there exists () satisfying the SDP

Q=0

qi1 = 2
2q12 +q22 = —1
q33 = O

2q12 = 2
2qo3 =0



8- 11 Sum of Squares P. Parrilo and S. Lall, CDC 2003 2003.12.07.07

Convexity

The sets of PSD and SOS polynomials are convex cones; i.e.,

fy9 PSD — Af + pg is PSD for all A, > 0

let P, 4 be the set of PSD polynomials of degree < d
let 2, 4 be the set of SOS polynomials of degree < d

e Both P, 4 and X, ; are convex cones in RY where N = (n;d)

o We know 2, ; C P, 4, and testing it f € P, ;is NP-hard
e But testing if f € X, 4 is an SDP
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Polynomials in One Variable

If f € R[z]|, then f is SOS if and only if f is PSD

Example

All real roots must have even multiplicity, and highest coeff. is positive

=29 —102° + 512* — 1662° + 3422 — 400z + 200
= (z—2*(x — 2+1) (z— 2 —19)(z — (1+30) (z — (1 — 3))

Now reorder complex conjugate roots

= (z—2)*(x — 2+1) (z — (1+30) (x — (2 — 1)) (z — (1 — 34))
= (z — 2)2(($2 — 3z —1) —i(dz = 7)) ((a:2 — 3z — 1) +i(dx — 7))
= (z — 2) ((x — 3x — 1) + (4o — 7)2)

So every PSD scalar polynomial is the sum of two squares
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Quadratic Polynomials

A quadratic polynomial in n variables is PSD if and only if it is SOS

Because it is PSD if and only if

f=zlQu
where () > 0

And it is SOS if and only if
f=2 ()
1

(S )

(
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Some Background

In 1888, Hilbert showed that PSD=SOS if and only if

e d =2, i.e., quadratic polynomials

e n =1, i.e., univariate polynomials

e d=4,n=2,i.e., quartic polynomials in two variables
N2 4 6 8

yes yes yes yes

yes yes no no

yes no no no
yes no no no

N O N

e In general f is PSD does not imply f is SOS
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Some Background

e Connections with Hilbert's 17th problem, solved by Artin: every PSD
polynomial is a SOS of rational functions.

e If fis not SOS, then can try with gf, for some g.

e For fixed f, can optimize over ¢ too

e Otherwise, can use a “universal’ construction of Pdlya-Reznick.

More about this later.
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M(x.y,1)

The Motzkin Polynomial

A positive semidefinite polynomial,
that is not a sum of squares.

SIS IS
et e% et
SSSSIRKSS

M(x,y) = x2y4 + :C4y2 +1— 3x2y2

il
Ul

e Nonnegativity follows from the arithmetic—gyeometric inequality
applied to (z%y*, z%y?, 1)

e Introduce a nonnegative factor 2+ y2 + 1

e Solving the SDPs we obtain the decomposition:

(2% + 9> + 1) M(z,y) = (z°y — y)* + (xy° — 2)° + (z°y° — 1)+
1 3
+ 1(93@/3 — 29y)° + Z(xy?’ + 2y — 2ay)?
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The Univariate Case

Flz) = ap+ a1z + aox” + azz> + - - - + aggz®
T - o - -
1 qoo qo1 --- dod | | 1
_ | 7 q01 411 --- 41d L
1 Laoa v - qaa) |2

= Ed:(z qjk) 4

1=0 “j+k=1

e [n the univariate case, the SOS condition is exactly equivalent to
nonnegativity.

e The matrices A; in the SDP have a Hankel structure. We will see how
this can be exploited for efficient computation.
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Necessary Conditions

Suppose f = ¢z + ¢y 2% 4 -« 4 ¢z + ¢p; then

f is PSD — d is even, cg > 0 and ¢y > 0

What is the analogue in n variables?
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The Newton Polytope

Suppose

J = Z cax”

acM

The set of monomials M C N" is called the frame of f

The Newton polytope of f is its convex hull

new(f) = co(frame(f))

The example shows

f:7x4y+x3y+m2y4+x2+3xy
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Necessary Conditions for Nonnegativity

If f € Rlzy,...,xy]is PSD, then

every vertex of new( f) has even coordinates, and a positive coefficient

o f=Taty+23y+atyt+a2+3ay

is not PSD, since term 3zy has coords (1, 1)

o f=Taty+ady—a?yt + 27 +3y° “ \

is not PSD, since term —x° y4 has a negative
coefficient
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Properties of Newton Polytopes
e Products: new(fg) = new(f) + new(g)
e Consequently new(f") = nnew(f)

e If f and g are PSD polynomials then

f(x) < g(x) for all z € R"” — new(f) C new(g)

e This tells us which monomials we have in an SOS decomposition

f— Zgg — new(g;) C %new(f)
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Example of Sparse SOS Decomposition

Find an SOS representation for

f=daty’ + a2 —xy® + 47

The squares in an SOS decomposition can only
contain the monomials

1
Il@VV(2 )ﬂNn {CE Y ,ny,:Cy,x,y}

Without using sparsity, we would include all
21 monomials of degree < 5 in the SDP

With sparsity, we only need 5 monomials

P. Parrilo an

d S. Lall, CDC 2003 2003.12.07.07
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About SOS/SDP
e The resulting SDP problem is polynomially sized (in n, for fixed d).

e By properly choosing the monomials, we can exploit structure (sparsity,
symmetries, ideal structure).

e An important feature: the problem is still a SDP if the coefficients of
F" are variable, and the dependence is affine.

e Can optimize over SOS polynomials in affinely described families.
For instance, if we have p(z) = pg(x) + api(z) + Bpa(z), we can
“easily” find values of «, 3 for which p(x) is SOS.

This fact will be crucial in everything that follows. . .
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Global Optimization

Consider the problem

with

min f(z, y)

P. Parrilo and S. Lall, CDC 2003 2003.12.07.07

f(x,y) = dz® — gt 4 220 4y — 42 + 4t

e Not convex. Many local minima. NP-hard.
e Find the largest v s.t. f(x,y) — v is SOS
e Essentially due to Shor (1987).

e A semidefinite program (convex!).

e |f exact, can recover optimal solution.

e Surprisingly effective.

Solving, the maximum v is -1.0316. Exact value.
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Why Does This Work?
Three independent facts, theoretical and experimental:
e The existence of efficient algorithms for SDP.
e The size of the SDPs grows much slower than the Bézout number .

e A bound on the number of (complex) critical points.

e A reasonable estimate of complexity.

e The bad news: ;1 = (2d — 1)" (for dense polynomials).
e Almost all (exact) algebraic techniques scale as p.

e The lower bound fSOS very often coincides with f*.
(Why? what does often mean?)

SOS provides short proofs, even though they're not guaranteed to exist.
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Coefficient Space

Let fo3(z) = 2* + (o + 38)27 + 282 — ax + 1.
What is the set of values of (o, 3) € R? for which fap is PSD? SO57

To find a SOS decomposition:

fap@) = 1—az+262° + (o + 38)z” + 2

_ - T _ - _ -

1 q11 912 13 1

= 9?2 q12 @22 @23 56’2
e | @13 @23 @33 | | 7

> A
= q11 + 2127 + (q22 + 2q13)7° + 2q037° + a3

The matrix () should be PSD and satisfy the affine constraints.
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The feasible set is given by:
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What is the set of values of (o, 3) € R? for which Japs PSD? 5057

Recall: in the univariate case PSD=SQ0S, so here the sets are the same.

36 a° b+4 a®+192 a?+576 a b-512 b?+..-288 b° =0

SOCSATIOTT 1}
S
:M\\\\\\\\\“ll ml,I’IIIII
S NN

SN
SNy

e Convex and
semialgebraic.

. o NN
o It is the projection of a \ \\\uff,/////////
. 3 o 05¢ ~ //// ;
spectrahedron in R”. | \§§\§§§\\\\|yy///////////ﬁ///ﬁﬁ
e We can easily test mem- T S —~—~— S

. . RIS / NN
bership, or even optimize

over it!

el
i
0’3{“,";1';'0;[[;"”[,',’,"" .

0 1 2 3
a

Defined by the curve: 2883° — 36a%3* + 1164a5* + 19313* — 1320333 + 10360252 + 1956a/3% — 259233 — 112a43% +

4320332 + 11920232 — 1728082 + 51232 — 36053 + 72048 + 360038 — 576028 — 57603 — 4ab + 60at — 19202 — 256 = 0
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Lyapunov Stability Analysis

To prove asymptotic stability of x = f(x),

e For linear systems x
1 Py

P >0,

>

0 x#0

<0, z+#0

P. Parrilo and S. Lall, CDC 2003 2003.12.07.07

u=-3x+y

s T T T T 1 -
A s S N
7 \
W 7N A\
AV 2Y ) \
= / / - \ \ \
2+ l / l
A s :
\ \ ~Z )
4+ \ /
A
5\ - ., - /

Az, quadratic Lyapunov functions V(z) =

AP+ pPA <o

o With an affine family of candidate polynomial V, V is also affine.

e Instead of checking nonnegativity, use a SOS condition.

e Therefore, for polynomial vector fields and Lyapunov functions, we can
check the conditions using the theory described before.
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Lyapunov Example

A jet engine model (derived from Moore-Greitzer),
with controller:

- 3 9 13
Yy = 3x—y

Try a generic 4th order polynomial Lyapunov function.
Vig,y)= Y cpaly”
0<j+k<A4
Find a V(z,y) that satisfies the conditions:
o V(x,y)is SOS.
o —V(x,y)is SOS.

Both conditions are affine in the c;;.. Can do this directly using SOS/SDP!
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Lyapunov Example

After solving the SDPs, we obtain a Lyapunov function.

7 I = SRR
Al 4 % N
ol A / RN N A
Al / / / _ N\ \
WV / 7N N e _
/ /(G \ v
1E / / (/ 7 \ \ _
2 | f .
| W s \ -
N\ A / ] |
LN\ L -, — . . .

V = 4.58192% — 1.5786zy + 1.7834y* — 0.127392> + 2.5189z%*y — 0.34069x7°
+0.61188y> +0.47537z* — 0.05242423y + 0.442892:2y* + 0.0000018868zy> + 0.090723y*
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Lyapunov Example

(M. Krsti¢) Find a Lyapunov function for

t=—-x+(1+2)y
y=—(1+x)x.

we easily find a quartic polynomial

Vie,y) = 62° — 2xy + 8y° — 2y° + 3z + 62°y> + 3y

Both V(z,y) and (—=V(z,y)) are SOS:

' 6100 0] ] S0 11 11T .

Y -1 8 00 —1 Y y 1 2 1 -9 y

Vz,y) = | «* 0O 030 0 7 —V(x,y) = 2 1 112 0 2
Ty 0O 006 O Ty - 1 -2 0 6 -

y? 0 -1 00 3|4 Y Y

The matrices are positive definite, so this proves asymptotic stability.
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Extensions
e Other linear differential inequalities (e.g. Hamilton-Jacobi).

e Many possible variations: nonlinear H o analysis, parameter depen-
dent Lyapunov functions, etc.

e Can also do local results (for instance, on compact domains).

e Polynomial and rational vector fields, or functions with an underlying
algebraic structure.

e Natural extension of the LMIs for the linear case.

e Only for analysis. Proper synthesis is trickier. . .
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Nonlinear Control Synthesis

Recently, Rantzer provided an alternative stability criterion, in some sense
“dual” to the standard Lyapunov one.

V-(pf)>0

e The synthesis problem is now convex in (p, up).
V- [o(f +gu) >0

e Parametrizing (p, up), can apply SOS methods.

Example ;:Z_x3+x2 u=-122x-057y-.129y®
T =1 — 75 + 2?
y=1u |

A stabilizing controller is: 1 A

u(x,y) = —1.222 — 0.57y — 0.129y>




