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8. Sum of Squares

• Polynomial nonnegativity

• Sum of squares (SOS) decomposition

• Example of SOS decomposition

• Computing SOS using semidefinite programming

• Necessary conditions

• Newton Polytopes and Sparsity

• Positivity in one variable

• Background

• Global optimization

• Optimizing in parameter space

• Lyapunov functions
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Polynomial Programming

So far

• Polynomial equations over the complex field

Objectives

• General quantified formulae

• Boolean connectives

• Polynomial equations, inequalities, and inequations over the reals

e.g., does there exist x such that for all y
(
f (x, y) ≥ 0

)
∧
(
g(x, y) = 0

)
∨
(
h(x, y) 6= 0

)
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Polynomial Nonnegativity

First, consider the case of one inequality; given f ∈ R[x1, . . . , xn]

does there exist x ∈ Rn such that f (x) < 0

• If not, then f is globally non-negative

f (x) ≥ 0 for all x ∈ Rn

and f is called positive semidefinite or PSD

• The problem is NP-hard, but decidable

• Many applications
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Certificates

Primal decision problem

does there exist x ∈ Rn such that f (x) < 0

• Answer yes is easy to verify; exhibit x such that f (x) < 0

• Answer no is hard; we need a certificate or a witness
i.e, a proof that there is no feasible point
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Sum of Squares Decomposition

If there are polynomials g1, . . . , gs ∈ R[x1, . . . , xn] such that

f (x) =

s∑

i=1

g2
i (x)

then f is nonnegative

A purely syntactic, easily checkable certificate, called a sum-of-squares
(SOS) decomposition

• How do we find the gi

• When does such a certificate exist?
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Example

We can write any polynomial as a quadratic form on monomials

f = 4x4 + 4x3y − 7x2y2 − 2xy3 + 10y4

=



x2

xy

y2



T 


4 2 −λ
2 −7 + 2λ −1
−λ −1 10





x2

xy

y2




= zTQ(λ)z

which holds for all λ ∈ R

If for some λ we have Q(λ) º 0, then we can factorize Q(λ)
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Example, continued

e.g., with λ = 6, we have

Q(λ) =




4 2 −6
2 5 −1
−6 −1 10


 =




0 2
2 1
1 −3



[

0 2 1
2 1 −3

]

so

f =



x2

xy

y2



T 


0 2
2 1
1 −3



[

0 2 1
2 1 −3

]

x2

xy

y2




=

∥∥∥∥
[

2xy + y2

2x2 + xy − 3y2

]∥∥∥∥
2

=
(
2xy + y2)2

+
(
2x2 + xy − 3y2)2

which is an SOS decomposition
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Sum of Squares and Semidefinite Programming

Suppose f ∈ R[x1, . . . , xn], of degree 2d

Let z be a vector of all monomials of degree less than or equal to d

f is SOS if and only if there exists Q such that

Q º 0

f = zTQz

• This is an SDP in standard primal form

• The number of components of z is
(n+d
d

)

• Comparing terms gives affine constraints on the elements of Q
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Sum of Squares and Semidefinite Programming

If Q is a feasible point of the SDP, then to construct the SOS representation
factorize Q = V V T , and write V =

[
v1 . . . vr

]
, so that

f = zTV V Tz

= ‖V Tz‖2

=

r∑

i=1

(vTi z)2

• One can factorize using e.g., Cholesky or eigenvalue decomposition

• The number of squares r equals the rank of Q
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Example

f = 2x4 + 2x3y − x2y2 + 5y4

=



x2

xy

y2



T 

q11 q12 q13
q12 q22 q23
q13 q23 q33





x2

xy

y2




= q11x
4 + 2q12x

3y + (q22 + 2q13)x2y2 + 2q23xy
3 + q33y

4

So f is SOS if and only if there exists Q satisfying the SDP

Q º 0 q11 = 2 2q12 = 2

2q12 + q22 = −1 2q23 = 0

q33 = 5
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Convexity

The sets of PSD and SOS polynomials are convex cones; i.e.,

f, g PSD =⇒ λf + µg is PSD for all λ, µ ≥ 0

let Pn,d be the set of PSD polynomials of degree ≤ d

let Σn,d be the set of SOS polynomials of degree ≤ d

• Both Pn,d and Σn,d are convex cones in RN where N =
(n+d
d

)

• We know Σn,d ⊆ Pn,d, and testing if f ∈ Pn,d is NP-hard

• But testing if f ∈ Σn,d is an SDP
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Polynomials in One Variable

If f ∈ R[x], then f is SOS if and only if f is PSD

Example

All real roots must have even multiplicity, and highest coeff. is positive

f = x6 − 10x5 + 51x4 − 166x3 + 342x2 − 400x + 200

= (x− 2)2(x− (2 + i)
)(
x− (2− i)

)(
x− (1 + 3i)

)(
x− (1− 3i)

)

Now reorder complex conjugate roots

= (x− 2)2(x− (2 + i)
)(
x− (1 + 3i)

)(
x− (2− i)

)(
x− (1− 3i)

)

= (x− 2)2((x2 − 3x− 1)− i(4x− 7)
)(

(x2 − 3x− 1) + i(4x− 7)
)

= (x− 2)2((x2 − 3x− 1)2 + (4x− 7)2)

So every PSD scalar polynomial is the sum of two squares
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Quadratic Polynomials

A quadratic polynomial in n variables is PSD if and only if it is SOS

Because it is PSD if and only if

f = xTQx

where Q ≥ 0

And it is SOS if and only if

f =
∑

i

(vTi x)2

= xT
(∑

i

viv
T
i

)
x
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Some Background

In 1888, Hilbert showed that PSD=SOS if and only if

• d = 2, i.e., quadratic polynomials

• n = 1, i.e., univariate polynomials

• d = 4, n = 2, i.e., quartic polynomials in two variables

d
n\ 2 4 6 8

1 yes yes yes yes
2 yes yes no no
3 yes no no no
4 yes no no no

• In general f is PSD does not imply f is SOS
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Some Background

• Connections with Hilbert’s 17th problem, solved by Artin: every PSD
polynomial is a SOS of rational functions.

• If f is not SOS, then can try with gf , for some g.

• For fixed f , can optimize over g too

• Otherwise, can use a “universal” construction of Pólya-Reznick.

More about this later.
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The Motzkin Polynomial

A positive semidefinite polynomial,
that is not a sum of squares.

M(x, y) = x2y4 + x4y2 + 1− 3x2y2

• Nonnegativity follows from the arithmetic-geometric inequality
applied to (x2y4, x4y2, 1)

• Introduce a nonnegative factor x2 + y2 + 1

• Solving the SDPs we obtain the decomposition:

(x2 + y2 + 1)M(x, y) = (x2y − y)2 + (xy2 − x)2 + (x2y2 − 1)2+

+
1

4
(xy3 − x3y)2 +

3

4
(xy3 + x3y − 2xy)2
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The Univariate Case

f (x) = a0 + a1x + a2x
2 + a3x

3 + · · · + a2dx
2d

=




1
x
...

xd




T 


q00 q01 . . . q0d
q01 q11 . . . q1d

... ... . . . ...
q0d q1d . . . qdd







1
x
...

xd




=

d∑

i=0

( ∑

j+k=i

qjk

)
xi

• In the univariate case, the SOS condition is exactly equivalent to
nonnegativity.

• The matrices Ai in the SDP have a Hankel structure. We will see how
this can be exploited for efficient computation.
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Necessary Conditions

Suppose f = cdx
d + cd−1x

d−1 + · · · + c1x + c0; then

f is PSD =⇒ d is even, cd > 0 and c0 ≥ 0

What is the analogue in n variables?
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The Newton Polytope

Suppose

f =
∑

α∈M
cαx

α

The set of monomials M ⊂ Nn is called the frame of f

The Newton polytope of f is its convex hull

new(f ) = co
(
frame(f )

)

The example shows

f = 7x4 y + x3 y + x2 y4 + x2 + 3x y
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Necessary Conditions for Nonnegativity

If f ∈ R[x1, . . . , xn] is PSD, then

every vertex of new(f ) has even coordinates, and a positive coefficient

• f = 7x4 y + x3 y + x2 y4 + x2 + 3x y

is not PSD, since term 3xy has coords (1, 1)

• f = 7x4 y + x3 y − x2 y4 + x2 + 3 y2

is not PSD, since term −x2 y4 has a negative
coefficient
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Properties of Newton Polytopes

• Products: new(fg) = new(f ) + new(g)

• Consequently new(fn) = nnew(f )

• If f and g are PSD polynomials then

f (x) ≤ g(x) for all x ∈ Rn =⇒ new(f ) ⊆ new(g)

• This tells us which monomials we have in an SOS decomposition

f =

t∑

i=1

g2
i =⇒ new(gi) ⊆

1

2
new(f )
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Example of Sparse SOS Decomposition

Find an SOS representation for

f = 4x4 y6 + x2 − x y2 + y2

The squares in an SOS decomposition can only
contain the monomials

new(
1

2
f ) ∩ Nn = {x2y3, xy2, xy, x, y}

Without using sparsity, we would include all
21 monomials of degree < 5 in the SDP

With sparsity, we only need 5 monomials
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About SOS/SDP

• The resulting SDP problem is polynomially sized (in n, for fixed d).

• By properly choosing the monomials, we can exploit structure (sparsity,
symmetries, ideal structure).

• An important feature: the problem is still a SDP if the coefficients of
F are variable, and the dependence is affine.

• Can optimize over SOS polynomials in affinely described families.

For instance, if we have p(x) = p0(x) + αp1(x) + βp2(x), we can
“easily” find values of α, β for which p(x) is SOS.

This fact will be crucial in everything that follows. . .
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Global Optimization

Consider the problem
min
x,y

f (x, y)

with

f (x, y) := 4x2 − 21

10
x4 +

1

3
x6 + xy − 4y2 + 4y4

• Not convex. Many local minima. NP-hard.

• Find the largest γ s.t. f (x, y)− γ is SOS

• Essentially due to Shor (1987).

• A semidefinite program (convex!).

• If exact, can recover optimal solution.

• Surprisingly effective.

Solving, the maximum γ is -1.0316. Exact value.
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Why Does This Work?

Three independent facts, theoretical and experimental:

• The existence of efficient algorithms for SDP.

• The size of the SDPs grows much slower than the Bézout number µ.

• A bound on the number of (complex) critical points.

• A reasonable estimate of complexity.

• The bad news: µ = (2d− 1)n (for dense polynomials).

• Almost all (exact) algebraic techniques scale as µ.

• The lower bound fSOS very often coincides with f∗.
(Why? what does often mean?)

SOS provides short proofs, even though they’re not guaranteed to exist.
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Coefficient Space

Let fαβ(x) = x4 + (α + 3β)x3 + 2βx2 − αx + 1.

What is the set of values of (α, β) ∈ R2 for which fαβ is PSD? SOS?

To find a SOS decomposition:

fα,β(x) = 1− αx + 2βx2 + (α + 3β)x3 + x4

=




1
x

x2



T 

q11 q12 q13
q12 q22 q23
q13 q23 q33






1
x

x2




= q11 + 2q12x + (q22 + 2q13)x2 + 2q23x
3 + q33x

4

The matrix Q should be PSD and satisfy the affine constraints.
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The feasible set is given by:





(α, β) | ∃λ s.t.




1 −1
2 α β − λ

−1
2 α 2λ 1

2 (α + 3β)

β − λ 1
2 (α + 3β) 1


 º 0





-2

0

2

0

1

0

0.5

1

1.5

ë

ì

õ
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What is the set of values of (α, β) ∈ R2 for which fαβ PSD? SOS?

Recall: in the univariate case PSD=SOS, so here the sets are the same.

• Convex and
semialgebraic.

• It is the projection of a
spectrahedron in R3.

• We can easily test mem-
bership, or even optimize
over it!
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Defined by the curve: 288β5 − 36α2β4 + 1164αβ4 + 1931β4 − 132α3β3 + 1036α2β3 + 1956αβ3 − 2592β3 − 112α4β2 +

432α3β2 + 1192α2β2− 1728αβ2 + 512β2− 36α5β + 72α4β + 360α3β− 576α2β− 576αβ− 4α6 + 60α4− 192α2− 256 = 0
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Lyapunov Stability Analysis

To prove asymptotic stability of ẋ = f (x),

V (x) > 0 x 6= 0

V̇ (x) =
(
∂V
∂x

)T
f (x) < 0, x 6= 0

• For linear systems ẋ = Ax, quadratic Lyapunov functions V (x) =
xTPx

P > 0, ATP + PA < 0.

• With an affine family of candidate polynomial V , V̇ is also affine.

• Instead of checking nonnegativity, use a SOS condition.

• Therefore, for polynomial vector fields and Lyapunov functions, we can
check the conditions using the theory described before.
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Lyapunov Example

A jet engine model (derived from Moore-Greitzer),
with controller:

ẋ = −y − 3

2
x2 − 1

2
x3

ẏ = 3x− y

Try a generic 4th order polynomial Lyapunov function.

V (x, y) =
∑

0≤j+k≤4

cjkx
jyk

Find a V (x, y) that satisfies the conditions:

• V (x, y) is SOS.

• −V̇ (x, y) is SOS.

Both conditions are affine in the cjk. Can do this directly using SOS/SDP!
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Lyapunov Example

After solving the SDPs, we obtain a Lyapunov function.

V = 4.5819x2 − 1.5786xy + 1.7834y2 − 0.12739x3 + 2.5189x2y − 0.34069xy2

+0.61188y3 +0.47537x4−0.052424x3y+0.44289x2y2 +0.0000018868xy3 +0.090723y4
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Lyapunov Example

(M. Krstić) Find a Lyapunov function for

ẋ = −x + (1 + x) y

ẏ = −(1 + x)x.

we easily find a quartic polynomial

V (x, y) = 6x2 − 2xy + 8y2 − 2y3 + 3x4 + 6x2y2 + 3y4.

Both V (x, y) and (−V̇ (x, y)) are SOS:

V (x, y) =




x
y
x2

xy
y2




T 


6 −1 0 0 0
−1 8 0 0 −1

0 0 3 0 0
0 0 0 6 0
0 −1 0 0 3







x
y
x2

xy
y2



, −V̇ (x, y) =




x
y
x2

xy




T 


10 1 −1 1
1 2 1 −2
−1 1 12 0

1 −2 0 6







x
y
x2

xy




The matrices are positive definite, so this proves asymptotic stability.
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Extensions

• Other linear differential inequalities (e.g. Hamilton-Jacobi).

• Many possible variations: nonlinear H∞ analysis, parameter depen-
dent Lyapunov functions, etc.

• Can also do local results (for instance, on compact domains).

• Polynomial and rational vector fields, or functions with an underlying
algebraic structure.

• Natural extension of the LMIs for the linear case.

• Only for analysis. Proper synthesis is trickier. . .
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Nonlinear Control Synthesis

Recently, Rantzer provided an alternative stability criterion, in some sense
“dual” to the standard Lyapunov one.

∇ · (ρf ) > 0

• The synthesis problem is now convex in (ρ, uρ).

∇ · [ρ(f + gu)] > 0

• Parametrizing (ρ, uρ), can apply SOS methods.

Example:

ẋ = y − x3 + x2

ẏ = u

A stabilizing controller is:

u(x, y) = −1.22x− 0.57y− 0.129y3


