
Multidimensional Linear Systems and Robust Control

Tanit Malakorn

Dissertation submitted to the Faculty of the

Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Electrical Engineering

Assoc. Prof. William T. Baumann, Co-Chairman

Prof. Joseph A. Ball, Co-Chairman

Prof. Hugh F. Vanlandingham

Prof. Martin V. Day

Prof. Ira Jacobs

April, 2003

Blacksburg, Virginia

Keywords: H∞ control problem, model matching form, interpolation theory,

Linear Operator Inequality (loi), noncommutative d-D linear systems, minimal realization

Copyright 2003 by Tanit Malakorn

ALL RIGHTS RESERVED



Multidimensional Linear Systems and Robust Control

Tanit Malakorn

(ABSTRACT)

This dissertation contains two parts: Commutative and Noncommutative Multidimensional (d-

D) Linear Systems Theory. The first part focuses on the development of the interpolation theory

to solve the H∞ control problem for d-D linear systems. We first review the classical discrete-

time 1D linear system in the operator theoretical viewpoint followed by the formulations of

the so-called Givone-Roesser and Fornasini-Marchesini models. Application of the d-variable

Z-transform to the system of equations yields the transfer function which is a rational function

of several complex variables, say z = (z1, . . . , zd).

We then consider the output feedback stabilization problem for a plant P (z). By assuming

that P (z) admits a double coprime factorization, then a set of stabilizing controllers K(z) can

be parametrized by the Youla parameter Q(z). By doing so, one can convert such a problem

to the model matching problem with performance index F (z), which is affine in Q(z). Then,

with F (z) as the design parameter rather than Q(z), one has an interpolation problem for F (z).

Incorporation of a tolerance level on F (z) then leads to an interpolation problem of multivariable

Nevanlinna-Pick type. We also give an operator-theoretic formulation of the model matching

problem which lends itself to a solution via the commutant lifting theorem on the polydisk.

The second part details a system whose time-axis is described by a free semigroup Fd. Such

a system can be represented by the so-called noncommutative Givone-Roesser, or noncommuta-

tive Fornasini-Marchesini models which are analogous to those in the first part. Application of a

noncommutative d-variable Z-transform to the system of equations yields the transfer function

expressed by a formal power series in noncommuting d-indeterminants, say T (z) =
∑

v∈Fd
Tvz

v

where zv = zin · · · zi1 if v = gin · · · gi1 ∈ Fd and zizj 6= zjzi unless i = j. The concepts

of reachability, controllability, observability, similarity, and stability are introduced by means

of the state-space interpretation. Minimal realization problems for noncommutative Givone-

Roesser or Fornasini-Marchesini systems are solved directly by a shift-realization procedure con-

structed from appropriate noncommutative Hankel matrices. This procedure adapts the ideas

of Schützenberger and Fliess originally developed for “recognizable series” to our systems.
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Chapter 1

Introduction

The theory of multidimensional linear systems has been a subject of research for over two decades

after Attasi [Att73, Att75], Givone-Roesser, [GR72, GR73], and Fornasini-Marchesini [FM76,

FM77] introduced two-dimensional linear models in the 1970’s. Since then, these prototypes

have been generalized to d-dimensional (d-D) linear models where d > 2. It is well-known that

the model proposed by Attasi is a special case of the models established by Givone-Roesser

and Fornasini-Marchesini in the sense that it can be embedded into either Givone-Roesser’s or

Fornasini-Marchesini’s models, and hence in this dissertation, we shall focus on system models

which have mathematical structures in the form of Givone-Roesser’s and Fornasini-Marchesini’s

models

This dissertation consists of two parts: Commutative and Noncommutative Multidimen-

sional (d-D) Linear Systems Theory; the material covered in each part is independent of each

other. The first part focuses on the development of the interpolation theory to solve the H∞ con-

trol problem for d-D linear system; whilst the second part details a linear system with evolution

along the elements of a free semigroup.

1.1 Motivation

Part I

In the case of classical 1D linear systems, the H∞ control problem can be solved via either

state-space analysis in the time domain, or interpolation theory in the frequency domain. In the

state-space approach, the H∞ control and filtering problems for 2D linear systems have already

been solved via an extended bounded real lemma for 2D systems in [DX02, DXZ01]; however, it

is known that the 2D bounded real lemma gives only a sufficient (not necessary) condition for

a system to be bounded real.

Z. Lin studied the (output) feedback stabilization problem in [Lin98, Lin00], and obtained

1



Tanit Malakorn Chapter 1. Introduction 2

an analogue of the well-known Youla parametrization of the set of all stabilizing controllers.

However, in his work, Lin did not take the next step of seeking to find a stabilizing controller

which optimizes some performance function (i.e. the H∞ control problem). The main goal here

is to develop the interpolation theory to solve the H∞ control problem in the multidimensional

setting (d ≥ 2). We are able to obtain a solution of the H∞ control problem in the frequency

domain via the interpolation approach, which gives a necessary and sufficient condition for the

existence of a solution in the 2D case.

Part II

In the robust control literature, many control problems can be formulated in a linear fractional

transformation (lft) framework which provides a mathematical paradigm to analyze and design

stabilizing linear controllers for closed-loop systems in an effective way. Beck and Doyle studied

uncertain systems using the lft as a tool for modeling systems with structured perturbations on

a nominal model in [BD99]. They considered each perturbation δj as an arbitrary time-varying

operator on the square summable sequence space `2 or a real-valued parameter uncertainty,

both of which can be viewed as noncommuting indeterminants zj . By replacing δj with zj ,

the input/output map of the original system is nothing more nor less than a transfer function

of a linear system which can be expressed as a formal power series in several noncommuting

indeterminants. The role of formal power series in analyzing uncertain systems (i.e., linear time-

invariant plants having time-varying structured uncertainties) was investigated in [Bec01, BD99,

BD97] in a more formal, but less precise way. One goal of this part is to reformulate a connection

between the robust control theory using the lft framework and the multidimensional system

theory in a more precise way.

The authors in [BD99] also reviewed the realization theory and the Lyapunov stability

theory for uncertain systems, proposed a necessary and sufficient condition for reducibility in

terms of coupling Lyapunov inequalities, and discussed the controllability and observability of

an uncertain system realization; however, they did not provide the state-space interpretation for

these objects. Beck [Bec01] studied a connection between minimal realization theory results for

formal power series and the concept of minimality for uncertain systems represented by the lft

framework. As in [BD99], Beck did not provide the state-space interpretation in her work.

Rather, we here introduce an input-state-output linear system with evolution along the

elements of a free semigroup. The corresponding transfer function for such a system is rep-

resented by a formal power series in noncommuting indeterminants. We then formulate two

linear models, namely the noncommutative Givone-Roesser model and the noncommutative

Fornasini-Marchesini model, introduce various concepts of stability, reachability, controllability,

observability and similarity of such systems, and establish the realization theory for noncommu-

tative Givone-Roesser and Fornasini-Marchesini systems by adapting the noncommutative shift
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realization of Schützenberger and Fliess originally developed for the class of the “recognizable

series”.

1.2 Contributions

In the first part, we develop the interpolation theory to solve the H∞ control problem in the

frequency domain as described below:

• We use the Youla parametrization for the d-D case obtained in [Lin98, Lin00] to establish

the connection between (output) feedback stabilization and interpolation conditions for

d-D linear systems via a model matching form.

• We impose an optimization criteria on performance, in addition to internal stability, as

a design goal (i.e. H∞ control problem), and solve the resulting d-D matrix Nevanlinna-

Pick interpolation problem using the recent work on Nevanlinna-Pick interpolation on the

polydisk.

• The solution criterion for the d-D H∞ control problem involves an infinite Linear Matrix

Inequality (lmi) or Linear Operator Inequality (loi) . This leaves open the question as

how best to solve such infinite lmis or lois. By working out a simply example using

the matlab: LMI Control Toolbox (see Appendix B), we show that in general it is not

possible to extend a solution corresponding to n interpolation data points to a solution

corresponding to the set of n+1 interpolation data points obtained by adding one additional

interpolation condition, as is the case for the classical one-variable case encoded in the

famous Schur algorithm.

• We also present a solution based on the polydisk Commutant Lifting Theorem.

The second part of this dissertation concerns systems whose transfer functions can be expressed

as formal power series. The contributions in this part are as follows:

• We provide a precise connection between the robust control framework and multidimen-

sional linear systems whose transfer functions can be expressed by formal power series

in several noncommuting variables. While Beck and Doyle pointed out the link between

robust control and formal power series in noncommuting variables, part of the contribu-

tion here is to point out that these formal power series in noncommuting variables can

be viewed as the transfer functions of linear systems with evolution along the elements of

a free semigroup, or, equivalently, over a homogeneous tree with root. While such sys-

tems appear indirectly in [BNW94] in connection with multiscale filtering theory, their

connection with robust control appears here for the first time.
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• We propose various notions of stability, reachability, controllability, and observability and

show how to verify whether or not the given system is stable, reachable, controllable, or

observable.

• We establish the similarity theory and minimality theory for these systems.

• We solve minimal realization problems for noncommutative Givone-Roesser or Fornasini-

Marchesini systems directly by shift-realization procedure constructed from appropriate

noncommutative Hankel matrices. Our procedure adapts the ideas of Schützenberger

and Fliess originally developed for “recognizable series” to the setting of noncommutative

Givone-Roesser and Fornasini-Marchesini systems. We also show that a simple identifi-

cation procedure can be used to see that the realization theorem for the case of noncom-

mutative Fornasini-Marchesini systems can be seen to follow directly from the realization

result of the Schützenberger/Fliess for recognizable series.

1.3 Dissertation Outline

This dissertation is organized as follows:

Chapter 2: We first briefly review some fundamental facts and basic notation—e.g., polydisk,

holomorphic function, analytic set, variety, Hardy spaces, Schur class, and Schur-Agler

class—from the function theory of several complex variables. We also summarize the main

theoretical results from operator theory and Nevanlinna-Pick interpolation theory.

Chapter 3: This Chapter discusses chronologically the development of the state-space repre-

sentations of the 2D linear models—Givone-Roesser (gr) model, and Fornasini-Marchesini

(fm) model—including the generalized version of them; the identification between these

two models is also presented. Application of the d-variable Z-transform to the system

equations of these models yields the corresponding transfer functions which are rational

matrix-valued functions of several complex variables.

Chapter 4: The aim of this Chapter is to solve theH∞ control problem in the frequency domain

via interpolation theory. We first summarize the results of Z. Lin [Lin88, Lin98, Lin99,

Lin00] on (output) feedback stabilization problem. We then go beyond the work of Lin by

establishing the connection of his work with interpolation conditions via a model matching

form. If one demands a set of controllers not only internally stabilizing the closed-loop

system, but also optimizing some performance function, there results the so-called H∞

control problem. This problem can be solved by using the result of the Nevanlinna-Pick

interpolation theory on the polydisk (see e.g., [Agl87, AM, AM02, BB, BT98]). We also
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present a solution of the H∞ control problem based on the recent work on the polydisk

Commutant Lifting Theorem [BLTT99].

Chapter 5: We briefly present some fundamental results from noncommutative algebra in-

cluding the notions of formal power series and its applications. We summarize the linear

fractional transformation (lft) framework commonly used in the robust control literature

in connection with the multidimensional linear system. We then introduce the notion of

the “time-axis” which can be represented by a free semigroup, or equivalently in other

language, by a homogeneous tree with a root. Finally we mention some examples of other

classes of generalized systems in the engineering literature which have some elements in

common with the notion of generalized system presented here.

Chapter 6: To get an analogue with the commutative case as in Part 1, we here formulate

two linear models, namely noncommutative Givone-Roesser (ncgr) and noncommutative

Fornasini-Marchesini (ncfm), each of which has mathematical structure parallel to gr

and fm models, respectively; the identification between these two models is established.

Application of the noncommutative d-variable Z-transform to the system of equations of

these models yields the corresponding transfer function of several noncommuting variables,

which can also be represented by a formal power series.

Chapter 7: We introduce several notions of reachability, controllability and observability, and

establish the criteria to verify whether or not the system is reachable, controllable, or

observable. We also present two similarity theorems: one is for the system described by

ncgr model, and the other is for the system described by ncfm model.

Chapter 8: A minimality theorem is established and a minimal realization problem is solved

using the noncommutative Hankel operator. The stability issue and the Lyapunov theorem

for noncommutative systems are also provided in this Chapter.

Chapter 9: This Chapter is devoted to open problems and conclusion.



Part I

Multidimensional Linear Systems

6



Chapter 2

Preliminaries and Notation

This Chapter presents some fundamental facts and notation which will be used throughout

the first part of this dissertation. We try to follow the conventional notation that points and

variables are lower-case, whilst matrices, operators and spaces are upper-case. In Section 2.1,

we describe the notions of, for instance, polydisk, holomorphic function, analytic set, and Hardy

spaces, and summarize the main theoretical results from the Function theory of several complex

variables. Since the Mathematical System Theory formulated in this dissertation follows an

operator theoretic approach, we shall also provide some basic facts from Operator Theory in

Section 2.2 followed by the definitions of Schur and Schur-Agler classes in Section 2.3. We end

this Chapter with the well-known Nevanlinna-Pick interpolation theory in Section 2.4.

2.1 Multivariable Complex Analysis

This Section is devoted to the function theory of several complex variables which is being used

as a central part to prove the interpolation theory for multidimensional (d-D) linear systems in

Chapter 4. For further discussion on this subject, the reader may refer to, e.g. [FG02, HL84,

Hör73, Nis96, Rud69, Sha92, Tay02].

2.1.1 General Notation

In the sequel, we denote by z = (z1, . . . , zd), each zk ∈ C, a point in Cd, which is the Cartesian

product of d complex planes: Cd = C× · · · × C︸ ︷︷ ︸
d times

together with the standard basis:

e1 = (1, 0, . . . , 0), · · · , ed = (0, . . . , 0, 1).

7



Tanit Malakorn Chapter 2. Preliminaries and Notation 8

Algebraically, Cd is a d-dimensional vector space over C; topologically, Cd is the Euclidean space

of dimension 2d. For a set A in Cd, we shall denote by conj(A) the complex conjugate of A:

conj(A) , {z = (z1, . . . , zd) | z ∈ A}, where zk = xk − iyk if zk = xk + iyk.

The space Cd has an inner product defined by

〈z,w〉 =
d∑

k=1

zkwk, for any z,w ∈ Cd.

The space Cd equipped with this inner product forms a Hilbert space. Furthermore, the inner

product defines a norm on Cd given by: ‖z‖ =
√
〈z, z〉 and a metric on Cd defined by

d(z,w) , ‖z−w‖ =
√
〈z−w, z−w〉.

Let z0 = (z01 , . . . , z
0
d) ∈ Cd and r = (r1, . . . , rd) ∈ Rd

+, the d-dimensional positive real Euclidean

space. Then the following set

Dd(z0, r) , {z ∈ Cd | |zk − z0k| < rk for k = 1, . . . , d} (2.1)

is called the polydisk with polyradius r and center at z0. In other words, the polydisk is the

Cartesian product of d discs:

Dd(z0, r) = D(z01 , r1)× · · · × D(z0d, rd)︸ ︷︷ ︸
d times

, where D(z0k, rk) = {|zk − z0k| < rk}.

The distinguished boundary of the polydisk, Dd(z0, r) is defined as a set

Td(z0, r) , {z ∈ Cd | |zk − z0k| = rk for k = 1, . . . , d}, (2.2)

which is also the Cartesian product of d circles:

Td(z0, r) = T(z01 , r1)× · · · × T(z0d, rd)︸ ︷︷ ︸
d times

, where T(z0k, rk) = {|zk − z0k| = rk}.

We denote by Dd(z0, r) the closed polydisk which is the union Dd(z0, r)
⋃

Td(z0, r). In particular,

if z0 = 0, and rk = 1, for all k = 1, . . . , d, we write Dd (respectively, Td) rather than Dd(0,1)

(respectively, Td(0,1)), and we shall call it a unit polydisk (respectively, a unit torus).
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2.1.2 Holomorphic Functions

Definition 1 (C-differentiable). Let D ⊂ Cd be an open set. A function f : D → C is said

to be C-differentiable at a point z0 ∈ D provided that there exists a map η : D → Cd such that

1. η is continuous at z0, and

2. f(z) = f(z0) + (z− z0) · η(z)> for z ∈ D.

Moreover, the partial derivatives of f at z0 is given by

∂f

∂zk
(z0) = fzk(z

0) , ek · η(z0)>

and the vector

5f(z0) , (fz1(z
0), . . . , fzd(z

0)) = η(z0)

is called the complex gradient of f at z0.

Note that for f to be C-differentiable at z0, it is sufficient that there is a small neighborhood

U
(
z0, δ

)
⊂ D such that the restriction f |U is also C-differentiable at z0, where

U
(
z0, δ

)
, {z ∈ Cd | |zk − z0k| < δk for some δk > 0 for k = 1, . . . , d}.

Definition 2 (Holomorphic function). A function f , defined on a domain1 D ⊂ Cd, is said

to be holomorphic at a point z0 ∈ D provided that it is C-differentiable in some neighborhood

U
(
z0, δ

)
of such a point. If f is holomorphic at each point of D, then it is called holomorphic

on D.

The sum and product of holomorphic functions at a point z0 ∈ Cd are also holomorphic.

Thus the set of all holomorphic functions at the point z0 forms a ring. For any domain D ⊂ Cd,

we denote by Hol(D) the ring of holomorphic functions in the domain D.

Next we shall establish some basic properties of holomorphic functions of several complex

variables which are analogous to those of functions of one complex variable. In the following,

we shall denote by Hol(Dd) ∩ C(Dd) the set of functions that are holomorphic in Dd(z0, r) and

continuous in Dd(z0, r). For any zk ∈ C, we let z̀k denote the remaining variables, i.e., z̀k =

(z1, . . . , zk−1, zk+1, . . . , zd).

Theorem 2.1 (Cauchy’s Integral Formula). Any function f ∈ Hol(Dd)∩C(Dd) at any point

z ∈ U
(
z0, δ

)
is represented by a multivariable Cauchy integral

f(z) =
1

(2πi)d

∫

Td
f(w)

w − z
dw, (2.3)

1A set D ⊂ Cd is called a domain if it is an open and connected subset of Cd.
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where dw = dw1 · · · dwd, and
1
w−z =

1
(w1−z1)···(wd−zd)

.

Proof. The proof is by induction on the dimension d. For d = 1, this is the classical Cauchy’s

integral formula. We now assume that the result is true in dimension d − 1. For any point

z ∈ U
(
z0, δ

)
, f is holomorphic with respect to each variable zk since by assumption f is

holomorphic in U
(
z0, δ

)
⊂ Dd. From this fact, we first consider zk as a variable whilst the

remaining variables z̀k are treated as a constant. Application of the Cauchy’s integral formula

for one complex variable to the function f(z) = f(z̀k, zk) which is holomorphic in zk in the disk

D(z0k, rk) and continuous on its boundary T(z0k, rk) yields

f(z̀k, zk) =
1

2πi

∫

T

f(z̀k, wk)

wk − zk
dwk. (2.4)

Now fix any point wk ∈ T(z0k, rk) and for any z̀k ∈ U(z̀0k, r̀k) ∈ Cd−1, f(z̀k, wk) is holomorphic

in d− 1 variables. It follows from the inductive hypothesis that,

f(z̀k, wk) =
1

(2πi)d−1

∫

Td−1
f(ẁk, wk)

(w1 − z1) · · · ̂(wk − zk) · · · (wd − zd)
dwk · · · d̂wk · · · dwd,

where z1 · · · ẑk · · · zd = z1 · · · zk−1zk+1 · · · zd. By substituting this expression into (2.4), we obtain

an iterated integral. Since f is continuous in the set of all variables, the iterated integral is

replaced by a multiple integral over the distinguished boundary Td, and hence we arrive at

(2.3). This completes the proof. ¥

Note that the kernel (often called the Cauchy kernel) of integral (2.3) can be expressed as

a multivariable geometric progression:

1

w − z
=

1

w − z0
· 1

(1− z1−z01
w1−z01

) · · · (1− zd−z
0
d

wd−z
0
d

)

=
1

w − z0

∞∑

|j|=0

(
z− z0

w − z0

)j

=
∞∑

|j|=0

(z− z0)j

(w − z0)j+1
, (2.5)

where j = (j1, . . . , jd) ∈ Zd, a set of the d-dimensional integers, and |j| = j1 + · · ·+ jd.

Multiplying both sides of (2.5) by
1

(2πi)d
f(w) and integrating over Td, we have

f(z) =
1

(2πi)d

∫

Td
f(w)

w − z
dw



Tanit Malakorn Chapter 2. Preliminaries and Notation 11

=
1

(2πi)d

∫

Td
f(w)

∞∑

|j|=0

(z− z0)j

(w − z0)j+1
dw

=
∞∑

|j|=0

[
1

(2πi)d

∫

Td
f(w)dw

(w − z0)j+1

]
(z− z0)j (2.6)

This result leads to the following Theorem.

Theorem 2.2 (Osgood’s Lemma). Every function f ∈ Hol(Dd)∩C(Dd) admits a multivariable

power series representation at each point z ∈ Dd:

f(z) =
∞∑

|j|=0

Cj(z− z0)j (2.7)

with the coefficients

Cj =
1

(2πi)d

∫

Td
f(w)dw

(w − z0)j+1
. (2.8)

In fact, if the continuity assumption on the boundary is dropped from the condition in

Theorem 2.2, then f can still be represented by a multivariable power series for each point

z ∈ Dd since we can choose a small neighborhood U
(
z0, δ

)
⊂ Dd that contains such a point z

and apply Theorem 2.2 to U
(
z0, δ

)
. From this fact, one can show that if f is holomorphic on

Dd, then at each point z ∈ Dd, f has partial derivative of all orders which also are holomorphic.

Thus, one can express the coefficients Cj in terms of a partial derivatives of a holomorphic

function f with respect to z as stated precisely in the following Theorem.

Theorem 2.3. If a function f is holomorphic at a point z0, then f has a multivariable power

series (2.7) with coefficients defined by Taylor’s formulas:

Cj =
1

j!

∂|j|f

∂zj

∣∣∣∣∣
z=z0

, (2.9)

where j! = j1! · · · jd! and
∂|j|

∂zj
=

∂j1+···+jd

∂zj11 · · · ∂z
jd
d

.

It is clear that if f is holomorphic at any point z ∈ U
(
z0, δ

)
⊂ Cd, then it is also holo-

morphic with respect to each variable separately. On the other hand, if f is holomorphic at

any point z ∈ U
(
z0, δ

)
⊂ Cd with respect to each variable zk, k = 1, . . . , d separately, then

the question arising here is whether or not such a function f is holomorphic in U
(
z0, δ

)
. The

answer is YES and it follows from the well-known Hartog’s Theorem stated as follows:

Theorem 2.4 (Hartog’s Theorem (1906)). If a function f is holomorphic at any point

z ∈ U
(
z0, δ

)
⊂ Cd with respect to each variable zk separately, then it is also holomorphic in

U
(
z0, δ

)
.
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Remark 1. In order for a function f to be represented by a multivariable Cauchy’s integral (2.3)

it is sufficient for f to be holomorphic in each variable zk in the unit disk D and continuous with

respect to the set of all variables in Dd. Suppose such a function f is given, then Theorem 2.2

implies that f has a power series representation, and hence it is C-differentiable, i.e., f is

holomorphic in Dd. This observation implies that for a function f to be holomorphic in the

whole domain, it suffices to show only that such a function, which is holomorphic with respect

to each variable separately, is continuous with respect to the set of all the variables. The proof

of Hartog’s Theorem can be found in, for example, [FG02, Sha92, Tay02]. N

The application of Hartog’s Theorem leads to the alternative definitions of a holomorphic

function.

Definition 3. A function f is said to be:

(R) holomorphic at a point z0 ∈ Cd in the sense of RIEMANN if f is holomorphic with respect

to each variable zk in some polydisk Dd(z0, r).

(W) holomorphic at a point z0 ∈ Cd in the sense of WEIERSTRASS if in some polydisk

Dd(z0, r), f admits a power series representation

f(z) =
∞∑

|j|=0

Cj(z− z0)j.

As mentioned above, (W ) ⇒ (R) is obvious and conversely (R) ⇒ (W ) is the content of

the Hartog’s Theorem. Thus, we have: the concept of holomorphy in the sense of Riemann and

holomorphy in the sense of Weierstrass are equivalent (see, [Sha92, Chapter I Section §3]). This
is not the case, however, in the Rd space. For instance, the function

f(x, y) =
2xy2

x3 + y3
, f(0, 0) = 0

is differentiable with respect to a real variable x when y is fixed and with respect to a real

variable y when x is fixed; however, it is not even continuous at the point (0, 0) ∈ R2.

Suppose f = (f1, . . . , fk) : D → Ck where D is a domain in Cd. We shall call the mapping

f a holomorphic mapping (respectively, real differentiable) if all its components fi, i = 1, . . . , k

are holomorphic (respectively, real differentiable) in D. The following Theorem is an extended

version of the so-called Implicit Function Theorem in the one variable case.

Theorem 2.5 (Implicit Function Theorem). If functions f1, . . . , fk, (k < d) are holomorphic

in a neighborhood of a point z0 ∈ Cd and also det
(
∂fi
∂zj

)
6= 0 in that neighborhood (i, j = 1, . . . , k),

then the system of equations f1(z) = · · · = fk(z) = 0 is locally solvable for z1, . . . , zk in terms
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of zk+1, . . . , zd and the solution zj = gj(zk+1, . . . , zd) for j = 1, . . . , k is holomorphic in a

neighborhood of the point (z0k+1, . . . , z
0
d).

Example 1. Let z0 = (0, 0) ∈ C2 and consider a function f(z) = z1−z22 . Since det( ∂f∂z1 )
∣∣∣
z=z0

=

1 6= 0, the Implicit Function Theorem implies that f(z) = 0 is locally solvable near z0. Thus,

we have z1 , g(z2) = z22 which is holomorphic in a neighborhood of a point {0}. ♦

2.1.3 Analytic Sets

It is well known in the one variable case that if f is holomorphic on the disk D, f 6≡ 0 and

f(z0) = 0 where z0 ∈ D, then in some neighborhood U(z0, δ) of z0,

f(z) = (z − z0)`φ(z),

where ` ≥ 1, and φ is holomorphic and does not vanish at z0. This result was generalized to the

higher dimensional case in 1879 which is stated as follows:

Theorem 2.6 (Weierstrass Preparation Theorem). Suppose the function f is holomorphic

in some neighborhood U
(
z0, δ

)
of a point z0 = (z̀0k, z

0
k) ∈ Cd and f(z̀0k, z

0
k) = 0 but f(z̀0k, zk) 6≡ 0,

then in some neighborhood V (z0, δ′),

f(z) = P (z̀k, zk)φ(z), (2.10)

where φ is holomorphic in V and does not vanish there, and P the Weierstrass polynomial is

given by

P (z̀k, zk) = (zk − z0k)` + α1(z̀k)(zk − z0k)`−1 + · · ·+ α`(z̀k) (2.11)

where ` ≥ 1 is the order of the zero of f(z̀0k, zk) at the point zk = z0k, the function αj are

holomorphic in V̀ := V (z̀0k, δ̀
′
k), and αj(z̀

0
k) = 0.

Remark 2. It should be noted that the Implicit Function Theorem 2.5 follows directly from

the Weierstrass Preparation Theorem 2.6. To see this, let us assume that for any point z0 ∈ Cd,

a holomorphic function f(z0) = 0 but ∂f
∂zk

∣∣∣
z0
6= 0 for some k, then Theorem 2.6 is applicable

with ` = 1 (since if ` > 1, ∂f
∂zk

∣∣∣
z0

= 0). Therefore, the equation f(z) = 0 in a neighborhood

of z0 is equivalent to the equation P (z) = P (z̀k, zk) = zk − z0k + α1(z̀k) = 0, which is solvable

relative to zk and zk = z0k − α1(z̀k) is holomorphic in the remaining variables, z̀k. N

Definition 4 (Irreducible Function). A function f 6≡ 0 which is holomorphic at a point

z0 ∈ Cd and f(z0) = 0 is said to be irreducible at this point if in a neighborhood of the point

U
(
z0, δ

)
, it cannot be represented as a product of functions holomorphic at z0, each of which

is equal to 0 at z0.
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Thus, for any function f 6≡ 0 which is holomorphic at a point z0 ∈ Cd and f(z0) = 0, it

can be decomposed uniquely (up to holomorphic and nonzero constants) in the form

f = fm11 · · · fms
s (2.12)

where f
mj

j , j = 1, . . . , s are irreducible functions at the point z0. The following Lemma provides

an important property of irreducible functions and will be used to prove the existence of a

holomorphic function ψ in the proof of Theorem 4.9.

Lemma 2.7. Suppose that the function f is holomorphic and irreducible at a point z0 ∈ Cd

and f(z0) = 0, and that the function g is holomorphic in a neighborhood of z0 and is equal to 0

where f = 0. Then g is divisible by f in the sense that in a neighborhood of z0,

g = fh,

where h is a holomorphic function.

Proof. See, e.g., [Sha92, Section §8, page 129]. ¥

Next we shall consider closely the properties of sets on which holomorphic functions vanish.

Definition 5 (Analytic set). An analytic set A in a domain D = Dd ⊂ Cd is locally defined

as the set of common zeros of a finite number of holomorphic functions fi’s. In other words,

for any point z0 ∈ Dd there exist a neighborhood U = U
(
z0, δ

)
⊂ Dd and a finite number of

functions fi ∈ Hol(U) so that

A ∩ U = {z ∈ U
(
z0, δ

)
| f1(z) = · · · = fk(z) = 0}. (2.13)

In particular, if k = 1, then we shall call the zero variety Z(f), rather than the analytic set, of

a holomorphic function f on Dd ⊂ Cd :

Z(f) = {z ∈ Dd | f(z) = 0}.

A point z0 ∈ A is said to be a regular point of the set A if the rank of the Jacobian matrix

evaluated at such a point
[
∂fi
∂zj

]∣∣∣
z=z0

for i = 1, . . . , k; j = 1, . . . , d is equal to k. Then it follows

that
[
∂fi
∂zj

]
has rank k in a neighborhood of z0. The numberm , d−k (resp., k) is called the local

complex dimension (resp., the local complex co-dimension) of A at a point z0 and denoted by

dimz0 A (resp., codimz0A). The dimension of the set A is defined as dimA = supz0∈A dimz0 A.
The number d− dimA is called the co-dimension of A and denoted by codimA. If dimz0 = m

for all z0 ∈ A, then we call that A is a pure m-complex dimensional analytic set in Dd.
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An analytic set A ⊂ Cd of co-dimension 1 (i.e., dimA = d − 1) is called a complex hy-

persurface, and an analytic set of dimension 1 is called a complex curve. If an analytic set A
contains only isolated points with no accumulation point in the domain D, then A is said to

have dimension zero; while the whole domain D = Dd itself is an analytic set of dimension d (in

this case, fi ≡ 0 for all i). A point z0 is called a singular point in A if it is not a regular point.

Any analytic set without singular points is said to be smooth.

Given a domain D ⊂ Cd. Then an analytic set A is said to be irreducible in D if it cannot

be represented as a union of analytic sets in D different from A itself. The set A is said to be

irreducible at a point z0 ∈ A if in any sufficiently small neighborhood U
(
z0, δ

)
of z0, the set

A ∩ U
(
z0, δ

)
is irreducible.

Example 2. Let f(z) = z21z
2
2 − z23 . Then the zero variety (or an analytic set) of f is given by:

Z(f) = {z ∈ C3 | z21z22 − z23 = 0}. (2.14)

Since f can be factored as f(z) = f1(z)f2(z) where f1(z) = (z1z2 − z3) and f2(z) = (z1z2 + z3),

the variety (2.14) is split into a union of two sets: Z(f) = Z(f1) ∪ Z(f2) where

Z(f1) = {z ∈ C3 | z1z2 − z3 = 0} and Z(f2) = {z ∈ C3 | z1z2 + z3 = 0}.

Thus, Z(f) is reducible in C3. It is also reducible on the lines (z1, 0, 0) and (0, z2, 0) which is a

set of the intersection Z(f1) ∩Z(f2). For the remaining points (i.e., z ∈ C3 \ {Z(f1) ∩ Z(f2)}),
Z(f) is irreducible. For instance, a = (1, 1, 1) ∈ Z(f) but a 6∈ Z(f2). ♦

Example 3. Let g(z) = z1z
2
2 − z23 . The zero variety of g is the set

Z(g) = {z ∈ C3 | z1z22 − z23 = 0}. (2.15)

For z1 6= 0, g(z) = g(z1, z̀1) = z1(z
2
2 − z−11 z23). Thus the only factorization of (z22 − z−11 z23) in

C[z2, z3] (the polynomial ring over C in 2 variables: z2, z3) is (z2 −
√
z−11 z3)(z2 +

√
z−11 z3) for a

fixed nonzero value of z1. Therefore, in C3 \ {z1 = 0}, g can be factored as

g(z) = z1(z2 −
√
z−11 z3)(z2 +

√
z−11 z3) = (

√
z1z2 − z3)(

√
z1z2 + z3) := g1(z)g2(z),

where
√
z1 denotes one of the branches of the square root function. Consequently, the zero

variety of g in C3 \ {z1 = 0} can be decomposed as a union of two sets Z(g) = Z(g1) ∪ Z(g2)
where

Z(g1) = {
√
z1z2 − z3 = 0} and Z(g2) = {

√
z1z2 + z3 = 0}. (2.16)

Thus, for any points of the form (a, 0, 0), a 6= 0, the zero variety of g, Z(g), is locally reducible;
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it is not locally reducible, however, at the point (0, 0, 0) since z1 →
√
z1 is not holomorphic

at z1 = 0. In addition, Z(g) is locally irreducible at any points of the form (a, b, c) 6= (a, 0, 0),

where a 6= 0 since there are no such points belonging to Z(g1) and Z(g2) in (2.16) simultaneously.

♦

It is easy to show that if the function f is irreducible at a point z0, then the zero variety

of f is also irreducible at such a point; however, the converse is false, i.e., if Z(f) is irreducible
at a point z0, the function f may or may not be irreducible at such a point. For instance, let

g be an irreducible function at a point z0 and define the function f := g2. Thus, f is reducible

at such a point. However, the zero variety of f (Z(f) = {g2 = 0}) and the zero variety of g

(Z(g) = {g = 0}) coincide and this implies that Z(f) is irreducible.

Lemma 2.8. If the function f is irreducible at a point z, then so is Z(f).

The last Theorem that we need here is the so-called Riemann Extension Theorem which is

stated as follows:

Theorem 2.9 (Riemann Extension Theorem). If f is holomorphic in D \A, where D is a

domain in Cd for d > 1 and A is an analytic set of co-dimension at least 2, then f extends in

a unique way to a function holomorphic in D.

We shall also have occasion to need meromorphic functions (see e.g.,[FG02, Sha92]); if

h = f/g where f and g are holomorphic with no nontrivial common holomorphic factors, we let

Z(h) = Z(f) be the zero variety of h (defined to be the zero variety of the numerator f), and we

let P(h) = Z(g) be the polar variety of h (defined to be the zero variety of the denominator g).

If F is a meromorphic matrix function on Dd, let P(F ) denote the union of the polar varieties

of the matrix entries.

Any subset V ′ of a variety V of the form V ′ = V \A where A is a subvariety of V of lower

dimension is said to be a generic subset of V .

2.1.4 Hardy spaces

The purpose of this Subsection is to give a brief review on the function theory of Hardy classes on

the disk. For a more detailed treatment on this subject, the reader may refer to [Dur70, Hof62]

for scalar valued holomorphic functions; [RR85] for vector and operator valued holomorphic

functions; and [Rud69] for holomorphic functions on the polydisk.

Definition 6. For functions f holomorphic in a unit disk f : D 7→ C, the mean of order p at
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radius r (0 < r < 1) is defined by

Mp(r, f) :=

[
1

2π

∫ 2π

0
|f(reiθ)|pdθ

]1/p
, for 1 ≤ p <∞,

M∞(r, f) := sup
θ∈[0,2π]

|f(reiθ)|, for p =∞.

Definition 7 (Hardy Spaces). The Hardy space Hp(D) is the set of holomorphic functions f

on a unit disk D whose means of order p, Mp(r, f), remain bounded as r → 1, i.e.

Hp(D) = {f ∈ Hol(D) | ‖f‖p := sup
0<r<1

Mp(r, f) <∞}.

Let us consider the case when p = 2. If f is holomorphic on the unit disk D, then it admits

a power series representation, i.e.

f(z) =
∞∑

n=0

anz
n, |z| < 1.

Thus, the mean of order 2 is

M2
2 (r, f) =

1

2π

∫ 2π

0
|f(reiθ)|2dθ

=
1

2π

∫ 2π

0
|
∞∑

n=0

anr
neiθn|2dθ

=
∞∑

n=0

|an|2r2n,

and hence f ∈ H2(D) if and only if
∑∞

n=0 |an|2 <∞. In addition, this also shows that M2(r, f)

increases with r.

When p =∞, it follows from the maximummodulus principle thatM∞(r, f) is an increasing

function of r, and H∞(D) is the class of bounded holomorphic functions in the disk. In general,

for any p ≥ 1, the means Mp(r, f) of any holomorphic function f are increasing functions of r.

As a result, the p-norm of a holomorphic function f on D is a radial limit of the mean of order

p:

‖f‖p = lim
r↑1

Mp(r, f) = lim
r↑1
‖fr‖Lp(T),

where fr denotes the function fr(z) = f(rz), and Lp(T) is the space of (equivalence2 classes of)

all measurable functions f on the circle T with
∫ 2π
0 |f(eiθ)|pdθ <∞.

2Two functions f and g defined on the same measurable set are said to be equivalent if µ{x : f(x) 6= g(x)} = 0.
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Note that everyHp(D) function f(reiθ) converges almost everywhere3 to an Lp(T) boundary
function f(eiθ). Thus Hp(D) is a normed linear space with the norm defined as the Lp(T) norm
of the boundary function, i.e.

‖f‖p =
[
1

2π

∫ 2π

0
|f(eiθ)|pdθ

]1/p
= lim

r↑1
Mp(r, f) for 1 ≤ p <∞

‖f‖∞ = sup
z:|z|<1

|f(z)| = ess sup
θ∈[0,2π]

|f(eiθ)|,

where ess sup f(eiθ) is the infimum of sup g(eiθ) as g ranges over all functions which are equal

to f almost everywhere. Thus,

‖f‖∞ = ess sup
θ∈[0,2π]

f(eiθ) = inf
g=f a.e.

{ sup
θ∈[0,2π]

|g(eiθ)|}

= inf{M | µ{θ : f(eiθ) > M} = 0}.

We denote by L2
n(T) the set of n × 1 vector valued functions with entries in L2(T) and

define the inner product as

〈f, g〉 := 1

2π

∫ 2π

0
g(eiθ)∗f(eiθ)dθ,

for any f, g ∈ L2
n(T). Thus, L2

n(T) equipped with this inner product forms a Hilbert spaces.

Furthermore, such an inner product on L2
n(T) defines a norm on L2

n(T) given by:

‖f‖2 =
√
〈f, f〉.

More explicitly, the 2-norm of a vector valued function f ∈ L2
n(T) is defined as

‖f‖2 =
[
1

2π

∫ 2π

0
f(eiθ)∗f(eiθ)dθ

]1/2
.

Let L∞m×n(T) denote the set of m × n matrix valued functions whose entries belong to

L∞(T), where L∞(T) is the space of (equivalence classes of) all measurable functions which are

bounded except possibly on a subset of measure zero. For any F ∈ L∞m×n(T), its ∞-norm is

defined as

‖F‖∞ = ess sup
θ∈[0,2π]

σ
(
F (eiθ)

)
,

where σ(A) is the largest singular value of A.

3A property is said to hold almost everywhere (abbreviated a.e.) if the set of points where it fails to hold is a
set of measure zero. In particular, we say that two functions f and g are equivalent if f = g almost everywhere.
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2.2 Operator theory

This Section is devoted to the fundamental facts on the operator theory and functional calculus

which will be used throughout this dissertation. For more details, readers should consult, e.g.

[AM02, FF90, FFGK98, Kre78, RSN55, Roy88, SNF70].

2.2.1 Basic facts in Operator Theory

Definition 8 (Linear operator). Let X and Y be vector spaces. An operator T : X → Y is

called a linear operator provided that the superposition property holds; i.e., for any x1, x2 ∈ X
and α, β ∈ R (or C),

T (αx1 + βx2) = αT (x1) + βT (x2) (2.17)

If X and Y are normed vector spaces, we can define boundedness of a linear operator T as

follows:

Definition 9 (Bounded linear operator). Let X and Y be normed vector spaces. An

operator T : X → Y is said to be a bounded linear operator provided that

1. T is linear, and

2. there is a constant c such that for all x ∈ X ,

‖Tx‖ ≤ c‖x‖. (2.18)

Remark 3. From this point on, by an operator from X to Y we shall always mean a bounded

linear operator and denote by L(X ,Y) the set of operators from X to Y. If X = Y, we shall

write L(X ) for L(X ,X ) and call such an operator as an operator on X . By a subspace of a

vector space, we always mean a closed linear subspace. N

For any operator, it is of interest to find the smallest constant c such that (2.18) holds and

this leads to the definition of the operator norm.

Definition 10 (Operator norm). The operator norm of the operator T ∈ L(X ,Y), denoted
by ‖T‖Op, is the smallest possible c such that (2.18) holds, i.e.

‖T‖Op = inf{c : ‖Tx‖ ≤ c‖x‖ for all x ∈ X}. (2.19)

Note that Tx = 0 whenever x = 0. Thus we can leave out the case that x = 0 and divide

both sides of (2.18) by ‖x‖,
‖Tx‖
‖x‖ ≤ c (when x 6= 0).
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Since the operator norm of T is the infimum of all possible c satisfying (2.19), this leads to an

alternative definition of the operator norm, i.e. for any x ∈ X ,

‖T‖Op = sup
x∈X :x6=0

‖Tx‖
‖x‖ . (2.20)

For notational convenience, we shall use ‖ · ‖ for the operator norm rather than ‖ · ‖Op.

Proposition 2.10. Let T be the operator as defined in Definition 9. Then the operator norm

of T in (2.20) satisfies the following:

‖T‖ = sup
x∈X :x6=0

‖Tx‖
‖x‖ = sup

x∈X :‖x‖=1
‖Tx‖ = sup

x∈X :‖x‖<1
‖Tx‖ (2.21)

Proof. For any x 6= 0, define y = x
‖x‖ and due to the linearity of T , we have

sup
x∈X :x6=0

‖Tx‖
‖x‖ = sup

x∈X :x6=0

∥∥∥∥T
x

‖x‖

∥∥∥∥ = sup
y∈X :‖y‖=1

‖Ty‖.

By writing x for y, we get ‖T‖ = sup
x∈X :‖x‖=1

‖Tx‖. Since ‖T‖ = sup
x∈X :x6=0

‖Tx‖
‖x‖ , this implies that

‖T‖ · ‖x‖ ≥ ‖Tx‖ for all x ∈ X . It also follows that, if x ∈ X and ‖x‖ < 1, then ‖T‖ > ‖Tx‖.
Therefore the operator norm ‖T‖ can be expressed as ‖T‖ = sup

x∈X :‖x‖<1
‖Tx‖. ¥

An adjoint operator T ∗ of T is the operator acting from Y into X , defined by

〈Tx, y〉Y = 〈x, T ∗y〉X for all x ∈ X , y ∈ Y. (2.22)

To prove the existence and uniqueness property of the adjoint operator, we need Riesz represen-

tation theorem and the notion of sesquilinear functional ; for complete details on this, we refer

to [Kre78, RSN55].

2.2.2 Isometry, Unitary, and Contraction

Definition 11 (Isometry and Unitary). A linear operator T from X into Y is said to be an

isometry provided that

〈Tx1, Tx2〉Y = 〈x1, x2〉X for all x1, x2 ∈ X . (2.23)

Equivalently, T ∗T = IX , where IX is an identity operator on a Hilbert space X , indicating such

a space by a subscript if it is necessary. In addition, if T is an isometry mapping from X onto

Y (i.e. T ∗T = IX and TX = Y), then T is called a unitary . T is called a co-isometry if T ∗ is
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isometry.

Proposition 2.11. T is a unitary operator if and only if T ∗T = IX and TT ∗ = IY .

Proof. Since T is isometric, T ∗T = IX . Then this implies that T (T ∗T ) = (TT ∗)T = T . Then for

any y ∈ Y, there exists x ∈ X such that Tx = y since T is onto. This implies that (TT ∗)y = y,

and hence TT ∗ = IY . Conversely, suppose T is such that T ∗T = IX and TT ∗ = IY . This implies

evidently T is onto. ¥

Definition 12 (Contraction). An operator T is called a contraction provided that for each

x ∈ X ,

‖Tx‖Y ≤ ‖x‖X , (2.24)

i.e., ‖T‖ ≤ 1. If ‖T‖ < 1, then T is said to be strictly contractive.

The condition (2.24) implies that 〈Tx, Tx〉Y = 〈T ∗Tx, x〉X ≤ 〈x, x〉X for all x ∈ X . Since

‖T‖ = ‖T ∗‖, T ∗ is also a contraction from Y into X . Thus, by analogous argument, 〈TT ∗y, y〉Y ≤
〈y, y〉Y for all y ∈ Y. Therefore, for any contraction operator T of X into Y, T ∗T ≤ IX and

TT ∗ ≤ IY . Obviously, if T is a unitary, then it is also a contraction.

Besides the unitary operator, there is another type of contractions on a Hilbert space, which

is called a completely nonunitary contraction.

Definition 13 (Completely Nonunitary Contraction). A contraction T on H is called

a completely nonunitary (c.n.u.) if there is no nonzero reducing subspace4 M such that the

restriction of the operator T to the subspace M, denoted by T |M, is unitary on M.

2.2.3 Unitary Dilation and Lifting Theorem

Definition 14 (Dilation). An operator U on a Hilbert space K, (i.e. U ∈ L(K)) is called a

(weak or Halmos) dilation of an operator T ∈ L(H) if H is a subspace of K and T = PK→HU |H,
where PK→H is the orthogonal projection of K onto H. If, in addition, T n = PK→HU

n|H for all

n ≥ 1, then U is called a dilation of T . Moreover, U is called a unitary dilation of T if U itself

is unitary. If U is a dilation of T , then T is called a compression of U .

It is easy to see that U is a weak dilation of T if and only if U admits a matrix representation

of the form

U =

[
T ∗
∗ ∗

]
:

[
H
H⊥

]
→
[
H
H⊥

]
,

where ∗ denotes an arbitrary entry of U .

4A subspaceM⊂ H is said to be a reducing subspace of an operator T on H ifM is invariant to both T and
T ∗.
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In 1965, D. Sarason [Sar65] showed that a necessary and sufficient condition such that a

weak dilation is in fact a dilation is that the subspace H be the difference of two invariant

subspaces of K.

Theorem 2.12 (Sarason’s Lemma). Let H be a subspace of a Hilbert space K and an operator

U ∈ L(K). Suppose that T ∈ L(H) defined by T = PK→HU |H . Then U is a dilation of T

(Tn = PK→HU
n|H for n ≥ 1) if and only if there exist nested invariant subspaces H2 ⊂ H1 ⊂ K

for U with H = H1 ªH2.

Thus, by Sarason’s Lemma, U is a dilation of T if and only if it has a matrix representation

of the form

U =



∗ ∗ ∗
0 T ∗
0 0 ∗


 :




H2

H
KªH1


→




H2

H
KªH1


 (2.25)

There is another notion which is somewhat stronger than being a dilation.

Definition 15 (Extension). An operator U on a Hilbert space K is called an extension of an

operator T ∈ L(H) if H is a subspace of K which is invariant for U , and T = U |H. If U is an

extension of T , then T is called a part of U .

Obviously U is an extension of T if and only if U admits a matrix representation of the

form

U =

[
T ∗
0 ∗

][
H
H⊥

]
→
[
H
H⊥

]
.

Definition 16 (Minimal Unitary Dilation). Let T be any contraction on the Hilbert space

H. Then U on K ⊇ H is said to be a minimal unitary dilation of T if U itself is a unitary

dilation of T and satisfies the following minimality condition

K =
∞∨

n=−∞

UnH, (2.26)

where
∨̀

n=k

Mn denotes the closed linear span of a set of subspaces {Mn} for n ∈ [k, `] ⊂ Z.

Theorem 2.13 (Sz.-Nagy’s Theorem). Any contraction T on Hilbert space H admits a

minimal unitary dilation. Moreover, all minimal unitary dilations of T are uniquely determined

up to isomorphism.

Definition 17 (Lifting). Let H1 and H2 be any Hilbert spaces and T ∈ L(H1,H2). An

operator U ∈ L(K1,K2) is said to be lifting of T if H1 and H2 are subspaces of K1 and K2,

respectively, and

PK2→H2U = TPK1→H1 (2.27)
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It is clear that U is a lifting of T if and only if U admits a matrix representation of the

form

U =

[
T 0

∗ ∗

]
:

[
H1

H⊥1

]
7→
[
H2

H⊥2

]
. (2.28)

In particular, if H1 = H2 = H and K1 = K2 = H, then an operator U is a lifting of T if and

only if it has a matrix representation of the form

U =

[
T 0

∗ ∗

]
:

[
H
H⊥

]
→
[
H
H⊥

]
. (2.29)

Obviously, if U is a lifting of T , then U is a (weak) dilation of T .

Theorem 2.14 (Sz.-Nagy-Foiaş Lifting Theorem for Unitary Dilation). Let K1 and K2

be Hilbert spaces, H1 ⊂ K1,H2 ⊂ K2 be closed subspaces, U1 ∈ L(K1), U2 ∈ L(K2) be unitary

operators, and T1 ∈ L(H1), T2 ∈ L(H2) be contraction operators such that Ui is a dilation of Ti

for i = 1, 2. If X : H1 → H2 is a contraction intertwining T1, T2, i.e. XT1 = T2X and ‖X‖ ≤ 1,

then there exists an operator Y : K1 → K2 such that

1. Y is contraction, i.e. ‖Y ‖ ≤ 1,

2. Y intertwines U1, U2, i.e. Y U1 = U2Y, and

3. X = PK2→H2Y |H1 .

K1
Y−−−−→ K2

PK1→H1

y
yPK2→H2

H1
X−−−−→ H2

Figure 2.1: The lifting diagram

2.2.4 Andô’s Theorem and von Neumann’s Inequality

In 1953, B. Sz.-Nagy [SN53] discovered the fact that every contraction has an extension that is

a co-isometry, and a unitary dilation. Ten years later, T. Andô [And63] generalized the previous

fact from one contraction to a pair of commuting contractions; the result is stated precisely as

follows:

Theorem 2.15 (Andô’s Theorem [And63]). Let T1, T2 be a pair of commuting contractions

on the Hilbert space H. Then there exists a pair of commuting unitary operators U1, U2 on a



Tanit Malakorn Chapter 2. Preliminaries and Notation 24

Hilbert space K containing H as a closed subspace such that for any f ∈ H,

Tn1
1 Tn2

2 f = PK→HU
n1
1 Un2

2 f for n1, n2 = 1, 2, . . .

Theorem 2.16 (von Neumann’s Inequality for d = 1). Let T be a contraction on a Hilbert

space H. Then for any matrix-valued polynomial p(z) on the disk, we have

‖p(T )‖ ≤ sup
z∈D

|p(z)|. (2.30)

Theorem 2.17 (von Neumann’s Inequality for d = 2). Let T1, T2 be commuting contrac-

tions on a Hilbert space H. Then for any matrix-valued polynomial p(z1, z2) on the bidisk, we

have

‖p(T1, T2)‖ ≤ sup
(z1,z2)∈D2

|p(z1, z2)|. (2.31)

Remark 4. For three or more commuting contractions (d ≥ 3), Andô’s theorem and the corre-

sponding von Neumann’s inequality fail in general. S. Parrott [Par70] showed that there exist

three commuting contractions which do not have commuting unitary dilations. M. J. Crabb

and A. M. Davie [CD75], and N. Th. Varopoulos [Var74] independently discovered the failure of

von Neumann’s inequality for three commuting contractions. For more details, see e.g. [AM02,

Chapter 10] or [Pau86, Chapter 4 and 6.9]. N

2.3 Schur Class versus Schur-Agler Class

The class of all contractive valued functions holomorphic on Dd is often called the Schur class,

denoted by Sd. To be more precise, let X and Y be Hilbert spaces and an operator-valued

function F : Dd 7→ L(X ,Y). Then the Schur class is defined as

Sd(X ,Y) ,
{
F : Dd 7→ L(X ,Y) holomorphic | sup

(z1,...,zd)∈Dd
‖F (z1, . . . , zd)‖Op ≤ 1

}
. (2.32)

However, there is a closely related class of functions introduced by J. Agler (see [Agl87, Agl90])

which we shall call the Schur-Agler class, SAd, defined as follows:

SAd(X ,Y) ,
{
F : Dd 7→ L(X ,Y) holomorphic | sup{‖F (T1, . . . , Td)‖} ≤ 1

}
(2.33)

for any d-tuple of commuting strict contractions T = (T1, . . . , Td) (i.e., ‖Tj‖ < 1 and TiTj = TjTi

for i, j = 1, . . . , d) where Ti ∈ L(H) for any auxiliary Hilbert space H. If F (z) =
∞∑

|j|=0

Cjz
j, then



Tanit Malakorn Chapter 2. Preliminaries and Notation 25

F (T ) =
∞∑

|j|=0

Cj⊗T j ∈ L(X ⊗H,Y⊗H) where T j = T j1
1 · · ·T

jd
d if j = (j1, . . . , jd). (See definition

of tensor ⊗ in Appendix A on page 188).

In particular if X and Y are linear vector spaces, say X = Cm and Y = Cl, then F admits

a matrix representation, F ∈ Cl×m. In this case, the Schur class, denoted by Sd(Cm,Cl), is

the class of all l × m matrix-valued functions F holomorphic on Dd and satisfying the norm

constraint in (2.32). Likewise, the class of all l ×m matrix-valued functions F holomorphic on

Dd and satisfying the norm constraint (2.33) is denoted by SAd(Cm,Cl).

In the following Theorem, we shall show that for d ≤ 2, SAd(Cm,Cl) = Sd(Cm,Cl);

otherwise, SAd(Cm,Cl) ⊂
6=
Sd(Cm,Cl).

Theorem 2.18. Sd ≡ SAd for d ≤ 2.

Proof—Sketch. Obviously, the Schur-Agler class is a subclass of the Schur class, SAd ⊂ Sd. We

only need to show that for d ≤ 2, Sd ⊂ SAd.

For d = 1, let F (z) ∈ S. Then, F ∗(z) = limr↑1 F (rz) exists for almost every z ∈ T. This im-

plies that for any unitary operator U with spectral measure absolutely continuous with respect to

Lebesgue measure (i.e., U absolutely continuous unitary operator), F (U) =
∫

T F (z)dE(z) is well

defined where E(σ) is the spectral measure defined for the Borel subsets σ on the distinguished

boundary T. Then, we have

‖F (U)‖ ≤
∫

T
|F (z)|‖dE(z)‖ ≤ ‖F‖∞ = sup

z∈T
|F (z)| = sup

z∈D
|F (z)|. (2.34)

Note that the last equality in the above expression is due to the Maximum Modulus Principle.

Now from Sz.-Nagy’s theorem, every contraction T has a minimal unitary dilation, say U ,

i.e., T = PK→HU |H . If T is a strict contraction, i.e., ‖T‖ < 1 (or in the more general class

called completely nonunitary (c.n.u.) contraction), then the minimal unitary dilation U of T is

absolutely continuous. Thus, F (T ) = PK→HF (U)|H where F (U) =
∑
anU

n if F (z) =
∑
anz

n.

This expression together with (2.34) imply that

‖F (T )‖ ≤ ‖F (U)‖ ≤ sup
z∈D

|F (z)| ≤ 1, (since F ∈ S)

i.e., F ∈ SA and hence, S ⊂ SA. But always SA ⊂ S. Then we have S = SA.
Now for d = 2, let us assume that F ∈ S2. By Andô’s theorem, we know that any two

commuting contractions T1, T2 have commuting unitary dilations (see Theorem 2.15). As before,

the joint spectral measure for U1, U2 is absolutely continuous if T1, T2 are strict contractions.
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By using the similar argument as for the case when d = 1, we have

‖F (T1, T2)‖ = ‖ PK→HF (U1, U2)|H ‖ ≤ ‖F (U1, U2)‖ ≤ sup
(z1,z2)∈D2

|F (z1, z2)| ≤ 1.

Hence, S2 ⊂ SA2. This implies that S2 = SA2. For complete proof, we refer the reader to

[FF90, SNF70]. ¥

From the definitions, we see that the Schur class function F is also in the Schur-Agler

class if we can show that sup ‖F (T1, . . . , Td)‖ ≤ 1. But in this step, we need the famous van

Neumann’s inequality which is applicable only for d ≤ 2 due to the fact that the von Neumann’s

inequality and Andô’s theorem fail in general for three or more contractions. Varopoulos [Var74],

and Crabb-Davie [CD75] constructed independently the examples of an F which is in the Schur

class but not in the Schur-Agler class, F ∈ S3 \ SA3 (see also Remark 4). So, we can identify

the Schur class and the Schur-Agler class only when d ≤ 2. For d > 2, the Schur-Agler class is

only a subclass of the Schur class.

2.4 Nevanlinna-Pick Interpolation Theory

A classical interpolation problem is stated as follows: given n distinct points, say z1, . . . , zn in

the unit disk D (resp., in the right half plane Π+) and a collection of any complex numbers

w1, . . . , wn in C, determine a scalar-valued holomorphic function f on D (resp., Π+) with

sup
z∈D (resp.,Π+)

|f(z)| ≤ 1 (2.35)

such that f(zk) = wk for all k = 1, . . . , n.

This problem was studied independently by G. Pick and R. Nevanlinna in 1910’s, and

hence we shall refer to such a problem as the n-point Nevanlinna-Pick Interpolation Problem (or

n-point npip, for short). G. Pick discovered a necessary and sufficient condition to solve such a

problem in 1916, and also proved that in the extremal case5, the solution is unique and is given

by a Blaschke product6. He defined an n × n matrix P =
[
P k,`

]n
k,`=1

, which is now called the

Pick Matrix, by using the n-point Interpolation Data Set Dn (or n-point id set, for short):

Dn = {(zk, wk) ∈ (D× C) : k = 1, . . . , n}.
5The extremal case is the case when there is no solution that maps into a disk of radius less than one.
6A function of the form

B(z) = z
n
∏

k

|ak|

ak

ak − z

1− akz

is called a Blaschke product. Here n is a nonnegative integer and
∑
(1− |ak|) < ∞. The set {ak} may be finite,

or even empty. If {ak} is empty, it is understood that B(z) = zn.
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The Pick’s theorem is stated precisely as follows:

Theorem 2.19 (Pick’s Theorem). Given the id set Dn as above, the solution of the Pick

problem for the unit disk case (resp., for the right half plane case) exists if and only if the

associated Pick matrix,

P =

[
1− wkw`

1− zkz`

]n

k,`=1

(
resp., P =

[
1− wkw`
zk + z`

]n

k,`=1

)
(2.36)

is positive semidefinite. Moreover, the function f is unique if and only if the Pick matrix has

rank M < n. In this case, f is a Blaschke product of degree M .

Unaware of Pick’s work7, R. Nevanlinna considered the same problem in 1919, and proposed

an algorithm to solve such a problem using an induction step together with the Schwarz’s lemma.

Ten years later, he also parametrized all solutions of non-extremal problems.

J. Agler [Agl87] studied the extension of the classical npip, which concerns only one variable,

to the several complex variables case; i.e., an npip on the unit polydisk Dd with the given n-point

id set

Dd
n = {(zk, wk) ∈ (Dd × C) : k = 1, . . . , n}.

Theorem 2.20 (Agler’s Theorem). Given interpolation nodes z1, . . . , zn ∈ Dd, and inter-

polation values w1, . . . , wn ∈ C, there exists a scalar-valued function f ∈ SAd satisfying the

interpolation conditions

f(zk) = wk for k = 1, . . . , n (2.37)

if and only if there exist d positive-semidefinite n×n matrices P1, . . . , Pd satisfying the following

Agler’s condition on the polydisk Dd:

1− wkw` =

d∑

j=1

(
1− zkj z`j

)
P k,`
j for k, ` = 1, . . . , n. (2.38)

Particularly, the interpolation problem on the Bidisk D2 is: given a n-point id set

D2
n = {(zk, wk) ∈ (D2 × C) : k = 1, . . . , n},

find a function f ∈ S2(= SA2) such that f(zk) = f(αk, βk) = wk for k = 1, . . . , n.

Application of Agler’s Theorem 2.20 to this particular case can be restated as follows:

7Communication across Europe was disrupted due to the World War I.
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Theorem 2.21. The n-point npip on the Bidisk has a solution f ∈ S2 if and only if there exist

two positive-semidefinite n× n matrices, P1 and P2 so that the Agler’s condition

1− wkw` =
(
1− αkα`

)
P k,`
1 +

(
1− βkβ`

)
P k,`
2

holds.



Chapter 3

Multidimensional Linear Models

Multidimensional linear system theory has drawn considerable attention in the control literature

recently. The two-dimensional linear models were first introduced in the 1970’s by a group of

researchers, such as Attasi [Att73, Att75], Givone-Roesser [GR72, GR73, Roe75], and Fornasini-

Marchesini [FM76, FM77, FM78], and have been generalized to the multidimensional (d-D)

models later on. There are only two models discussed in the first part of dissertation, namely

Givone-Roesser (gr) and Fornasini-Marchesini (fm) models. Both models are not independent

of each other; in fact, the gr model can be embedded into the fm model and vice versa.

However, embedding the fm model into the gr model in general cannot be accomplished without

increasing the dimension of the state-space. We shall show that under some proper assumptions,

both models are equivalent.

3.1 Introduction

The mathematical system theory has been well developed and applied in the control applications

for decades after the work of Kalman [Kal63] in 1963. The transfer function description and the

state-space representation are powerful tools to analyze and design a linear controller. Recently,

the field of multidimensional (d-D) digital signal processing has been growing rapidly, and this

motivates mathematicians and system engineers to study the area of d-D systems broadly and

intensively. In fact, the theory of d-D linear systems has been a subject for research for over

two decades after D. Givone and R. Roesser [GR72] introduced the system equations for linear

iterative circuits in 1972. They formulated the state-space representation in such a way that the

state variable at each point on the grid (2D state-space) is split into two state components, say xh,

and xv, which propagate the information in two independent directions, namely horizontal and

vertical directions; each state component is a function of two independent time-shift variables.

This is an elegant idea and can be easily extended to the general d-D linear system where the state

29
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vector is split into d state components, each of which is a function of d independent time-shift

variables. In the following, we shall refer to this state-space representation as a Givone-Roesser

(gr) model .

A few years later, E. Fornasini and G. Marchesini [FM78] proposed an alternative model

based on the Nerode equivalence classes. They first studied a function of two complex variables

and then showed that if such a function is rational, it admits a state-space realization. We shall

call this representation as a Fornasini-Marchesini ( fm) model. They dictated that such a

realization is the most general one since the other can be embedded into this model. However,

Ball-Sadosky-Vinnikov [BSV] showed that for conservative systems, both models are equivalent.

Even though the 2D linear model proposed by D. Givone and R. Roesser was originated from

the network point of view, it is applicable to many physical systems, data analysis procedures,

learning algorithms, and 2D digital filters as well. The typical problems that might require 2D

linear models are medical X-ray image enhancement, the analysis of satellite weather photos,

the enhancement and analysis of aerial photographs for agriculture, and sonar array processing

(see [GaÃl96, Rob96, RU91, VA91] for more examples).

From the physical viewpoint, a d-D signal is a continuous function of d independent vari-

ables. For instance, the light intensity in the case of a photograph or image is considered as

a function of distances in the x and y directions. Thus, the mathematical expression for this

type of signal deals with a partial differential equation. A sampled version of a continuous d-D

signal is a discrete d-D signal which is normally in the form of a d-D array of numbers; thus, it is

described by a difference equation which is much easier for analysis than its partial differential

equation counterpart.

Based on which type of signal we are considering, the d-D system can be classified into

two categories: continuous and discrete d-D systems. For the discrete d-D systems, they can

also be characterized in terms of state-space representation in d independent variables, and in

terms of transfer function description. Under assumption that the input and output spaces are

finite-dimensional, the transfer function for the discrete d-D system is a rational function of d

complex variables, say z = (z1, . . . , zd); whilst the transfer function of the classical discrete-time

linear system is a rational function of one complex variable, say z, which corresponds to the

time-shift operator in the time domain.

Since we are focusing on the d-D linear systems, the “time axis” in this case is multidimen-

sional, say d copies of the integers Zd, d > 1, and we shall refer to it as an integer lattice rather

than “time” as in the classical discrete-time system. Thus, the time variable n in d-D system is

a d-tuple of integers, say n = (n1, n2, . . . , nd). The goal of the present chapter is two-fold: (1) to

discuss chronologically the development of the state-space representations for the 2D linear sys-

tems including the generalized version of these models, and (2) to explain the correspondences

between the gr and the fm formalisms.
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By means of introduction, let us consider some examples that may be solved via the d-D

system theory. The first example is the thermal process in chemical reactors, heat exchangers

and pipe furnaces which is described by the partial differential equation (pde) [Kac85]:

∂T (x, t)

∂x
= −∂T (x, t)

∂t
− T (x, t) + U(t) (3.1)

with initial and boundary conditions

T (x, 0) = f1(x), T (0, t) = f2(t)

where T (x, t) is usually the temperature at x(space) ∈ [0, xf ] and t(time) ∈ Z+, and U(t) is a

given forcing function.

T(x,t)
 T(x+
d
x,t)


x
 d
x


Steam


Flow


T
s


Figure 3.1: Heat exchanger

One way to solve this problem is by the discretization method. Taking T (i, j) = T (i4x, j4t)
and U(j) = U(j4t) and approximating the partial derivative as

∂T (x, t)

∂t
∼= T (i, j + 1)− T (i, j)

4t ,
∂T (x, t)

∂x
∼= T (i, j)− T (i− 1, j)

4x ,

we approximate the pde system (3.1) as

T (i, j + 1) = (4t4x)T (i− 1, j) + (1− 4t
4x −4t)T (i, j) + (4t)U(j).
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Define xh(i, j) := T (i− 1, j), xv(i, j) := T (i, j), and let a1 = 1− 4t
4x −4t, a2 =

4t
4x , and b = 4t,

the pde system (3.1) can be converted into a gr model

[
xh(i+ 1, j)

xv(i, j + 1)

]
=

[
0 1

a2 a1

][
xh(i, j)

xv(i, j)

]
+

[
0

b

]
U(j). ♦

The next example is the dynamical process in gas absorption, water stream heating and

air drying which can be described by the Darboux equation [Kac85, DX02]:

∂2s(x, t)

∂x∂t
= a1

∂s(x, t)

∂t
+ a2

∂s(x, t)

∂x
+ a0s(x, t) + bf(x, t) (3.2)

with the initial and boundary conditions

s(x, 0) = S1(x), s(0, t) = S2(t)

where s(x, t) is an unknown function at x(space) ∈ [0, xf ] and t(time) ∈ Z+, a0, a1, a2 and b are

real coefficients, f(x, t) is the given input function and S1(x), S2(t) are given.

Define r(x, t) = ∂s(x,t)
∂t − a2s(x, t) and hence the pde system (3.2) can be transformed into

an equivalent system of first order differential equations of the form

[
∂r(x,t)
∂x

∂s(x,t)
∂t

]
=

[
a1 a0 + a1a2

1 a2

][
r(x, t)

s(x, t)

]
+

[
b

0

]
f(x, t) (3.3)

with initial condition

r(0, t) =
∂s(x, t)

∂t

∣∣∣∣
x=0

− a2s(0, t) =
d

dt
S2(t)− a2S2(t) , R(t).

Taking r(i, j) = r(i4x, j4t) , xh(i, j), s(i, j) = s(i4x, j4t) , xv(i, j), and approximating the

partial derivative as

∂r(x, t)

∂x
∼= r(i+ 1, j)− r(i, j)

4x ,
∂s(x, t)

∂t
∼= s(i, j + 1)− s(i, j)

4t ,

we obtain the gr model from (3.3) as

[
xh(i+ 1, j)

xv(i, j + 1)

]
=

[
1 + a14x (a0 + a1a2)4x
4t 1 + a24t

][
xh(i, j)

xv(i, j)

]
+

[
b4x
0

]
f(i, j) (3.4)

with boundary conditions

xh(0, j) = R(j4t), xv(i, 0) = S1(i4x). ♦
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This Chapter is organized as follows: The classical discrete-time linear system is briefly

reviewed in Section 3.2. The Givone-Roesser (gr) model is provided in Section 3.3 followed by

the Fornasini-Marchesini (fm) model in Section 3.4. In Section 3.5, we present the connection

between the fm and the gr models and we devote Section 3.6 for the conclusion.

3.2 Preliminaries

In this Section, we review the theory of the classical discrete-time linear 1D system in systematic

way using the operator theoretical viewpoint. Let H,U , and Y be Hilbert spaces and an operator

U from H⊕ U to H⊕ Y be a block-matrix given by

U =

[
A B

C D

]
:

[
H
U

]
7→
[
H
Y

]
. (3.5)

where A ∈ L(H,H), B ∈ L(U ,H), C ∈ L(H,Y), and D ∈ L(U ,Y).
A quadruple Σ = (H,U ,Y, U) where U is given in the form (3.5) is often called an operator

colligation in the Russian literature (see e.g. [Bro71, Liv73]). Associated with this form of

colligation is the classical discrete-time linear system described by

Σ ,




x(n+ 1) = Ax(n) +Bu(n)

y(n) = Cx(n) +Du(n),
(3.6)

or in the matrix form, [
x(n+ 1)

y(n)

]
= U

[
x(n)

u(n)

]
. (3.7)

Here x(n), u(n), and y(n) take values in the state space H, the input space U , and the output

space Y, respectively. Furthermore, the operators A,B,C, andD are called respectively the state

operator, the input operator, the output operator, and the feedforward operator. The colligation

Σ is said to be unitary, isometric, coisometric, or contractive if the connecting operator U is

respectively unitary, isometric, coisometric, or contractive.

It is of interest to find an adjoint system Σ∗ with input space U∗, state space H, and output

space Y∗ so that its trajectories (u∗, x∗, y∗) of Σ
∗ are characterized as those (U∗×H×Y∗)-valued

functions on Z satisfying the adjoint pairing relation:

〈x(n+ 1), x∗(n+ 1)〉+ 〈y(n), u∗(n)〉 = 〈x(n), x∗(n)〉+ 〈u(n), y∗(n)〉 (3.8)
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which is equivalent to

〈[
x(n+ 1)

y(n)

]
,

[
x∗(n+ 1)

u∗(n)

]〉
=

〈[
x(n)

u(n)

]
,

[
x∗(n)

y∗(n)

]〉
. (3.9)

By substituting (3.7) into (3.9), we have

〈[
x(n)

u(n)

]
, U∗

[
x∗(n+ 1)

u∗(n)

]〉
=

〈[
x(n)

u(n)

]
,

[
x∗(n)

y∗(n)

]〉
(3.10)

in which we deduce that trajectories (u∗, x∗, y∗) for the adjoint system Σ∗ are characterized by

[
x∗(n)

y∗(n)

]
= U∗

[
x∗(n+ 1)

u∗(n)

]
. (3.11)

Thus, the adjoint system Σ∗ is given by

Σ∗ ,




x∗(n) = A∗x∗(n+ 1) + C∗u∗(n)

y∗(n) = B∗x∗(n+ 1) +D∗u∗(n).
(3.12)

If we demand that a (U ,H,Y)-valued function (u, x, y) is a trajectory of the original system

if and only if (y, x, u) is a trajectory of the adjoint system (i.e., let (u∗, x∗, y∗) = (y, x, u)), then

from (3.7), we have [
x∗(n+ 1)

u∗(n)

]
= U

[
x∗(n)

y∗(n)

]
= UU∗

[
x∗(n+ 1)

u∗(n)

]
, (3.13)

and also from (3.11), [
x(n)

u(n)

]
= U∗

[
x(n+ 1)

y(n)

]
= U∗U

[
x(n)

u(n)

]
. (3.14)

This implies that U is a unitary operator and the system Σ is said to be conservative since the

adjoint pairing (3.8) collapses to the energy balance relation:

‖x(n+ 1)‖2 + ‖y(n)‖2 = ‖x(n)‖2 + ‖u(n)‖2 for Σ (3.15)

‖x∗(n+ 1)‖2 + ‖u∗(n)‖2 = ‖x∗(n)‖2 + ‖y∗(n)‖2 for Σ∗. (3.16)

Remark 5. If we assume that U is unitary, then from (3.12) we have equivalent backward-time

system equations:

Σb ,




x(n) = A∗x(n+ 1) + C∗y(n)

u(n) = B∗x(n+ 1) +D∗y(n)
(3.17)
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and we shall call the original system equations Σ as the forward-time system. N

If we impose an initial condition at time n0 ∈ Z and are given an input sequence {u(n)}
for n ≥ n0, and an output sequence {y(n)} (which is an input sequence for the backward-time

system) for n < n0, then we are able to solve the system equations (3.6) and (3.17) recursively,

i.e.

x(n) = An−n0x(n0) +

n−1∑

k=n0

An−1−kBu(k) for n ≥ n0 (3.18)

y(n) = CAn−n0x(n0) +
n−1∑

k=n0

CAn−1−kBu(k) +Du(n) for n ≥ n0 (3.19)

x(n) = (A∗)n0−nx(n0) +

n0−1∑

k=n

(A∗)k−nC∗y(k) for n < n0 (3.20)

u(n) = B∗(A∗)n0−nx(n0) +

n0−1∑

k=n

B∗(A∗)k−nC∗y(k) +D∗y(n) for n < n0 (3.21)

These equations are in the form of the convolution sum which is hard to compute by hand. It

is well known that by virtue of the Z-transform (the Fourier transformation for this discrete

setting), one is able to convert the convolution operator to a multiplication operator which is in

the form of an algebraic equation.

For an arbitrary subset Ω of Z , the Z-transform is defined as follows:

{h(n)}n∈Ω 7→ h∧Ω(z) ,
∑

n∈Ω

h(n)zn (3.22)

Now by applying the Z-transform to the forward-time system equations (3.6) and the backward-

time system equations (3.17) where Ω = [n0,∞) and (−∞, n0), respectively, we have:

x∧[n0,∞)(z) = (I − zA)−1zn0x(n0) + z(I − zA)−1Bu∧[n0,∞)(z) (3.23)

y∧[n0,∞)(z) = C(I − zA)−1zn0x(n0) + TΣ(U)(z) · u∧[n0,∞)(z) (3.24)

where

TΣ(U)(z) = zC(I − zA)−1B +D =
∞∑

n=1

(
CAn−1B

)
zn +D (3.25)

is called the transfer function of the forward-time linear system (3.6), and

x∧(−∞,n0)(z) = zn0−1(I − z−1A∗)−1A∗x(n0) + (I − z−1A∗)−1C∗y∧(−∞,n0)(z) (3.26)

u∧(−∞,n0)(z) = zn0−1B∗(I − z−1A∗)−1x(n0) + TΣ(U∗)(z) · y∧(−∞,n0)(z) (3.27)
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where

TΣb(U∗)(z) = z−1B∗(I − z−1A∗)−1C∗ +D∗ =
∞∑

n=1

(
B∗(A∗)n−1C∗

)
z−n +D∗ (3.28)

is called the transfer function of the backward-time linear system (3.17).

Let us now consider the energy balance relation of the forward-time system for the moment.

We may rearrange (3.15) in the form

‖x(n+ 1)‖2 − ‖x(n)‖2 = ‖u(n)‖2 − ‖y(n)‖2

and then iterate from n =M to n = N to get

‖x(N + 1)‖2 − ‖x(M)‖2 =
N∑

n=M

[
‖u(n)‖2 − ‖y(n)‖2

]
.

If we set M = n0 and assume that x(n0) = 0, then we get

0 ≤ ‖x(N + 1)‖2 =
N∑

n=n0

[
‖u(n)‖2 − ‖y(n)‖2

]
.

Hence, if the input sequence {u(n)}n≥n0 ∈ `2([n0,∞),U), then we may take N →∞ to get

0 ≤
∞∑

n=n0

[
‖u(n)‖2 − ‖y(n)‖2

]
,

and conclude that

‖y‖2`2([n0,∞),Y) ≤ ‖u‖2`2([n0,∞),U) (3.29)

Upon applying the Z-transform to (3.29) and recalling that y∧[n0,∞)(z) = TΣ(U)(z) · u∧[n0,∞)(z)

if we assume that x(n0) = 0, we have

‖TΣ(U) · u∧[n0,∞)‖zn0H2(D,Y) ≤ ‖u∧[n0,∞)‖zn0H2(D,U)

As u∧[n0,∞) is an arbitrary element of zn0H2(D,U) for u ∈ `2([n0,∞),U), we conclude that

multiplication by TΣ(U) defines a contraction operator from zn0H2(D,U) into zn0H2(D,Y).

Since
0⋃

n0=−∞

zn0H2(D,U) is dense in L2(D,U), one can see that multiplication by TΣ(U) ex-

tends uniquely by continuity to define a contraction operator from L2(D,U) into L2(D,Y). In

other words, the transfer function of a forward-time conservative linear system TΣ(U) is in the

Schur class S(U ,Y). This analysis is applicable similarly to the backward-time system as well.
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For a discussion, see e.g., [BSV]. All results discussed here can be generalized to the d-D case

as we shall see in the following sections.

3.3 Givone-Roesser Model

In 1972, D. Givone and R. Roesser introduced the state-space formalism for a linear iterative

circuit, which is considered as a spatial system rather than a temporal system. An iterative

circuit is the combination of individual cells, each of which is identical, in a regular pattern.

This type of circuit is used widely in automata and logical circuit theory. An iterative circuit is

said to be linear if the inputs and outputs to each cell are in the form of vectors in linear vector

spaces over a common finite field and each cell performs a linear transformation, see [GR72].

It is worth noting that in the image processing case, a real field is applied instead of a finite

one. In practical viewpoint, the iterative circuit may be used in encoding, decoding and image

processing.

cell

(h,k)
th


u(h,k)


y(h,k)


x
v
(h,k)


x

v


(h,k+1)


x

h


(h,k)
 x

h


(h+1,k)


Figure 3.2: Two-dimensional unilateral iterative circuit

Based on the direction of flowing signals through each cell, the iterative circuit may be

classified into two categories: unilateral and bilateral iterative circuits. The 2D unilateral circuit

is depicted in Figure 3.2. In this figure, the state variable at the location (h, k) is split into

horizontal and vertical components, say xh and xv, respectively. Each component in the next

time step is a function of both state components and input at the present time, i.e.

[
xh(h+ 1, k)

xv(h, k + 1)

]
=

[
A11 A12

A21 A22

][
xh(h, k)

xv(h, k)

]
+

[
B1

B2

]
u(h, k) (3.30)
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together with the initial conditions xh(0, 0), xv(0, 0) and the boundary conditions

X(0) , {xh(0, j), xv(i, 0)} for all i, j ≥ 1 , (3.31)

and the output equation is described by

y(h, k) = C1xh(h, k) + C2xv(h, k) +Du(h, k). (3.32)

The generalized version of the system described above is the so-called d-D Givone-Roesser

system, or gr system for short, which is given by:

ΣGR ,





x1(n+ e1) =
∑d

k=1A
GR
1,k xk(n) +BGR

1 u(n)
...

xd(n+ ed) =
∑d

k=1A
GR
d,k xk(n) +BGR

d u(n)

y(n) =
∑d

k=1C
GR
k xk(n) +DGRu(n)

(3.33)

where ek denotes the standard basis in Cd, i.e. e1 , (1, 0, . . . , 0), . . . , ed , (0, . . . , 0, 1) and

n := (n1, . . . , nd).

The system ΣGR can be rewritten in the matrix form as:




x1(n+ e1)
...

xd(n+ ed)

y(n)



= UGR




x1(n)
...

xd(n)

u(n)




(3.34)

where the connecting operator UGR associated with this system is of the form

UGR ,

[
AGR BGR

CGR DGR

]
=




AGR
1,1 · · · AGR

1,d BGR
1

...
. . .

...
...

AGR
d,1 · · · AGR

d,d BGR
d

CGR
1 · · · CGR

d DGR



:

[⊕d
i=1Hi

U

]
7→
[⊕d

i=1Hi

Y

]
. (3.35)

Here the state space H is decomposed into a fixed d-fold orthogonal direct-sum

H = H1 ⊕ · · · ⊕ Hd.

To get an analogue of the 1D discrete-time linear system, let us first seek an adjoint system

Σ∗GR so that its trajectories (u∗, x∗, y∗) of Σ
∗GR are characterized as those (U∗×H×Y∗)-valued
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functions on Zd satisfying the adjoint pairing relation:

〈x1(n+ e1), x∗1(n+ e1)〉+ · · ·+ 〈xd(n+ ed), x∗d(n+ ed)〉+ 〈y(n), u∗(n)〉
= 〈x1(n), x∗1(n)〉+ · · ·+ 〈xd(n), x∗d(n)〉+ 〈u(n), y∗(n)〉 (3.36)

which is equivalent to

〈



x1(n+ e1)
...

xd(n+ ed)

y(n)



,




x∗1(n+ e1)
...

x∗d(n+ ed)

u∗(n)




〉
=

〈



x1(n)
...

xd(n)

u(n)



,




x∗1(n)
...

x∗d(n)

y∗(n)




〉
. (3.37)

By substituting (3.34) into (3.37), we have

〈



x1(n)
...

xd(n)

u(n)



, U∗GR




x∗1(n+ e1)
...

x∗d(n+ ed)

u∗(n)




〉
=

〈



x1(n)
...

xd(n)

u(n)



,




x∗1(n)
...

x∗d(n)

y∗(n)




〉
(3.38)

in which we deduce that trajectories (u∗, x∗, y∗) for the adjoint system Σ∗GR are characterized

by 


x∗1(n)
...

x∗d(n)

y∗(n)



= U∗GR




x∗1(n+ e1)
...

x∗d(n+ ed)

u∗(n)



. (3.39)

Thus, the adjoint system Σ∗GR is described by

Σ∗GR ,





x∗1(n) =
∑d

j=1(A
GR
j,1 )

∗x∗j(n+ ej) + (CGR
1 )∗u∗(n)

...

x∗d(n) =
∑d

j=1(A
GR
j,d )

∗x∗j(n+ ej) + (CGR
d )∗u∗(n)

y∗(n) =
∑d

j=1(B
GR
j )∗x∗j(n+ ej) + (DGR)∗u∗(n).

(3.40)

The gr system ΣGR is said to be conservative provided that a (U ,H,Y)-valued function (u, x, y)

is a trajectory of the gr system if and only if (y, x, u) is a trajectory of the adjoint system Σ∗GR.

Now we shall verify that a necessary and sufficient condition so that the gr system ΣGR is

conservative is that the connecting operator UGR is unitary. To see this, let us consider the
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system equations (3.34) and substitute (y, x, u) by (u∗, x∗, y∗). Thus, we have




x∗1(n+ e1)
...

x∗d(n+ ed)

u∗(n)



= UGR




x∗1(n)
...

x∗d(n)

y∗(n)



= UGRU∗GR




x∗1(n+ e1)
...

x∗d(n+ ed)

u∗(n)



. (3.41)

Also, from (3.39),




x1(n)
...

xd(n)

u(n)



= U∗GR




x1(n+ e1)
...

xd(n+ ed)

y(n)



= U∗GRUGR




x1(n)
...

xd(n)

u(n)



. (3.42)

Clearly, the connecting operator UGR is unitary since UGRU∗GR = U∗GRUGR = I. If the

system is conservative, the adjoint pairing (3.36) collapses to the energy balance relation:

d∑

k=1

‖xk(n+ ek)‖2 + ‖y(n)‖2 =
d∑

k=1

‖xk(n)‖2 + ‖u(n)‖2 for ΣGR (3.43)

d∑

k=1

‖x∗k(n+ ek)‖2 + ‖u∗(n)‖2 =
d∑

k=1

‖x∗k(n)‖2 + ‖y∗(n)‖2 for Σ∗GR. (3.44)

For the frequency domain analysis, let Ω = {n ∈ Zd : |n| ,∑d
k=1 nk ≥ 0}, and define the

Z-transform of the sequence {h(n)}n∈Ω as follows:

{h(n)}n∈Ω 7→ h∧Ω(z) =
∑

n∈Ω

h(n)zn

where zn = zn11 · · · zndd if n = (n1, . . . , nd) ∈ Zd and z = (z1, . . . , zd) is a d-tuple of commuting

complex variables. Application of this Z-transform to the system equations (3.33), we have

{xk(n+ ek)} 7→ x∧Ωk (z) =
∑

n∈Ω

xk(n+ ek)z
n = z−1k


x∧Ωk (z)−

∑

n:|n|=0

xk(n)z
n


 . (3.45)

By assuming that the system has zero initial condition xk(n) = 0 for n ∈ Ω0 , {n ∈ Zd : |n| = 0}
and for k = 1, . . . , d, (3.45) collapses to

{xk(n+ ek)} 7→ x∧Ωk (z) = z−1k
[
x∧Ωk (z)

]
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and the state equations in (3.33) becomes




z−11 x∧Ω1 (z)
...

z−1d x∧Ωd (z)


 = AGR




x∧Ω1 (z)
...

x∧Ωd (z)


+BGRu∧Ω(z). (3.46)

More compactly, let us define Zd(z) =




z1IH1
. . .

zdIHd


 , and hence, (3.46) becomes

x∧Ω(z) ,




x∧Ω1 (z)
...

x∧Ωd (z)


 = (I − Zd(z)AGR)−1Zd(z)B

GRu∧Ω(z).

Then, by applying the Z-transform to the output equation of (3.33) and substituting x∧Ω(z)

from the above expression, we get

y∧Ω(z) =
[
CGR(I − Zd(z)AGR)−1Zd(z)B

GR +DGR
]
· u∧Ω(z)

, TΣGR(z) · u∧Ω(z) (3.47)

where TΣGR(z) is called the Givone-Roesser (gr) transfer function.

3.4 Fornasini-Marchesini Model

E. Fornasini and G. Marchesini [FM76, FM77] proposed an alternative formalism of 2D transfer

functions, or digital filters, with the different state-space realization. While Givone-Roesser

formulated the state-space representation based on the iterative circuit, Fornasini and Marchesini

obtained the state-space realization from the factorization of the 2D input-output map based

on the algebraic viewpoint of Nerode equivalence classes1.

The state at a given time (h, k) in the sense of Nerode is the minimal amount of past

information required to completely determine the mapping from future input to future output,

where the notions of the past and the future are defined as follows: Let T = Z × Z denote the

1Let u and v be input-strings and ∗ denote the concatenation. Then the inputs u and v are said to be equivalent
in the sense of Nerode, denoted by u ∼ v, if u and v are concatenated with the same arbitrary input-string w
and the resulting outputs are the same regardless the value of w. More precisely, let f be an input/output map
f : U 7→ Y. Then for all u, v ∈ U ,

u ∼ v if and only if f(u ∗ w) = f(v ∗ w) ∀w ∈ U .
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grid (integer lattice) for 2D linear system equipped with the partial ordering of integer:

• (i, j) ≥ (h, k) if and only if i ≥ h and j ≥ k,

• (i, j) = (h, k) if and only if i = h and j = k,

• (i, j) > (h, k) if and only if (i, j) ≥ (h, k) and (i, j) 6= (h, k).

Then for any t ∈ T , the time τ is said to be the past with respect to t if τ is not ≥ t; the time τ

is said to be the future with respect to t if τ > t. Thus, for 2D systems, this Nerode state-space

is usually infinite dimensional. This was the motivation for E. Fornasini and G. Marchesini to

introduce the idea of “local state” which is distinguishable from the “global state” (or, Nerode

state), and this observation is the major difference between 1D and 2D systems. The local

state contains information that will only be used to compute any state of interest at each

step of recursions, and hence one can achieve system realizations with finite dimensional local

state; while the global state (or Nerode state) at each time (h, k) provides all past information.

Generally, the global state is of infinite dimension (see [FM76, KLMK77]).

       (h,k)


(h',k')


Figure 3.3: Two-dimensional time diagram

For any point (h′, k′) ≥ (h, k), a local state x(h′, k′) depends not only on the state x(h, k)

but also on local states x(h+1, k), . . . , x(h′, k) and x(h, k+1), . . . , x(h, k′) as shown in Figure 3.3.

Since (h′, k′) is an arbitrary point on the 2-dimensional state space, it is of interest to introduce

the concept of a global state space as follows: The global state space, XGlo, is a 2D state space

consisting of all local state spaces on the horizontal and vertical axes.

In particular, if h′ = h+ 1 and k′ = k + 1, then the local state x(h′, k′) can be written by

the updating equations:

x(h′, k′) = x(h+ 1, k + 1) = A0x(h, k) +A1x(h, k + 1) +A2x(h+ 1, k) +Bu(h, k) (3.48)

y(h, k) = Cx(h, k) (3.49)

together with the initial conditions x(0, 0) and the boundary conditions

X(0) , {x(0, j), x(i, 0) | 1 ≤ i ≤M, 1 ≤ j ≤ N for some M,N > 1} (3.50)
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It is clear from (3.48) that the state x(h+1, k+1) depends on the state x(h, k) and hence

it is not the first-order difference equation. Consequently, one can define a new state η as:

η(h, k) = x(h, k + 1)−A2x(h, k)

Then,

η(h+ 1, k) = x(h+ 1, k + 1)−A2x(h+ 1, k)

= A0x(h, k) +A1x(h, k + 1) +Bu(h, k)

= A0x(h, k) +A1 [η(h, k) +A2x(h, k)] +Bu(h, k)

= A1η(h, k) + [A0 +A1A2]x(h, k) +Bu(h, k) (3.51)

Hence,

[
η(h+ 1, k)

x(h, k + 1)

]
=

[
A1 A0 +A1A2

I A2

][
η(h, k)

x(h, k)

]
+

[
B

0

]
u(h, k)

y(h, k) =
[
0 C

] [η(h, k)
x(h, k)

]
(3.52)

which is identical to the gr model, where xh = η and xv = x.

Since the results in the papers of Givone-Roesser [GR72, GR73], Roesser [Roe75], and

Fornasini-Marchesini [FM76, FM77] were not complete, Kung et al. [KLMK77] extended the

results in the aforementioned references, provided a comparison between fm and gr models,

and also constructed a hardware realization (circuit point of view). The authors in [KLMK77]

believed that the gr model was the most satisfactory from the practical viewpoint and yielded

the most general results since the model proposed by Fornasini-Marchesini as in (3.48) can be

embedded in the gr model.

The authors in [KLMK77] also asserted that Fornasini and Marchesini failed to fully exploit

the structure of the global state and its relation to the local state, so that the state-space model

they introduced was unsatisfactory in the sense that what they introduced as the state is really

only a partial state, which can be clearly observed from (3.52). More precisely, the state x(h, k)

is a partial state; while the full state is

[
η(h, k)

x(h, k)

]
.

In 1978, one year after [KLMK77] was published, Fornasini and Marchesini proposed a new

state-space representation which is the first-order difference equation and defined as follows:

x(h+ 1, k + 1) = A1x(h, k + 1) +A2x(h+ 1, k) +B1u(h, k + 1) +B2u(h+ 1, k) (3.53)

y(h, k) = Cx(h, k). (3.54)
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We shall call this representation a Fornasini-Marchesini ( fm) model. According to this

representation, the authors in [FM78] showed that the models defined by Attasi [Att73], Givone-

Roesser [GR72, GR73], and Fornasini-Marchesini [FM76, FM77] can be embedded in the form

of (3.53). They also noted that in the gr model the local state is the direct sum of the horizontal

and vertical states, so that the embedding does not require any increasing of dimension. On the

other hand, embedding the fm model (3.53) into the gr model (3.30) cannot be accomplished

in general without increasing the dimension of the state space.

Example 4. Consider the scalar transfer function 2z1+z2
1−z1−2z2

. It is obvious that a state-space

realization of the given function in the fm model is

x(h+ 1, k + 1) = x(h, k + 1) + 2x(h+ 1, k) + 2u(h, k + 1) + u(h+ 1, k), y(h, k) = x(h, k).

However, to obtain a realization in the gr formalism, the dimension of the state-space must be

at least two for this case. Note that one gr realization could be

x1(h+ 1, k) = x1(h, k) + x2(h, k) + 2u(h, k)

x2(h, k + 1) = 2x1(h, k) + 2x2(h, k) + u(h, k)

y(h, k) = x1(h, k) + x2(h, k),

which is obvious that the dimension of the state-space is equal to 2. ♦

Remark 6. Due to the fact that the local state space X in the gr model is split into the

horizontal and vertical components, this implies that the structure of the updating equations

is not invariant under similarity transformations in X. To see this, let S be the structured

similarity transformation defined by

[
x̃h

x̃v

]
=

[
Sh 0

0 Sv

]

︸ ︷︷ ︸
S

[
xh

xv

]
. (3.55)

Then, if B̃ = SB, Ã = SAS−1, and C̃ = CS−1,

C̃(I − Zd(z)Ã)−1Zd(z)B̃ = C(I − Zd(z)A)−1Zd(z)B (3.56)

so that the transfer function is invariant; while this would not be the case for a general similarity

transformation

S =

[
S1 S2

S3 S4

]
.

However, the state space model (3.53)–(3.54) is invariant under such a transformation. N
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The generalized version of the system described above is the so-called d-D Fornasini-

Marchesini system, or fm system for short, which is given by:

ΣFM ,




x(n) =

∑d
k=1A

FM
k x(n− ek) +

∑d
k=1B

FM
k u(n− ek)

y(n) = CFMx(n) +DFMu(n)
(3.57)

where ek denotes the standard basis in Cd.

The connecting operator UFM associated with this system is of the form

UFM ,

[
AFM BFM

CFM DFM

]
=




AFM
1 BFM

1
...

...

AFM
d BFM

d

CFM DFM



:

[
H
U

]
→
[⊕d

1H
Y

]
. (3.58)

Next we shall seek an adjoint system Σ∗FM so that trajectories (u∗, x∗, y∗) of Σ∗FM are

characterized as those (U∗×H×Y∗)-valued functions on Zd satisfying the adjoint pairing relation:

∑

n:|n|=s+1

〈x(n), x∗(n)〉+
∑

n:|n|=s

〈y(n), u∗(n)〉 =
∑

n:|n|=s

〈x(n), x∗(n)〉+
∑

n:|n|=s

〈u(n), y∗(n)〉 (3.59)

By substituting the expression of x(n) from the system equations (3.57), the left hand side of

(3.59) can be expressed as

∑

n:|n|=s+1

〈x(n), x∗(n)〉+
∑

n:|n|=s

〈y(n), u∗(n)〉

=
∑

n:|n|=s+1

d∑

k=1

〈
AFM
k x(n− ek) +BFM

k u(n− ek), x∗(n)
〉
+
∑

n:|n|=s

〈
CFMx(n) +DFMu(n), u∗(n)

〉

=
∑

n:|n|=s

d∑

k=1

〈
AFM
k x(n) +BFM

k u(n), x∗(n+ ek)
〉
+
∑

n:|n|=s

〈
CFMx(n) +DFMu(n), u∗(n)

〉

=
∑

n:|n|=s

〈
x(n),

d∑

k=1

(AFM
k )∗x∗(n+ ek)

〉
+
∑

n:|n|=s

〈
u(n),

d∑

k=1

(BFM
k )∗x∗(n+ ek)

〉

+
∑

n:|n|=s

〈
x(n), (CFM )∗u∗(n)

〉
+
∑

n:|n|=s

〈
u(n), (DFM )∗u∗(n)

〉

=
∑

n:|n|=s

〈
x(n),

d∑

k=1

(AFM
k )∗x∗(n+ ek) + (CFM )∗u∗(n)

〉

+
∑

n:|n|=s

〈
u(n),

d∑

k=1

(BFM
k )∗x∗(n+ ek) + (DFM )∗u∗(n)

〉
. (3.60)
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Thus, from the above expression together with (3.59), we can deduce that the adjoint system

Σ∗FM is given by

Σ∗FM ,




x∗(n) =

∑d
k=1(A

FM
k )∗x∗(n+ ek) + (CFM )∗u∗(n)

y∗(n) =
∑d

k=1(B
FM
k )∗x∗(n+ ek) + (DFM )∗u∗(n).

(3.61)

The fm system ΣFM is said to be conservative provided that a (U ,H,Y)-valued function (u, x, y)

is a trajectory of the fm system if and only if (y, x, u) is a trajectory of the adjoint system Σ∗FM .

Ball-Sadosky-Vinnikov [BSV] showed that a necessary and sufficient condition so that the fm

system ΣGR is conservative is that

UFM is an isometry, (i.e. (UFM )∗UFM = I), and UFM (UFM )∗ =




x1
. . .

xd

I




(3.62)

subject to the additional side conditions

d∑

k=1

xk = I,

[
(AFM

i )∗

(BFM
i )∗

] [
AFM
j BFM

j

]
=

[
0 0

0 0

]
for i 6= j. (3.63)

If the conditions (3.62) and (3.63) are satisfied, then we shall call ΣFM a conservative fm system

and UFM a unitary fm colligation. If we set (u, x, y) which is a trajectory of the original system

to be equal to (y, x, u) which is a trajectory of the adjoint system (i.e., set (u∗, x∗, y∗) = (y, x, u)),

then the adjoint pairing (3.59) collapses to the energy balance relation:

∑

n:|n|=s+1

‖x(n)‖2 +
∑

n:|n|=s

‖y(n)‖2 =
∑

n:|n|=s

‖x(n)‖2 +
∑

n:|n|=s

‖u(n)‖2 for ΣFM (3.64)

∑

n:|n|=s+1

‖x∗(n)‖2 +
∑

n:|n|=s

‖u∗(n)‖2 =
∑

n:|n|=s

‖x∗(n)‖2 +
∑

n:|n|=s

‖y∗(n)‖2 for Σ∗FM (3.65)

For the frequency domain analysis, let Ω = {n ∈ Zd : |n| ,∑d
k=1 nk ≥ 0} and we have

{x(n− ek)}n∈Ω 7→ x∧Ω(z) =
∑

n∈Ω

x(n− ek)z
n = zk


x∧Ω(z) +

∑

n:|n|=−1

x(n)zn


 (3.66)

and {u(n− ek)}n∈Ω 7→ u∧Ω(z) =
∑

n∈Ω

u(n− ek)z
n = zk


u∧Ω(z) +

∑

n:|n|=−1

u(n)zn


 . (3.67)
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Then, the application of the Z-transform to the system equations (3.57) yields,

x∧Ω(z) =

d∑

k=1

zkA
FM
k


x∧Ω(z) +

∑

n:|n|=−1

x(n)zn


+

d∑

k=1

zkB
FM
k


u∧Ω(z) +

∑

n:|n|=−1

u(n)zn




= Zr(z)A
FMx∧Ω(z) + Zr(z)B

FMu∧Ω(z)

+
∑

n:|n|=−1

d∑

k=1

zkA
FM
k x(n)zn +

∑

n:|n|=−1

d∑

k=1

zkB
FM
k u(n)zn (3.68)

where Zr(z) ,
[
z1IH · · · zdIH

]
. If we assume now that the system has zero initial condition

x(z) = 0 for n ∈ Ω0 , {n ∈ Zd : |n| = 0}, then from (3.57), we have

0 =
∑

n:|n|=0

x(n)zn =
∑

n:|n|=0

[
d∑

k=1

AFM
k x(n− ek) +

d∑

k=1

BFM
k u(n− ek)

]
zn

=
∑

n:|n|=−1

[
d∑

k=1

zkA
FM
k x(n)zn +

d∑

k=1

zkB
FM
k u(n)zn

]
. (3.69)

Thus (3.68) collapses to

x∧Ω(z) = Zr(z)A
FMx∧Ω(z) + Zr(z)B

FMu∧Ω(z).

Application of the Z-transform to the output equation of (3.57) and substitution x∧Ω from the

above expression, we get

y∧Ω(z) =
[
CFM (I − Zr(z)AFM )−1Zr(z)B

FM +DFM
]
· u∧Ω(z)

, TΣFM (z) · u∧Ω(z) (3.70)

where TΣFM (z) is called the Fornasini-Marchesini ( fm) transfer function.

3.5 Identification between GR and FM Models

In this Section, we investigate the relationship between the gr and the fm models, and also

provide proper conditions such that both models become equivalent in the sense that one model

can be embedded into the other and vice versa without increasing the dimension of the state-

space. In fact, embedding the gr model into the fm model naturally preserves the dimension

of the state-space since each local state in the gr model is the direct sum of d orthogonal

components. On the other hand, embedding the fm model into the gr model in general cannot

be accomplished without increasing the dimension of the state-space due to the fact that the



Tanit Malakorn Chapter 3. Multidimensional Linear Models 48

state-space must be decomposed into d subspaces which may or may not overlap (see, e.g. [GaÃl01,

MA98, Kac93] and the references therein). We shall show that under certain assumptions,

embedding the fm model into the gr model can preserve the dimension of the state-space and

hence, both models are equivalent.

3.5.1 Embedding Givone-Roesser into Fornasini-Marchesini

For simplicity, let us first consider the 2D gr model which is given by

ΣGR =






x1(n1 + 1, n2)

x2(n1, n2 + 1)


 =


A

GR
11 AGR

12

AGR
21 AGR

22




x1(n1, n2)
x2(n1, n2)


+


B

GR
1

BGR
2


u(n1, n2)

y(n1, n2) =
[
CGR
1 CGR

2

]

x1(n1, n2)
x2(n1, n2)


+DGRu(n1, n2).

(3.71)

We can write the state equation in (3.71) as

[
x1(n1, n2)

x2(n1, n2)

]
=

[
AGR
11 AGR

12

0 0

][
x1(n1 − 1, n2)

x2(n1 − 1, n2)

]
+

[
0 0

AGR
21 AGR

22

][
x1(n1, n2 − 1)

x2(n1, n2 − 1)

]

+

[
BGR
1

0

]
u(n1 − 1, n2) +

[
0

BGR
2

]
u(n1, n2 − 1), (3.72)

or equivalently,

[
x1(n1, n2)

0

]
+

[
0

x2(n1, n2)

]
=

[
AGR
11 AGR

12

0 0

]{[
x1(n1 − 1, n2)

0

]
+

[
0

x2(n1 − 1, n2)

]}

+

[
0 0

AGR
21 AGR

22

]{[
x1(n1, n2 − 1)

0

]
+

[
0

x2(n1, n2 − 1)

]}

+

[
BGR
1

0

]
u(n1 − 1, n2) +

[
0

BGR
2

]
u(n1, n2 − 1). (3.73)

By setting x(n1, n2) ,

[
x1(n1, n2)

x2(n1, n2)

]
=

[
x1(n1, n2)

0

]
+

[
0

x2(n1, n2)

]
, and

AFM
1 =

[
AGR
11 AGR

12

0 0

]
, AFM

2 =

[
0 0

AGR
21 AGR

22

]
, BFM

1 =

[
BGR
1

0

]
, BFM

2 =

[
0

BGR
2

]
,

CFM = CGR =
[
CGR
1 CGR

2

]
, DFM = DGR,
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we get

x(n1, n2) = AFM
1 x(n1 − 1, n2) +AFM

2 x(n1, n2 − 1) +BFM
1 u(n1 − 1, n2) +BFM

2 u(n1, n2 − 1)

y(n1, n2) = CFMx(n1, n2) +DFMu(n1, n2) (3.74)

which is exactly the 2D fm model.

It should be noted that the system equation written in the form of (3.73) is much more

convenient to generalize to the d-D case than the original one in (3.71). Mathematically, there

are two linear operators involved in the transformation from the state equation (3.71) into (3.73),

namely

• the orthogonal projection Pk : H =
⊕d

i=1Hi 7→ Hk with image equal to Hk,

• the inclusion map ιk : Hk 7→ H =
⊕d

i=1Hi.

For instance, suppose

A =

[
A11 A12

A21 A22

]
: H 7→ H, where H =

[
H1

H2

]
.

Then,

P1A =
[
A11 A12

]
: H 7→ H1, and ι1P1A =

[
A11 A12

0 0

]
: H 7→ H,

likewise, P2A =
[
A21 A22

]
: H 7→ H2, and ι2P2A =

[
0 0

A21 A22

]
: H 7→ H.

By using these operators, we can write (3.73) in a more compact form as

ι1x1(n1, n2) + ι2x2(n1, n2) = ι1P1A
GR{ι1x1(n1 − 1, n2) + ι2x2(n1 − 1, n2)}

+ ι2P2A
GR{ι1x1(n1, n2 − 1) + ι2x2(n1, n2 − 1)}

+ ι1P1B
GRu(n1 − 1, n2) + ι2P2B

GRu(n1, n2 − 1) (3.75)

Now let x(·) = ∑2
k=1 ιkxk(·), and AFM

k = ιkPkA
GR, BFM

k = ιkPkB
GR, k = 1, 2, and hence we

obtain the same result as in (3.74).

Now we are ready to generalize this idea to the d-D case. Recall that the operator colligation
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of the d-D gr model is given by

UGR ,

[
AGR BGR

CGR DGR

]
=




AGR
1,1 · · · AGR

1,d BGR
1

...
. . .

...
...

AGR
d,1 · · · AGR

d,d BGR
d

CGR
1 · · · CGR

d DGR



:

[⊕d
i=1Hi

U

]
→
[⊕d

i=1Hi

Y

]
, (3.76)

and the associated d-D gr system is




x1(n+ e1)
...

xd(n+ ed)


 =




AGR
1,1 · · · AGR

1,d
...

. . .
...

AGR
d,1 · · · AGR

d,d







x1(n)
...

xd(n)


+




BGR
1
...

BGR
d


u(n) (3.77)

y(n) =
[
CGR
1 · · · CGR

d

]



x1(n)
...

xd(n)


+DGRu(n). (3.78)

Let Pk and ιk, respectively be the orthogonal projection and the inclusion map as defined above.

Thus we can rewrite the state equation (3.77) as

d∑

k=1

ιkxk(n) =

d∑

k=1

ιkPkA
GR





d∑

j=1

ιjxj(n− ek)



+

d∑

k=1

ιkPkB
GRu(n− ek) (3.79)

Let us now set

AFM
k = ιkPkA

GR, BFM
k = ιkPkB

GR for k = 1, . . . , d

CFM = CGR, DFM = DGR, (3.80)

and define x(·) =∑d
k=1 ιkxk(·). Then the state equation (3.77) and the output equation (3.78)

of the d-D gr model (3.77) can be rewritten in the d-D fm formalism as

x(n) =
d∑

k=1

AFM
k x(n− ek) +

d∑

k=1

BFM
k u(n− ek)

y(n) = CFMx(n) +DFMu(n).
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3.5.2 Embedding Fornasini-Marchesini into Givone-Roesser

The d-D fm system is described by

x(n) =

d∑

k=1

AFM
k x(n− ek) +

d∑

k=1

BFM
k u(n− ek) (3.81)

y(n) = CFMx(n) +DFMu(n) (3.82)

together with the associated connecting operator

UFM ,

[
AFM BFM

CFM DFM

]
=




AFM
1 BFM

1
...

...

AFM
d BFM

d

CFM DFM



:

[
H
U

]
→
[⊕d

1H
Y

]
. (3.83)

It is of interest to write the state equation (3.81) as

x(n) =
d∑

k=1

[
AFM
k x(n− ek) +BFM

k u(n− ek)
]
,

d∑

k=1

xk(n). (3.84)

In order to embed this model into the d-D gr formalism, we need to construct the Hilbert spaces

Hk for k = 1, . . . , d, such that the direct sum (not necessarily orthogonal) ud
k=1Hk = H. To do

so, let us assume that

im
[
AFM
j BFM

j

]
∩ im

[
AFM
k BFM

k

]
= {0} k 6= j, (3.85)

and define Hk so that im
[
AFM
k BFM

k

]
⊂ Hk. Then set

AGR
i,j = PiA

FM
i

∣∣
Hj

: Hj 7→ Hi, BGR
i = PiB

FM
i : U 7→ Hi,

CGR
j = CFM

∣∣
Hj

: Hj 7→ Y, DGR = DFM : U 7→ Y.

Thus, for each k = 1, . . . , d,

xk(n) = Pkx(n) = Pk

d∑

`=1

[
AFM
` x(n− e`) +BFM

` u(n− e`)
]

= PkA
FM
k x(n− ek) + PkB

FM
k u(n− ek)

=
d∑

j=1

PkA
FM
k

∣∣
Hj
xj(n− ek) + PkB

FM
k u(n− ek)
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=

d∑

j=1

AGR
k,j xj(n− ek) +BGR

k u(n− ek)

which is equivalent to

xk(n+ ek) =
d∑

j=1

AGR
k,j xj(n) +BGR

k u(n). (3.86)

Likewise, for the output equation (3.82), we have

y(n) = CFMx(n) +DFMu(n)

=

d∑

j=1

CFM
∣∣
Hj
xj(n) +DFMu(n)

=
d∑

j=1

CGR
j xj(n) +DGRu(n). (3.87)

Hence, (3.86) together with (3.87) form the d-D gr model as required.

For instance, let us consider the 2D fm model of the form

x(n1, n2) = x1(n1, n2) + x2(n1, n2) (3.88)

y(n1, n2) =
[
C1 C2

]
x(n1, n2) +Du(n1, n2) (3.89)

where

x1(n1, n2) =

[
A11 A12

0 0

]
x(n1 − 1, n2) +

[
B1

0

]
u(n1 − 1, n2) ∈ im

[
AFM
1 BFM

1

]
⊂ H1

x2(n1, n2) =

[
0 0

A21 A22

]
x(n1, n2 − 1) +

[
0

B2

]
u(n1, n2 − 1) ∈ im

[
AFM
2 BFM

2

]
⊂ H2.

Thus,

P1x(n1, n2) = P1 [x1(n1, n2) + x2(n1, n2)] = P1x1(n1, n2) = x1(n1, n2)

= P1

([
A11 A12

0 0

]
x(n1 − 1, n2) +

[
B1

0

]
u(n1 − 1, n2)

)

=
[
A11 A12

]
x(n1 − 1, n2) +B1u(n1 − 1, n2)

=
[
A11 A12

]∣∣∣
H1
x1(n1 − 1, n2) +

[
A11 A12

]∣∣∣
H2
x2(n1 − 1, n2) +B1u(n1 − 1, n2)

= A11x1(n1 − 1, n2) +A12x2(n1 − 1, n2) +B1u(n1 − 1, n2).
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Likewise,

P2x(n1, n2) = x2(n1, n2)

= A21x1(n1, n2 − 1) +A22x2(n1, n2 − 1) +B2u(n1, n2 − 1).

And the output y(n1, n2) is

y(n1, n2) =
[
C1 C2

]∣∣∣
H1
x1(n1, n2) +

[
C1 C2

]∣∣∣
H2
x2(n1, n2) +Du(n1, n2)

= C1x1(n1, n2) + C2x2(n1, n2) +Du(n1, n2).

Remark 7. Ball-Sadosky-Vinnikov [BSV] considered the gr and the fm models in the conser-

vative case, and hence the conditions (3.85) are automatically achieved since the conditions such

that the fm is conservative (see page 46) are stronger than the conditions (3.85). N

Before we end this section, let us consider Example 4 on page 44 for the moment. Recall

that a 2D fm realization for the given transfer function is

x(h+ 1, k + 1) = x(h, k + 1) + 2x(h+ 1, k) + 2u(h, k + 1) + u(h+ 1, k), y(h, k) = x(h, k),

i.e., A1 = 1, A2 = 2, B1 = 2, and B2 = 1. Thus,

im
[
A1 B1

]
= im

[
1 2

]
= {x1 ∈ H1 | x+ 2u = x1, ∀x ∈ H, u ∈ U}

im
[
A2 B2

]
= im

[
2 1

]
= {x2 ∈ H2 | 2x+ u = x2, ∀x ∈ H, u ∈ U}

In particular, for x = 1, u = 1, we have x1 = x2 = 3 which contradicts the condition (3.85) and

this explains why the dimension of the state-space cannot be preserved when embedding this

system into the gr model.

3.6 Conclusion

The purpose of this Chapter is to discuss chronologically the development of the state-space

models (the Givone-Roesser (gr) and the Fornasini-Marchesini (fm) formalisms) including the

advantage and disadvantage of each model. We generalize the original 2D systems to the d-D

systems where d ≥ 2, and establish the certain conditions to identify the models with each other.

It is obvious that the gr model can be naturally embedded into the fm model. On the other

hand, embedding the fm model into the gr model in general can not be accomplished without

increasing the dimension of the state-space.

The time domain analysis and design such as stability, controllability, reachability, observ-
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ability, similarity, observer design, output feedback, deadbeat control and H∞ control in the

state-space coordinate has been done by various researchers and is beyond the scope of this

dissertation. For further references, readers should refer to, e.g. [Bos85, DX02, Kac85, LA92,

Tza86, Zer00] and references therein.



Chapter 4

H
∞ Control, Model Matching and

Interpolation Theory

In the case of classical 1D linear systems, the H∞ control problems can be solved via either

state-space analysis in the time domain, or interpolation theory in the frequency domain. The

question considered here is whether or not these two approaches can be extended to the case

of d-D systems and the answer is “Yes”. The H∞ control and filtering problems for 2D linear

systems have already been solved (not completely satisfactorily) via an extended bounded real

lemma for 2D systems in [DX02, DXZ01]. However, to the best of our knowledge, theH∞ control

problems in the frequency domain setting have been attacked for the first time in [BM, BM02]

for the output feedback d-D linear systems (d ≥ 2). This Chapter is an expanded version of

the two papers mentioned above. The main goal here is to examine the connection between

H∞ control, model matching, and multivariable Nevanlinna-Pick interpolation problems for

multidimensional d-D linear systems.

4.1 Introduction

Feedback stabilization and optimal control problems for the case of classical linear systems have

been much studied over the past several decades. More recently, such problems for the case of

multidimensional or d-D linear systems (d > 1) have been drawing the attention of researchers—

see e.g., [Bos85, DX99, DXZ01, Lin00, SS92, Sul94, Tza86] and [Zer00], and the references

therein. While most of these authors are motivated by applications to physical situations having

d-D system models, Helton [Hel01] has pointed out a connection with adaptive control for a

classical 1D system. After D. Givone-R. Roesser [GR72], E. Fornasini-G. Marchesini [FM78]

and some other researchers proposed various types of multidimensional linear models in the

seventies, most mathematicians and system engineers have been focusing on the development

55
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and extension of the existence theories for classical linear systems to the case of d-D systems.

New theories and notions, all of which are more generalized and complicated than those in the

classical case, have been introduced to describe the behavior of d-D systems.

After the H∞ control theory was first introduced in the control community in the 1980’s, it

has been continually studied and progressively developed by mathematicians and system engi-

neers, and effectively applied to various applications, although it is difficult to fully understand

due to its intricate mathematical structure. Based on the fact that the H∞ control theory

involves the classical design methodology and the state-space analysis, it was said to be the

first successful theory to diminish the gap between the classical control design and state-space

theory. In addition, due to the remarkable structure of the H∞ control design, the number of

publications in the H∞ control theory and its applications has been increasing considerably.

It is well known that for linear time-invariant 1D systems there are mainly two approaches to

solve the H∞ control problems: frequency-domain/interpolation theory, and time-domain/state-

space analysis. In the early days of the H∞ control, the frequency-domain/interpolation theory

approach combined with implementation in terms of state-space coordinates had prominence.

In this approach (see[Fra87]), one goes through coprime factorization to get the Q-parameter;

with Q as the new design parameter rather than the controller K, one has a model matching

problem. Let F be the performance function, which is affine in Q. Then, with the performance

function F as the design parameter rather than Q, one has an interpolation problem for F .

One then solves an interpolation problem to get F , and then backsolves for Q and finally for

K, a desired controller. A criterion for internal stability can be expressed directly in terms

of F : K is internally stabilizing for the closed loop system whenever F is stable and satisfies

the appropriate interpolation conditions. Incorporation of a tolerance level on the performance

function then leads to an interpolation problem of Nevanlinna-Pick type.

After the appearance of the seminal paper of Doyle et al. [DGKF89], however, the time-

domain/state-space formulation has been the dominant approach. More recent refinements (see

e.g., [PAJ91]) use the bounded real lemma as a tool for deriving the relevant coupled algebraic

Riccati equations, which in turn can be expressed in an elegant form as a convex optimization

problem in the form of a system of the so-called Linear Matrix Inequalities or lmis for which

available software exists to give a solution (see e.g., [BGFB94, GN00] and references therein).

Various authors have now extended both of these approaches to the case of d-D systems.

The work of Du-Xie and Du-Xie-Zhang [DX99, DX02, DXZ01] uses a bounded real lemma for

2D systems to derive various systems of lmis, the solutions of which lead to solutions of various

2D robust control and filtering problems; however, it is known that the 2D bounded real lemma

gives only a sufficient (and not necessary) condition for a system to be bounded real, so one can

expect the solutions based on this approach in general to be conservative, although they may

well be satisfactory for some special examples.
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The frequency-domain approach to the H∞ control problem as described above is much

more complicated for the d-D case for a number of reasons. First of all, the reduction to the

model matching form is not obvious since the notion of coprime factorization splits in several

independent ways in the d-D case (see [YG79]); a fundamental difference in the multivariable

case is that factor coprime irreducible polynomials can have common zeros. Secondly, the

multivariable analogue of Nevanlinna-Pick interpolation is much more complicated. By using

the various notions of coprime in the d-D case, the matrix fraction description (mfd) approach

for d-D linear systems and its connection with the properties of d-D polynomial and rational

matrices were investigated by Z. Lin [Lin88]. He proved that, for the d-D case, the rational

matrix function P (z), where z = (z1, . . . , zd), does not always admit a minor right coprime

decomposition. From this fact, he was able to produce a counterexample to illustrate that

the determinant test for internal stability of 2D systems due to Humes-Jury [HJ77] may not

be extended to the d-D case when P (z) does not admit a minor right coprime decomposition.

Therefore, he introduced the notion of generating polynomials (later renamed as reduced minors)

and applied it to the stability test for d-D systems. The notion of reduced minors was introduced

in connection with the feedback stabilization problem for d-D systems in [Lin98], [Lin99], and

[Lin00]. However, in those papers, Lin studied the (output) feedback stabilization problem,

which is the special case of the standard H∞ control framework (see [Fra87]), and obtained an

analogue of the famous Youla parametrization of the set of all stabilizing controllers. In his

work, Lin did not take the next step of seeking to find a stabilizing controller which optimizes

some performance function, i.e. the H∞ control problem.

This Chapter uses the results of Lin to establish the connection between feedback stabiliza-

tion and interpolation conditions for d-D linear systems for the case where the plant P admits

a double coprime factorization (see Definition 21) in the so-called 1-block case. When one goes

on to demand performance in addition to internal stability as a design goal, there results an

d-D matrix Nevanlinna-Pick interpolation problem. We apply recent work on Nevanlinna-Pick

interpolation on the polydisk (see [Agl87, AM, AM02, BB, BT98]) to obtain a solution of the

problem for the 2D case–the work in [BB] actually applies to more general types of domains than

Dd but this does not concern us here. The same analysis applies in the d-D case (d > 2), but

leads to solutions which are contractive in a norm (the “Schur-Agler norm”) somewhat stronger

than the H∞ norm. We also present a solution based on the polydisk Commutant Lifting The-

orem from [BLTT99]. It remains to determine how to streamline or short circuit the various

steps in the solution procedure; this is discussed in the final section, where solution procedure is

summarized. This connection between d-D matrix Nevanlinna-Pick interpolation and feedback

stabilization with performance goal for d-D plants has previously been pointed out by Helton

[Hel01] for the scalar case. Given that the sufficient conditions of Lin for the existence of a

double coprime factorization of the original plant P are satisfied, our analysis, unlike the work
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of Du-Xie, is necessary and sufficient. When d > 2, our conditions, necessary and sufficient for

performance in the Schur-Agler norm, are still sufficient (for performance with respect to the

usual H∞-norm).

This Chapter is organized as follows: Notation and some basic facts that will be used

throughout this Chapter, the output feedback stabilization problem together with the set of

solutions parametrized by the Youla parameter, say Q, and the connection between the closed

loop transfer function and the model matching formalism are all established in Section 4.2. In

Section 4.3, the interpolation theory for the d-D linear systems is developed and provides the

interpolation conditions such that the model matching and the interpolation problems are equiv-

alent. Then, Section 4.4 devotes to the Nevanlinna-Pick interpolation problem on the polydisk

which establishes a close connection with the H∞ control problem, followed by the application

of the so-called commutant lifting theorem to the model matching problem in Section 4.5. The

solution procedure for solving the H∞ control problem is summarized in the last Section.

4.2 Preliminaries

In the following, we shall let R denote the field of real numbers; R[z] = R[z1, . . . , zd] the

polynomial ring over R in d-indeterminants (z1, . . . , zd), all of which are complex variables;

R(z) = R(z1, . . . , zd), the field of rational functions which is equal to the quotient field of

R[z]; Rs(z) ⊆ R(z) the subset of rational functions in R(z) having no poles in the closed unit

polydisk, defined as

Dd =
{
(z1, . . . , zd) ∈ Cd : |z1| ≤ 1, . . . , |zd| ≤ 1

}
.

Rm×l(z) the set of m × l matrices with entries in R(z) (i.e., entries are rational functions);

Rm×l
s (z) the set of m × l matrices with entries in Rs(z) (i.e., entries are stable real rational

functions). The d-D polynomial is said to be stable if it has no zeros in Dd.

Plant: G


Controller: K


z


y


w


u


Figure 4.1: The standard H∞ control framework

In the standard H∞ control context (see Fig.4.1), the problem is to design a controller K
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which minimizes the largest energy error signal z over all disturbances w of L2-norm at most 1,

subject to the additional constraint that K stabilizes the system:

min
Kstabilizing

max
‖w ‖2≤1

‖ z ‖2 (4.1)

where the L2-norm of any signal x(t) is regarded as the measure of energy of a vector-valued

signal and defined by

‖x ‖22 =
∫ ∞

0
‖x(t) ‖2 dt (4.2)

Loosely speaking, the goal of the H∞ control problem is to find a stabilizing controller K

so as to minimize the H∞ norm of the desired performance function, say F . In other words,

one needs to construct a controller K so that the closed loop system is internally stable (in the

precise sense given in Definition 18 below) with L2-induced operator-norm equal to at most a

given tolerance level γ > 0.

Controller: K
 Plant: P
+

+
 u
2


e
2


u
1


e
1

+


-


Figure 4.2: The output feedback system

Now consider the (output) feedback system depicted in Fig.4.2, where P (z) and K(z)

denote, respectively the plant and controller in the multidimensional setting. Then the closed

loop transfer matrix function from the input signals, u, to the error signals, e, is given by

Heu =

[
(I + PK)−1 −P (I +KP )−1

K (I + PK)−1 (I +KP )−1

]
(4.3)

The precise notion of internal stability for an output feedback system which we shall use here is

given in the following definition (see [Fra87, Chapter 4] or [Vid85, Chapter 5]).

Definition 18. A given plant P ∈ Rm×l(z) is said to be (output) feedback stabilizable if there

exists a controller K such that the closed loop transfer matrix function Heu in (4.3) is internally

stable; i.e., each entry of Heu has no poles in Dd.

It is well known that in the classical 1D linear system, the plant P (z) always admits the so-

called double coprime factorization, dcf and hence, one can construct a set of stabilizing linear

controllers via the famous Youla parameter, say Q. The goal here is to get an analogous result
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as in the classical 1D linear system; however, the notion of coprimeness in several variables

is not unique. For a simple example, let us consider the case when f1(z1, z2) = z1 − 1 and

f2(z1, z2) = z2−2. Clearly, f1 and f2 have no common factor and hence they are factor coprime;

however, the zero set of f1 is the set such that f1 = 0, i.e. an algebraic curve defined by

Z(f1) = {(z1, z2) ∈ C2 | z1 − 1 = 0}.

Likewise, the zero set of f2 is an algebraic curve defined by

Z(f2) = {(z1, z2) ∈ C2 | z2 − 2 = 0}.

These two curves intersect at the point (1, 2) ∈ C2 and hence, f1 and f2 are not zero coprime.

Morf et al. [MLK77] studied the polynomial matrices and coprimeness for the 2D linear

system, and observed the distinction between 1D and 2D primitive factorization. They proposed

the primitive factorization theorem for two variables and observed that it applied well to 2D

systems. However, this is not the case when d > 2. Youla and Gnani [YG79] showed by

the counterexample that the primitive factorization theorem proposed by Morf et al. does not

generalize to the case of three or more variables. They also provided several definitions of the

coprimeness for polynomial matrices in several variables which all collapse to the classical notion

in the one-variable case. In fact, there are at least three of them commonly used in the system

theory, namely factor coprime, minor coprime and zero coprime.

Definition 19 ([YG79, Lin88]). Let A ∈ Rl×l[z], B ∈ Rm×l[z], and F =

[
A

B

]
∈ R(m+l)×l[z].

Then A and B are said to be:

1. zero right coprime (zrc) if the l × l minors of F (z) have no common zero in Dd ⊂ Cd,

2. minor right coprime (mrc) if the above minors are relatively prime1; i.e., these minors are

factor coprime,

3. factor right coprime (frc) if, in any polynomial decomposition F (z) = F1(z)F2(z), the

l × l matrix F2(z) is a unimodular matrix2.

In a dual manner, A1 ∈ Rm×m[z], and B1 ∈ Rm×l[z] are zero left coprime (zlc) etc., if A>1 and

B>1 are zrc, etc., where A> denotes the transposed matrix of A.

Theorem 4.1 ([YG79]). For d = 1, the three notions of coprimeness (zero, minor, and factor

coprimes) are equivalent; For d = 2, minor and factor coprimes are equivalent, and for d ≥ 3, all

1One or more polynomials are said to be relatively prime provided that their greatest common polynomial
divisor (g.c.d) is a nonzero constant.

2A square matrix F2(z) is said to be unimodular if it is elementary (i.e., detF2(z) = k ∈ R \ {0})
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of them in general are distinct. Always, zero coprime implies minor coprime and minor coprime

implies factor coprime.

For analysis purposes, it is of interest to consider the strongest notion of coprime, namely

the notion of zero coprime, and we also focus on the coprimeness over the ring Rs(z) rather than

coprimeness over the polynomial ring R[z]. Thus, the definition of zero coprime in this case can

be stated as follows:

Definition 20. Let A ∈ Rl×l
s (z), B ∈ Rm×l

s (z), and F =

[
A

B

]
∈ R(m+l)×l

s (z). Then A and B

are said to be zero right coprime over Rs(z) if the l× l minors of F have no common zero in Dd.

The following Proposition establishes the connection between the zero right coprime and

the well-known Bézout equation for multivariable case.

Proposition 4.2. Let A ∈ Rl×l
s (z) and B ∈ Rm×l

s (z). Then A and B are zrc if and only if

there exists a matrix
[
X Y

]
over Rs(z) which solves the Bézout equation

[
X Y

] [A
B

]
= Il (4.4)

Proof. See e.g. [Zer00] for the polynomial case. ¥

Suppose we assume that two stable rational functions are zero coprime, then by Proposi-

tion 4.2 we have the Bézout identity and this leads to the notion of double coprime factorization

(dcf). Thus, from this point on, we shall use coprime instead of zero coprime, unless otherwise

specified.

Definition 21 ([Lin00]). Let P ∈ Rm×l(z) be a proper real rational matrix d-D system. Then

P is said to have a double coprime factorization (dcf) if

1. there exist Dl ∈ Rm×m
s (z), Dr ∈ Rl×l

s (z), and Nr, Nl ∈ Rm×l
s (z);

2. there exist Xl ∈ Rl×l
s (z), Xr ∈ Rm×m

s (z), and Yr, Yl ∈ Rl×m
s (z);

3. Dl, Dr, Xl, and Xr are all nonsingular;

4. P = NrD
−1
r = D−1l Nl and the following Bézout identity holds:

[
Xl Yl

−Nl Dl

][
Dr −Yr
Nr Xr

]
= I(m+l)×(m+l) (4.5)
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To analyze the stability issue, Lin (see [Lin88]) introduced the notion of generating polyno-

mials and applied this notion to the stability test. He showed that, for the multivariable case,

the rational matrix function P (z) does not always admit a minor right coprime decomposition

and from this fact, he constructed a counterexample to illustrate that the determinant test for

internal stability of 2D systems due to Humes-Jury [HJ77] may not be extended to the d-D case

(d > 2) when P (z) does not admit a minor right coprime decomposition.

Since we are dealing with polynomial or rational matrix functions of several variables, the

ordering of the submatrices and minors of a matrix are needed here. Let F ∈ R(m+l)×l[z], and

consider all submatrices Fk ∈ Rl×l[z], k = 1, . . . , β where β ,
(
m+l
l

)
. If submatrix Fk is formed

by selecting rows 1 ≤ k1 < · · · < kl ≤ m + l, we associate Fk with an l-tuple (k1, . . . , kl). This

forms a one-to-one correspondence between all the submatrices Fk of F and the collection of all

strictly increasing l-tuples (k1, . . . , kl), where 1 ≤ k1 < · · · < kl ≤ m+l. Now by enumerating the

above l-tuples (k1, . . . , kl) in the lexicographic order, the submatrices Fk are ordered accordingly.

We shall assume this ordering throughout this Chapter. Now let ak be the l× l minors of F (z)

and always be ordered in the same way as Fk, i.e., ak = detFk, for k = 1, . . . , β.

Definition 22. Let F =
[
A> B>

]>
∈ R(m+l)×l[z] be of normal full rank3, and let a1(z), . . . , aβ(z)

be the l×l minors of the matrix F (z) as described above. Extracting the greatest common divisor

(g.c.d.) g(z) of a1(z), . . . , aβ(z) gives, aj(z) = g(z)bj(z), for j = 1, . . . , β. Then b1(z), . . . , bβ(z)

are called the generating polynomials, (later renamed as reduced minors) of F (z).

Remark 8. It should be noted that the l × l minor a1(z) corresponds to detA(z) due to the

ordering described above. If A and B in Definition 22 are mrc (i.e., all minors have no common

factors), then g(z) = 1, and hence one can take all minors a1(z), . . . , aβ(z) to be the generating

polynomials of F (z). N

Let us consider the following example borrowed from [Lin88].

Example 5. Suppose F is given by

F (z) =




(z2 + 2)(z3 + 2.5) −(z1 + 3)(z3 + 2.5)

−(z3 + 0.5)(z2 + 2)(z3 + 4.5) (z3 + 0.5)2(z1 + 3)(z3 + 4.5)

(z3 + 0.5)(z3 − 0.5) 0

0 (z3 + 0.5)(z3 − 0.5)




3An m× l matrix A(z) is of normal full rank if there exists an r× r minor of A(z) that is not identically zero,
where r = min{m, l}
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Thus, we have

a1(z) = detF1 = (z2 + 2)(z3 + 2.5)(z3 + 4.5)(z1 + 3)(z3 + 0.5)(z3 − 0.5)

a2(z) = detF2 = (z1 + 3)(z3 + 2.5)(z3 + 0.5)(z3 − 0.5)

a3(z) = detF3 = (z2 + 2)(z3 + 2.5)(z3 + 0.5)(z3 − 0.5)

a4(z) = detF4 = −(z3 + 0.5)2(z1 + 3)(z3 + 4.5)(z3 + 0.5)(z3 − 0.5)

a5(z) = detF5 = −(z3 + 0.5)(z2 + 2)(z3 + 4.5)(z3 + 0.5)(z3 − 0.5)

a6(z) = detF6 = (z3 + 0.5)(z3 − 0.5)(z3 + 0.5)(z3 − 0.5)

Obviously, the common factor of all the minors ak’s is g(z) = (z3 + 0.5)(z3 − 0.5), and hence,

the reduced minors are

b1(z) = (z2 + 2)(z3 + 2.5)(z3 + 4.5)(z1 + 3)

b2(z) = (z1 + 3)(z3 + 2.5)

b3(z) = (z2 + 2)(z3 + 2.5)

b4(z) = −(z3 + 0.5)2(z1 + 3)(z3 + 4.5)

b5(z) = −(z3 + 0.5)(z2 + 2)(z3 + 4.5)

b6(z) = (z3 + 0.5)(z3 − 0.5). ♦

Remark 9. Since F (z) is of normal full rank and the order of all its minors ak(z)’s is fixed, the

reduced minors of F (z) are essentially unique up to the multiplication by a nonzero constant.

N

Now we are ready to state a necessary and sufficient condition to verify whether or not a

given system is internally stable via the notion of reduced minor.

Proposition 4.3. A d-D discrete-time system P ∈ Rm×l(z) represented by right matrix fraction

decomposition (or right mfd, for short) as P = NrD
−1
r is internally stable if and only if b1 6= 0

in the polydisk, Dd, where bj are the reduced minors of F =
[
D> N>

]>
.

Application of this Proposition to the stability test is given in the following example.

Example 6. Let P (z) be a rational matrix function in three complex variables z = (z1, z2, z3)

given by

P (z) =

[
z23+z3+0.25

(z2+2)(z3+2.5)
1

(z2+2)(z3+4.5)
z3+0.5

(z1+3)(z3+2.5)
1

(z1+3)(z3+4.5)

]
.

Clearly, P (z) ∈ R3×3
s (z), since P (z) has no poles in D3. Decompose P (z) into a right mfd as
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P = NrD
−1
r , where

Nr(z) =

[
(z3 + 0.5)(z3 − 0.5) 0

0 (z3 + 0.5)(z3 − 0.5)

]
,

Dr(z) =

[
(z2 + 2)(z3 + 2.5) −(z1 + 3)(z3 + 2.5)

−(z3 + 0.5)(z2 + 2)(z3 + 4.5) (z3 + 0.5)2(z1 + 3)(z3 + 4.5)

]

It can be checked that

detDr(z) = (z2 + 2)(z3 + 2.5)(z3 + 4.5)(z1 + 3)(z3 + 0.5)(z3 − 0.5)

which has zeros in the unstable region D3.

However, it is clear from Example 5 that the reduced minor b1(z) has no zeros in the closed

polydisk D3. Therefore, by Proposition 4.3 we conclude that the 3D system P (z) is internally

stable, which agrees with the fact that P (z) has no poles in D3.

Now let us define F =
[
D>r N>r

]>
. Then, from Example 5 we have seen that all minors

of F have common factor, i.e. ak(z) = g(z)bk(z), k = 1, . . . , β, where g(z) = (z3+0.5)(z3− 0.5),

and hence, Nr and Dr are not mrc (see Remark 8); however, Lin was able to show that they

are frc (see [Lin88]). ♦

We observe that the zero set of a polynomial factor in detDr(z) does not necessarily appear

as part of the polar variety of the system P (z). This example shows that the determinant test

for structural stability of 2D systems due to Humes-Jury may not be extended to the general

d-D case when P (z) does not admit a mrc mfd.

Suppose now that a d-D discrete system P = NrD
−1
r ∈ Rm×l(z) is not internally stable

(i.e., b1(z) has a zero in Dd). Then one needs to find a controller K so that the closed loop

system is internally stable. However, not all P ’s are feedback stabilizable even in the scalar case

(unlike in the 1D case). The next theorem provides a necessary and sufficient condition for such

a P to be stabilizable.

Proposition 4.4 ([Lin98]). Let P = NrD
−1
r ∈ Rm×l(z) represent a d-D system which is a

proper rational matrix function, and let b1, . . . , bβ be the reduced minors of F =
[
D> N>

]>
,

with β =
(
m+l
l

)
. Then P is feedback stabilizable if and only if the reduced minors bj of F

(j = 1, . . . , β) have no common zeros in Dd.

The analogue of Proposition 4.4 for the standard H∞ control problem in full generality

(i.e., the d-D version of the so-called standard problem of H∞ control in [Fra87]) does not seem

to be known.

Definition 23 ([Lin98]). A rational function
n(z)

d(z)
with n, d ∈ R[z] is said to be causal if



Tanit Malakorn Chapter 4. H∞ Control, Model Matching and Interpolation 65

d(0) = d(0, . . . , 0) 6= 0. It is called strictly causal if in addition n(0) = 0. A rational matrix

function P ∈ Rm×l(z) is said to be causal if all its entries are causal. It is called strictly causal

if all its entries are strictly causal.

Proposition 4.5 ([Lin98]). If P ∈ Rm×l(z) is causal (strictly causal), there exists a right

mfd P = NrD
−1
r such that detDr(0) 6= 0 (in addition, Nr(0) = 0m×l). On the other hand, if

P = NrD
−1
r ∈ Rm×l(z), and detDr(0) 6= 0, then P is causal. If in addition Nr(0) = 0m×l, then

P is strictly causal.

Suppose that the plant P is feedback stabilizable; i.e., P satisfies the condition given in

Proposition 4.4. Then the following theorem provides a sufficient condition so that P admits

the double coprime factorization, (dcf).

Proposition 4.6 ([Lin00]). Let P ∈ Rm×l(z) represent a causal feedback stabilizable mimo d-D

system. Let P = NrD
−1
r be a right mfd of P (not necessarily coprime), and F =

[
D> N>

]>
∈

R(m+l)×l[z]. If there exists a unimodular matrix U ∈ R(m+l)×(m+l)[z] such that some single

reduced minor of the polynomial matrix F1 = UF is devoid of any zeros in the closed unit

polydisk, Dd, then P has a dcf satisfying the Bézout Identity (4.5).

Corollary 4.7. Suppose P admits a dcf. Then the set of all stabilizing controllers is given by

K = (Xl −QNl)
−1 (Yl +QDl) where det (Xl −QNl) 6= 0 (4.6)

= (DrQ+ Yr) (−NrQ+Xr)
−1 where det (−NrQ+Xr) 6= 0 (4.7)

where Q ∈ Rl×m
s (z)

Proof. For the complete proof, we refer to e.g., [FFGK98, Chapter VII.5]. ¥

According to this parametrization of controllers K, the following lemma establishes the

connection between the closed loop transfer function and the model matching formulation via

the Youla parameter Q.

Corollary 4.8. Consider the transfer matrix function in (4.3). If P is given as in Proposition

4.6 with the set of all feedback stabilizing controllers given by (4.6) or (4.7), then

Heu =

[
(I + PK)−1 −P (I +KP )−1

K (I + PK)−1 (I +KP )−1

]

=

[
XrDl −NrQDl −NrXl +NrQNl

YrDl +DrQDl DrXl −DrQNl

]
(4.8)
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Proof.

(I + PK)−1 =
[
I +D−1l Nl (DrQ+ Yr) (−NrQ+Xr)

−1
]−1

= (−NrQ+Xr)


NlYr +DlXr︸ ︷︷ ︸

= I

+(NlDr −DlNr)︸ ︷︷ ︸
= 0

Q



−1

Dl

= XrDl −NrQDl

(I +KP )−1 =
[
I + (Xl −QNl)

−1 (Yl +QDl)NrD
−1
r

]−1

= Dr


XlDr + YlNr︸ ︷︷ ︸

= I

+Q (DlNr −NlDr)︸ ︷︷ ︸
= 0



−1

(Xl −QNl)

= (DrXl −DrQNl)

−P (I +KP )−1 = −Nr (Xl −QNl) = (−NrXl +NrQNl)

K (I + PK)−1 = (DrQ+ Yr)Dl = (YrDl +DrQDl) ¥

Obviously, each entry in (4.8) is in the form T1 − T2QT3, i.e., in the model matching form.

For example, by letting T1 = XrDl, T2 = Nr, and T3 = Dl, the first entry of the closed loop

transfer matrix function known as the sensitivity function: S , XrDl−NrQDl can be rewritten

as T1 − T2QT3. However, the well-posedness condition (the requirement that the determinants

in (4.6) and (4.7) not vanish identically) imposes the condition that S = XrDl − NrQDl =

(Xr−NrQ)Dl have determinant not vanishing identically. Similarly, the well-posedness condition

forces the (1,2) and (2,2) blocks of (4.8) to have determinants which do not vanish identically.

Note also that Xl, Xr, Yl, Yr, Nl, Nr, Dl and Dr are all stable by construction. Therefore, without

loss of generality, in the next Section, we could assume that all Ti for i = 1, 2, 3 are stable.

Remark 10. In fact, if we let T1 =

[
XrDl −NrXl

YrDl DrXl

]
, T2 =

[
−Nr

Dr

]
and T3 =

[
−Dl Nl

]
, then

the closed loop transfer matrix function Heu in (4.8) is in the model matching formulation. Due

to the fact that Dr and Dl are assumed to be nonsingular (also square), T2 and T3 in this case are

nonsquare. Consequently, this problem is a so-called four-block problem. In the single-variable

case, one may apply spectral factorization to reduce a four-block problem to a one-block Nehari

problem (see e.g. [Fra87, Chapter 8]); however it is known that outer spectral factorization is

in general not possible in the multivariable setting (see e.g. [Rud69]). N
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4.3 Equivalence of Model Matching and Interpolation

In the previous Section, we provide a sufficient condition proven by Lin [Lin00] for the existence

of a dcf of the original plant P (z), and hence we obtain a set of stabilizing controllers. In

addition, at the end of the previous Section, we also show that by using the Youla parameter,

Q, one could rewrite the closed loop transfer matrix function Heu in the model matching form

(4.8). Now let F be the performance function, which is affine in Q. Then the goal of this section

is to construct the interpolation conditions for F, which is a design parameter rather than Q.

Once we solve an interpolation problem to get F , we can backsolve for Q and finally for K, a

desired controller. A criterion for internal stability can be expressed directly in terms of F : A

controller K is internally stabilizing for the closed loop system if and only if the performance

function F is stable and satisfies the appropriate interpolation conditions.

Let us consider the model matching problem in general stated as follows: given stable

rational matrix functions T1, T2, and T3 of compatible sizes, find the stable Q so as to achieve

min
Q
‖T1 − T2QT3 ‖ (4.9)

where the norm is the supremum norm over Dd.

T
1


Q
 T
2
T
3


+


-

z
w


Figure 4.3: The standard model matching framework

Here T1, T2 and T3 are all stable rational matrix function in z = (z1, . . . , zd) of the ap-

propriate sizes, say, T1 ∈ Rl×m
s (z), T2 ∈ Rl×l

s (z), and T3 ∈ Rm×m
s (z). We shall focus on the

so-called 1-block case (see [Fra87]), i.e., we shall assume that T2 and T3 are invertible in Rl×l(z)

and Rm×m(z), respectively with inverses T−12 and T−13 (not necessarily stable) existing and

uniformly bounded on the distinguished boundary Td of the polydisk.

The performance function F is given by

F = T1 − T2QT3, where Q ∈ Rl×m(z) (4.10)

Since T1, T2, T3 are all stable, if Q ∈ Rl×m
s (z) (stable rational matrix function), then F is also

stable. Conversely, if F ∈ Rl×m
s (z), then one can backsolve for Q,

Q = T−12 (T1 − F )T−13 . (4.11)
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Since all quantities on the right hand side of the above expression are bounded on the dis-

tinguished boundary Td, it follows that Q is bounded on Td; by the maximum modulus principle,

it then follows that Q is stable once it is guaranteed that Q is holomorphic on Dd. Since T−12 and

T−13 may or may not be stable, holomorphicity of F on Dd does not guarantee holomorphicity

of Q on Dd in general, unless some additional interpolation conditions are imposed on F (see

Theorem 4.10). Thus we see that stability for the closed loop system is equivalent to stability

of the performance function F together with holomorphicity of the rational matrix function Q

given by (4.11). In case the Model Matching Problem arises from the sensitivity minimization

problem for an output feedback configuration as sketched in the previous Section, then l = m

and we must also impose the well-posedness condition that detF not vanish identically.

In this Section, for convenience, we shall drop the requirement that Q and F be real and

rational; these constraints can always be reincorporated at a later stage. With these relaxations,

from the discussion above we see that the stability question, formulated with the performance

function F taken as the free parameter, reduces to: characterize those (l × m)-matrix valued

functions F (with detF not identically equal to 0) for which

1. F is holomorphic and uniformly bounded on the polydisk Dd, and

2. the function Q given by (4.11) is holomorphic on Dd.

Theorem 4.9. Suppose that we are given an irreducible polynomial g(z) in z = (z1, . . . , zd) and

that ` is a given positive integer. Then a necessary and sufficient condition for a scalar-valued

holomorphic function f on the polydisk Dd to have the form

f(z) = g(z)`ϕ(z); z ∈ Dd (4.12)

for some scalar-valued function ϕ holomorphic on Dd is that f satisfies the interpolation condi-

tions
∂|j|f

∂zj

∣∣∣∣∣
Z(g)

= 0 for |j| = 0, 1, . . . , `− 1. (4.13)

on a generic subset of Z(g).

Proof. Suppose that f is a scalar-valued holomorphic function on Dd with a representation of the

form f(z) = g(z)`ϕ(z) for some scalar-valued function ϕ holomorphic on Dd. Then f |Z(g) = 0.

Also, all partial derivatives of f with respect to all variables z1, . . . , zd of order m are equal to

zero along Z(g) for m = 1, . . . , ` − 1 since each such derivative necessarily contains a factor of

g(z). Hence the interpolation conditions (4.13) hold.

Conversely, assume now that f is holomorphic in Dd and satisfies the interpolation condi-

tions (4.13). Let U
(
z0, δ

)
⊂ Dd be a neighborhood around a point z0 ∈ Dd for small δ > 0.
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Since f is holomorphic in Dd, for any z ∈ U
(
z0, δ

)
, f admits a multivariable power series

representation:

f(z) = f(z1, . . . , zd) =
∞∑

|j|=0

Cj
(
z− z0

)j
(4.14)

where Cj = Cj(z
0) =

1

j!

∂|j|f

∂zj

∣∣∣∣∣
z=z0

, and j! = j1! · · · jd!.

As we shall vary the point z0 in this representation, we shall make the dependence of Cj

on Cj(z
0) explicit. Since any partial derivative of a holomorphic function is again holomorphic,

Cj is also a holomorphic function since f is.

Recall that for any zk ∈ C, z̀k = (z1, . . . , zk−1, zk+1, . . . , zd). By using this notation, the

equation (4.14) may be rewritten as

f(z) = f(z̀k, zk) =
∑

j̀k∈Nd−1
jk∈N

Cj̀k,jk(z̀
0
k, z

0
k)(z̀k − z̀0k)j̀k(zk − z0k)jk . (4.15)

We assume now that z0 =
(
z̀0k, z

0
k

)
∈ Z(g) ∩ U

(
z0, δ

)
is a smooth point of Z(g); i.e., z0 ∈ Z(g)

and
∂g

∂zj
(z0) 6= 0 for at least one j = 1, . . . , d. Since g is an irreducible polynomial by assumption,

the zero variety Z(g) is also an irreducible subvariety (see Lemma 2.8). Without loss of generality

we assume that j = k. Then the Implicit Function Theorem 2.5 implies that there exists

a holomorphic function h defined on U(z̀0k, δ̀k) with h(z̀0k) = z0k so that g(z̀k, zk) = 0 for a

z̀k ∈ U(z̀0k, δ̀k) and zk in a sufficiently small neighborhood of z0k if and only if zk = h(z̀k). This in

turn implies that the Weierstrass polynomial for g at z0 is of degree 1 (see Remark 2 on page 13),

and hence g is irreducible at z0 in the sense that g cannot be factored as g(z) = g1(z)g2(z)

on any neighborhood U(z0, δ′) of z0 with both g1 and g2 holomorphic on U(z0, δ′) and with

g1(z
0) = g2(z

0) = 0 (see Definition 4 on page 13).

Define g̃(z) = g̃(z̀k, zk)=zk−h(z̀k) for z ∈ U
(
z0, δ

)
. Then Z(g̃) =

{
z ∈ U

(
z0, δ

)∣∣ zk = h(z̀k)
}

= Z(g) ∩ U
(
z0, δ

)
. Since, as was mentioned above, g is irreducible at z0, by Lemma 2.7 it fol-

lows that g̃(z) = g(z)ψ(z), where ψ is holomorphic on some neighborhood of z0, without loss of

generality still denoted as U
(
z0, δ

)
.

Since f satisfies the interpolation conditions (4.13), C0̀k,jk
(z̀0k, z

0
k) = 0 for jk = 0, 1, . . . , `−1

for each z0 = (z̀0k, z
0
k) ∈ Z(g). Hence, if we set (z̀0k, z

0
k) = (z̀k, h(z̀k)), then (z̀k − z̀0k)

j̀k =

(z̀k − z̀k)j̀k = 0 for 0 6= j̀k ∈ Nd−1 and (4.15) collapses to

f(z) = f(z̀k, zk) = (zk − h(z̀k))`
∞∑

jk=0

C0̀k,jk+`
(z̀k, h(z̀k)) (zk − h(z̀k))jk

= g̃(z)`Φ(z) (4.16)
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where, Φ(z) =
∑∞

jk=0C0̀k,jk+`
(z̀k, h(z̀k)) (zk − h(z̀k))jk .

Then, f(z) = g(z)`ϕ(z) on U
(
z0, δ

)
, where ϕ(z) = ψ(z)`Φ(z) is holomorphic on U

(
z0, δ

)

since ψ and Φ are. We conclude that ϕ(z) = f(z)/g(z)`, initially defined only on Dd \Z(g), has
analytic continuation to the generic set of smooth points of Z(g).

Since g is irreducible, the singular points of Z(g), consisting of the intersection of the zero

sets of g,
∂g

∂z1
, · · · , ∂g

∂zd
, is an algebraic variety of co-dimension at least 2. This set together with

the nongeneric set of smooth exceptional points of Z(g) where the interpolation conditions fail

is still contained in an algebraic variety of co-dimension at least 2. By applying the Riemann

Extension Theorem 2.9 to ϕ, we conclude that ϕ has analytic continuation to all of Dd and the

Theorem follows. ¥

Remark 11. In case g(z) = z1, the interpolation conditions (4.13) can be collapsed to

∂jf

∂zj1

∣∣∣∣∣
Z(g)

= 0 for j = 0, 1, . . . , `− 1. (4.17)

Indeed, the vanishing of partial derivatives involving the other variables z2, . . . , zd along Z(g) =
{z ∈ Dd : z1 = 0} is automatic from the vanishing of f along Z(g). More generally, one could

do a change of coordinates z = (z1, . . . , zd) 7→ λ = (λ1, . . . , λd) in such a way that λ1(z) = g(z).

Then, with respect to these new local coordinates, the interpolation conditions (4.13) can be

reduced to
∂jf

∂λj1

∣∣∣∣∣
λ : λ1=0

= 0 for j = 0, 1, . . . , `− 1.

This is how the criterion for (4.12) is expressed in [DMV00]. In the context here such a change

of coordinates is not useful for engineering purposes as it would destroy the rationality of the

functions in the interpolation data set. N

We now explain the type of interpolation problem to which the model matching problem

can be converted in the 1-block case. For u = 1, . . . , η, assume that we are given distinct

irreducible (scalar) polynomials qu with zero variety Z(qu) having nontrivial intersection with Dd,

meromorphic matrix functions Gu and G̃u (of compatible sizes for the interpolation conditions

to follow to make sense) with polar divisor not including Z(qu), and positive integers ku. For

v = 1, . . . , µ assume that similarly we are given distinct irreducible polynomials sv together with

meromorphic matrix functions Hv and H̃v (of compatible sizes) with polar divisor not including

Z(sv), and positive integers `v. For each pair of indices (u, v) for which qu = sv =: hu,v, assume

that we are given an additional matrix function Ruv meromorphic on a neighborhood of each

point of Z(hu,v). The whole aggregate

D = {qu, Gu, G̃u, ku; sv, Hv, H̃v, `v;Ruv} (4.18)
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we call a 1-block interpolation data set.

We say that an l×m matrix-valued function F holomorphic on Dd satisfies the interpolation

conditions associated with D (denoted by F ∈ I(D)) if
{
∂|i|

∂zi
Gu(z)F (z)

}∣∣∣∣∣
Z(qu)

=

{
∂|i|

∂zi
G̃u(z)

}∣∣∣∣∣
Z(qu)

generically on Z(qu),

for u = 1, . . . , η and |i| = 0, 1, . . . , ku − 1, (4.19)
{
∂|j|

∂zj
F (z)Hv(z)

}∣∣∣∣∣
Z(sv)

=

{
∂|j|

∂zj
H̃v(z)

}∣∣∣∣∣
Z(sv)

generically on Z(sv),

for v = 1, . . . , µ and |j| = 0, 1, . . . , `v − 1, and (4.20)
{
∂|l|

∂zl
Gu(z)F (z)Hv(z)

}∣∣∣∣∣
Z(hu,v)

=

{
∂|l|

∂zl
Ru,v(z)

}∣∣∣∣∣
Z(hu,v)

generically on Z(hu,v)

for all pairs of indices (u, v) with qu = sv and for |l| = 0, 1, . . . , ku + `v − 1 (4.21)

Given T1, T2 and T3 (of respective sizes l × m, l × l and m × m, say) as in the 1-block

case of the model matching problem, we associate an interpolation data set D as follows. Write

the l× l rational matrix valued function T−12 (z) as T−12 (z) =

[
pij
qij

(z)

]

i,j=1,...,l

, and consider the

set of unstable entries of T−12 , say

{
pia,ja
qia,ja

(z)

}
for a = 1, . . . , α. Let q(z) be the least common

multiple (or, l.c.m.) of {qi1,j1(z), . . . , qiα,jα(z)} . Also write the m × m rational matrix valued

function T−13 (z) as T−13 (z) =

[
rij
sij

(z)

]

i,j=1,...,m

, and consider the set of unstable entries of T−13 ,

say

{
rib,jb
sib,jb

(z)

}
for b = 1, . . . , β. Let s(z) be the l.c.m. of

{
si1,j1(z), . . . , siβ ,jβ (z)

}
.

Suppose now that q(z) and s(z), respectively, can be factored into irreducible polynomials,

say q(z) = qk11 (z) · · · qkηη (z), where ku > 0 for u = 1, . . . , η, and s(z) = s`11 (z) · · · s`µµ (z), where

`v > 0 for v = 1, . . . , µ,. Then for each u ∈ {1, . . . , η}, T−12 (z) =
Gu

qkuu
(z), where Gu(z) is

a meromorphic matrix function in Dd with polar divisor not including Z(qu), and qkuu is an

unstable irreducible polynomial with multiplicity ku. In addition we set G̃u(z) = Gu(z)T1(z),

so G̃u(z) is also meromorphic with polar divisor not including Z(qu). Analogously, for each

v ∈ {1, . . . , µ}, T−13 (z) =
Hv

s`vv
(z), where Hv(z) is a meromorphic matrix function on Dd with

polar divisor not including Z(sv). Set H̃v(z) = T1(z)Hv(z), so H̃v(z) is meromorphic with polar

divisor not including Z(sv). In addition, if q and s have some common factors, say qu = sv

for some pair of indices u and v, set hu,v = qu = sv and Ru,v(z) = Gu(z)T1(z)Hv(z), so

Ru,v is meromorphic with polar divisor not including Z(hu,v). In this way we have formed an

interpolation data set D as in (4.18). When D is formed in this way from T1, T2, T3, let us write
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D = DT1,T2,T3 .

Now we are ready to state the main theorem, which gives the connection between the model

matching and interpolation problems.

Theorem 4.10. Let T1, T2, T3 be the data set for a 1-block model matching problem, and let

DT1,T2,T3 be the associated interpolation data set as delineated in the previous paragraph. Then a

necessary and sufficient condition for a given function F holomorphic on Dd to have the model

matching form F = T1 − T2QT3 for a stable Q is that F satisfy the interpolation conditions

(4.19), (4.20) and (4.21) associated with the data set DT1,T2,T3 (i.e., F ∈ I(DT1,T2,T3)).

Proof. Assume that F has the model matching form; i.e.,

F = T1 − T2QT3 for a stable Q (4.22)

Suppose now that the index u is chosen so that qu is not equal to any sv. Then we can write

(4.22) as

Q(z)T3(z) = T−12 (z) (T1 − F ) (z)

=
Gu

qkuu
(z) (T1 − F ) (z) (4.23)

and hence Gu(z) (T1 − F ) (z) = qkuu (z)Q(z)T3(z). Application of a localized version of Theorem

4.9 entrywise leads to the interpolation conditions (4.19) holding on Z(gu) \ (Z(gu)∩P(Gu)), a

generic subset of Z(gu).
Similarly, suppose that the index v is such that sv is not equal to any qu. Then

T2(z)Q(z) = (T1 − F ) (z)T−13 (z)

= (T1 − F ) (z)
Hv

s`vv
(z) (4.24)

and hence (T1 − F ) (z)Hv(z) = s`vv (z)T2(z)Q(z). Again, application of Theorem 4.9 entrywise

leads to the interpolation conditions (4.20) holding on Z(sv) \ (Z(sv) ∩ P(Hv)).

Suppose finally that the indices (u, v) are such that qu = sv =: huv. Then

Q(z) = T−12 (z) (T1 − F ) (z)T−13 (z)

=
Gu

qkuu
(z) (T1 − F ) (z)

Hv

s`vv
(z)

=
1

hku+`vu,v

Gu(z) (T1 − F ) (z)Hv(z) (4.25)

and hence Gu(z) (T1 − F ) (z)Hv(z) = hku+`vu,v (z)Q(z). Apply Theorem 4.9 entrywise to obtain
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(4.21) holding on Z(hu,v) \ (Z(hu,v) ∩ (P(Gu) ∪ P(Hv))).

Conversely, suppose that F satisfies the interpolation conditions (4.19), (4.20), and (4.21).

Then Theorem 4.9 implies that:

1. For each u such that qu is not equal to any sv, by (4.19) we have

G̃u(z)−Gu(z)F (z) = Gu(z) (T1 − F ) (z)
= qkuu Qu(z) for some Qu holomorphic on Z(qu) \ (Z(qu) ∩ P(Gu)).

Note that T−12 (z) (T1 − F ) (z) = Qu(z) since T
−1
2 =

Gu

qkuu
.

Hence T−12 (z) (T1 − F ) (z)T−13 (z) = Qu(z)T
−1
3 (z) is holomorphic on Z(qu) \ (Z(qu) ∩

(P(Gu) ∪ P(T−13 ))). This last set is a generic subset of Z(qu) since P(T−13 ) does not

include Z(qu) since we are in the case where qu is not equal to any sv.

2. For each v such that sv is not equal to any qu, then (4.20) implies that

H̃v(z)− F (z)Hv(z) = (T1 − F ) (z)Hv(z)

= s`vv Qv(z) for some Qv holomorphic on Z(sv) \ (Z(sv) ∩ P(Hv)).

Note that (T1 − F ) (z)T−13 (z) = Qv(z) since T
−1
3 =

Hv

s`vv
.

Hence T−12 (z) (T1 − F ) (z)T−13 (z) = T−12 (z)Qv(z) is holomorphic on Z(sv) \ (Z(sv) ∩
(P(Hv) ∪ P(T−12 ))). This last set is still generic in Z(sv) since we are here in the case

where sv is not equal to any qu.

3. For each pair (u, v) such that qu = sv =: hu,v, then (4.21) implies that

Ru,v(z)−Gu(z)F (z)Hv(z) = Gu(z) (T1 − F ) (z)Hv(z)

= hku+`vu,v Qu,v(z) for some Qu,v holomorphic on

Z(hu,v) \ (Z(hu,v) ∩ (P(Gu) ∪ P(Hv))).

Hence T−12 (z) (T1 − F ) (z)T−13 (z) = Qu,v(z).

4. For any points z0 not in any Z(qu) nor in any Z(sv) for u = 1, . . . , η, and for v =

1, . . . , µ, T−12 (z), T−13 (z), and (F − T1)(z) are holomorphic at z0. This implies that

T−12 (z) (T1 − F ) (z)T−13 (z) is holomorphic at any such z0.

We conclude that Q := T−12 (z) (T1 − F ) (z)T−13 (z) is holomorphic on a set of the form

Dd \A where the exceptional set A is contained in an algebraic variety of co-dimension at least

2. Another application of the Riemann Extension Theorem 2.9 gives us that Q is analytic on
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all of Dd, and hence F = T1 − T2QT3 has the desired model-matching form. This completes the

proof of Theorem 4.10. ¥

Remark 12. Theorem 4.10 is a multivariable analogue of Theorem 16.9.3 in [BGR90]. To be

consistent with the terminology given in [BGR90], the equations in (4.19), (4.20), and (4.21)

are called respectively the left-, right- and two-sided interpolation conditions for a tangential

interpolation problem. The proof for the single-variable case relies heavily in the end on the

existence of a local Smith-McMillan form for rational matrix functions; as the Smith-McMillan

form is unavailable in the multivariable setting, our proof here relies exclusively on making use

of the notion of zero coprime. N

Example 7. Suppose P (z1, z2, z3) is given by

P =

[
1 0
z2

z1+0.5
z3+2
z1+0.5

]
.

Then Lin (see [Lin99]) has shown that there exists a set of stabilizing controllers K satisfying

the Bézout identity (4.5), where

Dl =

[
1 0

0 z1 + 0.5

]
, Dr =

[
z3 + 2 0

−z2 z1 + 0.5

]
, Nl =

[
1 0

z2 z3 + 2

]
, Nr =

[
z3 + 2 0

0 z3 + 2

]

Xl =

[
−1 0

0 −1

]
, Xr =

[
−(z3 + 2) 0

z2 −1

]
, Yl =

1

z3 + 2

[
z3 + 3 0

−z2 z1 + 1.5

]

and Yr =
1

z3 + 2

[
(z3 + 3)(z3 + 2) 0

−z2(z3 + z1 + 3.5) z1 + 1.5

]

Suppose we are interested in the sensitivity function S = (I + PK)−1. By Corollary 4.8,

the model matching problem associated with performance function equal to S is given by

S = XrDl −NrQDl = T1 − T2QT3 (4.26)

where

T1 = XrDl =

[
−(z3 + 2) 0

z2 −(z1 + 0.5)

]
,

T2 = Nr =

[
z3 + 2 0

0 z3 + 2

]
⇒ T−12 =

[
1

z3+2 0

0 1
z3+2

]
,

T3 = Dl =

[
1 0

0 z1 + 0.5

]
⇒ T−13 =

[
1 0

0 1
z1+0.5

]
.
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Since only T−13 contains an unstable polar variety with polar variety {z : z1 = −0.5} disjoint
from T3, we need to impose the right interpolation condition (4.20) on S. To be precise, we can

rewrite (4.26) as (T1 − S)T−13 = T2Q, or

(T1 − S)
[
(z1 + 0.5) 0

0 1

]
= (z1 + 0.5)T2Q. (4.27)

Then the interpolation condition (4.20) implies that

S|Z(f)

[
0 0

0 1

]
= 0, where f = z1 + 0.5. (4.28)

In particular, S =

[
z1 + 0.5 0

0 z1 + 0.5

]
satisfies the above condition. Note also that detS 6= 0

so the well-posedness condition (4.6) or (4.7) is satisfied. One can next backsolve for Q as

Q = T−12 (T1 − S)T−13

=
1

z3 + 2

[
−(z1 + z3 + 2.5) 0

z2 −2

]
(4.29)

Obviously, Q is holomorphic on D3 as required. Then one can solve back for a compensator K

via K = P−1(S−1 − I), i.e.

K = z1−0.5
z1+0.5

[
−1 0
z2

(z3+2) − (z1+0.5)
(z3+2)

]
. ♦

Example 8. Let T3(z)
−1 =

[
1
z21

1
z2+2

z3
z1z2−0.5

1
z1

]
Obviously, the set of unstable entries of T−13 is

{
1

z21
,

z3
z1z2 − 0.5

,
1

z1

}
with polar variety having empty intersection with T3. Let q(z) = l.c.m.

of {z21 , z1z2 − 0.5, z1} = z21 (z1z2 − 0.5). Set q1 = z1 with multiplicity 2, and q2 = z1z2 − 0.5.

Then, the corresponding G1 and G2, respectively are given by

G1(z) =

[
1

z21
z2+2

z21z3
z1z2−0.5

z1

]
,

and G2(z) =

[
z1z2−0.5

z21

z1z2−0.5
z2+2

z3
z1z2−0.5

z1

]
.

Consider first when q1 = z1, then G1(z) can be written as G1(z) = z21Q̃(z) and the zero
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variety Z(q1) =
{
(z1, z2, z3) ∈ D3

∣∣ z1 = 0
}
. Then the interpolation conditions are:

(T1 − F ) (z) G1(z)|Z(q1) = (T1 − F ) (z)|Z(q1)

[
1 0

0 0

]
= 0 (4.30)

∂

∂z1
{(T1 − F ) (z) G1(z)}

∣∣∣∣
Z(q1)

=
∂

∂z1
(T1 − F ) (z)|Z(q1)

[
1 0

0 0

]

+ (T1 − F ) (z)|Z(q1)

[
0 0

0 1

]
= 0 (4.31)

When q2 = z1z2 − 0.5, then G2(z) can be written as G2(z) = (z1z2 − 0.5)Q̃(z) and the zero

variety Z(q2) =
{
(z1, z2, z3) ∈ D3

∣∣ z1z2 = 0.5
}
. Then the interpolation condition is:

(T1 − F ) (z) G2(z)|Z(q2) = (T1 − F ) (z)|Z(q2)

[
0 0

z3 0

]
= 0 (4.32)

Hence, the content of Theorem 4.10 for this example is: F ∈ Rl×m
s (z) satisfies the interpolation

conditions (4.30)–(4.32) if and only if Q = T−12 (T1 − F )T−13 is holomorphic on Dd. ♦

Remark 13. If one loosens the 1-block assumption on (T1, T2, T3), the model matching form

for F is equivalent to interpolation conditions for F on subvarieties of other co-dimensions, in-

cluding the possibility of interpolation conditions at isolated points, or, at the opposite extreme,

interpolation conditions on the whole of Dd. For the single-variable case (d = 1), there are only

the two possibilities of co-dimension equal to 1 or to 0, i.e. interpolation at isolated points or

interpolation along the whole unit disk—see [BR92, BR94] for a thorough treatment. N

Remark 14. We now consider the special case where f(z) = g(z)`ϕ(z) where ` = 1. Then the

interpolation conditions (4.19) – (4.21) simplify to

Gu(z)
(
T1(z)− F (z)

)∣∣
Z(qu)

= 0 for u = 1, . . . , η, (4.33)
(
T1(z)− F (z)

)
Hv(z)

∣∣
Z(sv)

= 0 for v = 1, . . . , µ, and (4.34)

∂`

∂z`i

[
Gu(z)

(
T1(z)− F (z)

)
Hv(z)

]∣∣∣∣
Z(hu,v)

= 0 for i = 1, . . . , d; ` = 0, 1, and

for all pairs of indices (u, v) with qu = sv (4.35)

Note that all these formulations of interpolation conditions depend heavily on a particular choice

of coordinates for the various varieties Z(qu) and Z(sv). It is of interest to note that conditions

(4.33) and (4.34) can be expressed in a more coordinate-free form by using the Poincaré residue

map (see [GH78, page 147]). Indeed, in connection with (4.33) e.g., application of the Poincaré
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residue map to the d-form

T2(z)
−1(T1(z)− F (z)) dz1 ∧ · · · ∧ dzd =

Gu(z)

qu(z)
(T1(z)− F (z)) dz1 ∧ · · · ∧ dzd

yields the (d− 1)-form on Z(qu)

(−1)i−1Gu(z)(T1(z)− F (z))
dz1 ∧ · · · ∧ d̂zi ∧ · · · ∧ dzd

∂qu/∂zi

∣∣∣∣∣
Z(qu)

(where the notation d̂zi indicates that the i-th term is omitted) for any i such that
∂qu
∂zi

6= 0.

Thus the interpolation condition (4.33) on F can be expressed as the vanishing of the Poincaré

residue (a d−1 form) of the d-form T2(z)
−1(T1(z)−F (z)) dz1∧· · ·∧dzd along the variety Z(qu).

N

4.4 The Nevanlinna-Pick Interpolation Problem on the Polydisk

We consider the following d-D version of the bitangential Nevanlinna-Pick interpolation problem,

(or, npip) (for the 1D version, see e.g. [BGR90, Dym89]): given an interpolation data set (or,

id set) D as in (4.18), find an l×m matrix-valued function F holomorphic on Dd satisfying the

interpolation conditions (4.19), (4.20), (4.21) (F ∈ I(D)) for which in addition

sup
z∈Dd

‖F (z)‖ ≤ 1, (4.36)

i.e., find F ∈ I(D) ∩ Sd(Cm,Cl).

For d > 2, it turns out that the norm constraint (4.36) is not so convenient to work with,

and hence we shall relax the norm constraint (4.36) to

sup{‖F (T1, . . . , Td‖} ≤ 1, (4.37)

where the supremum is over any d-tuple of commuting strict contractions (T1, . . . , Td) on some

Hilbert space H (see also Section 2.3), and work with the Schur-Agler class rather than seeking

a function in the Schur class. For a discussion on the Schur class and the Schur-Agler class,

readers should refer to Section 2.3.

The bitangential npip for the class SAd(Cm,Cl) can be stated as follows: given an id

set D as in (4.18), find an l × m matrix–valued function F holomorphic on Dd satisfying the

interpolation conditions (4.19), (4.20), (4.21) which in addition satisfies (4.37), i.e., we seek

F ∈ I(D) ∩ SAd(Cm,Cl).

We have seen from the Section 2.3 and the remarks above that the Schur-Agler-modified
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bitangential npip (I(D) with (4.37)) is exactly the same as the d-D bitangential npip given above

(I(D) with (4.36)) in case d = 1, 2; while, for d > 2, a necessary and sufficient condition for

solving the Schur-Agler variant gives only a sufficient condition for solving the original version.

We shall next discuss results concerning the Schur-Agler version of the bitangential npip.

For the statement of the next result we need one more piece of terminology. For Ω any set

and P a function defined on Ω× Ω with value P (ω′, ω) at (ω′, ω) ∈ Ω× Ω equal to an operator

from the Hilbert space Kω to the Hilbert space Kω′ (i.e., P : Ω × Ω → L(Kω,Kω′)), we say

that P is a positive kernel if for any choice of N points, say ω1, . . . , ωN ∈ Ω, and of N vectors

x1, . . . , xN with xi ∈ Kωi for i = 1, . . . , N (where N is any finite number)

N∑

i,j=1

〈P (ωi, ωj)xj , xi〉Kωi ≥ 0.

Such objects are closely connected with the theory of reproducing kernel Hilbert spaces (see

e.g. [Dym89]). It is well known that an equivalent condition for a given P (ω ′, ω) as above to be

a positive kernel is that there be an auxiliary Hilbert space H and an operator-valued function

ω → T (ω) on Ω, where the value T (ω) at ω ∈ Ω is an operator from H into Kω, such that we

have the factorization

P (ω′, ω) = T (ω′)T (ω)∗.

More concretely, one can view an operator-valued function P (·, ·) as above as an infinite block-

matrix, with rows and columns indexed by the arbitrary (possibly countably infinite or uncount-

ably infinite) set Ω.

For example, let M =
[
M i,j

]
i,j=1,...,N

be a finite block-operator matrix with matrix entries

equal to operators from Kω to Kω′ . We say that M is a positive-semidefinite matrix if the

following condition holds:

N∑

i,j=1

〈M i,jxj , xi〉Kωi ≥ 0 for all x1, . . . , xN with xi ∈ Kωi for all N = 1, 2, . . . .

If we set Ω = {1, 2, . . . , N} and set P (ωi, ωj) = M i,j , then we see that P is a positive kernel

exactly whenM is a positive-semidefinite matrix. Thus the condition that P be a positive kernel

can then be viewed as an infinite analogue of a positive-semidefinite matrix.

In case no qu is also an sv (so the third set of interpolation conditions (4.21) is vacuous) and

the multiplicities ku and `v are all equal to 1, we have the following solution of the Schur-Agler

variant of the bitangential npip from [BB] (see also [BT98] for the case of interpolation along

finitely many points).

Theorem 4.11. Suppose we are given an id set (4.18) such that, for all u = 1, . . . , η and
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v = 1, . . . , µ, qu 6= sv (so the interpolation condition (4.21) is vacuous), ku = 1 and `v = 1. Then

there exists a matrix-valued function holomorphic on Dd satisfying the interpolation conditions

(4.19) and (4.20) together with the norm constraint (4.36) if and only if there exists d positive

kernels P1, . . . , Pd, where

Pj(ω
′, ω) : Ω× Ω→





Cl×l, if ω′ ∈ Z(qu′), ω ∈ Z(qu) for some u′, u;

Cl×m, if ω′ ∈ Z(qu′), ω ∈ Z(sv) for some u′, v;

Cm×m, if ω′ ∈ Z(sv′), ω ∈ Z(sv) for some v′, v;

(4.38)

satisfying the equation

d∑

k=1

[
Mk(ω

′)∗Pk(ω
′, ω)Mk(ω)−Nk(ω

′)∗Pk(ω
′, ω)Nk(ω)

]
= X(ω′)∗X(ω)− Y (ω′)∗Y (ω) (4.39)

for all ω′, ω ∈ Ω, where

Ω :=

(
η⋃

u=1

Z(qu)
)⋃(

µ⋃

v=1

Z(sv)
)

and where

Mk(ω) = Il, Nk(ω) = ωkIl, X(ω) = Gu(ω)
∗, Y (ω) = G̃u(ω)

∗ (4.40)

in case ω ∈ Z(qu) for some u = 1, . . . , η,

Mk(ω) = ωkIm, Nk(ω) = Im, X(ω) = H̃v(ω), Y (ω) = Hv(ω) (4.41)

in case ω ∈ Z(sv) for some v = 1, . . . , µ.

Remark 15. Were it the case that the set Ω in Theorem 4.11 were finite, then the problem of

solving (4.39) for d positive-semidefinite matrices P1, . . . , Pd would be a particular instance of a

semidefinite programming subject to a Linear Matrix Inequality (lmi) constraint for which much

research and software is now well developed. A thorough survey of semidefinite programming

and its applications can be found in, e.g. [BGFB94, GN00] and the references therein. It

should be noted also that there are several commercial and non-commercial software packages

which allow users to represent lmi problems with the higher-level language and to interface with

matlab program, for instance, lmilab [GN93], lmitool [GDN95], sdpsol [WB96], and sdpha

[PSB97]. There does not appear to be much experience developed with infinite lmis such as

(4.39). N

Remark 16. A basic result in the theory of holomorphic functions of several complex variables

is the following special case of the work of H. Cartan on the sheaf cohomology on Stein domains
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(see [Car67] or [GR65, page 245], [Hör73, Chapter 7] or [HL84, Theorem 4.11.1] for more modern

treatments): if Z is an analytic variety in a domain of holomorphy Ω and if f is a (complex-

valued) holomorphic function on V , then there is a holomorphic function g on Ω so that g|V = f .

A finer result is the holomorphic extension theorem in the book of Henkin and Leiterer, where

there is also given some norm control (see [HL84, Theorem 4.11.1]). Uniqueness issues related

to this problem with preservation of the norm (supz∈Ω |g(z)| = supz∈Z |f(z)|) are explored in

[AM03]. The paper of Cotlar-Sadosky [CS94] considered interpolation along a variety with

control of a Bounded Mean Oscillation (bmo) norm. N

The scalar case of the interpolation problem with solution sought in Schur-Agler class and

with the interpolation nodal varieties all taken to have dimension zero, is simply: given inter-

polation nodes z1, . . . , zn ∈ Dd and interpolation values w1, . . . , wn ∈ C, find a scalar function

F ∈ SAd satisfying the interpolation conditions

F (zk) = wk for k = 1, . . . , n. (4.42)

The original result of Agler [Agl87] on this problem is stated in Theorem 2.20 (see page 27).

This result was extended to the matrix-valued setting (with the interpolation nodal varieties still

assumed to be zero-dimensional and without consideration of two-sided interpolation conditions)

in [BT98, AM]. A contour integral formulation which incorporated higher-order interpolation

conditions but still at isolated points was solved in [ABB00].

To end this Section, we provide two simple numerical examples to demonstrate that one

cannot expect to find the solution of the full infinite lmi by approximating with solutions of

finite sub-lmis. Here we use the lmilab package in matlab to perform the experiments; the

source code is given in Appendix B.

The interpolation data zk provided in the following examples are assumed to be nodes (or

points in D2 with zero dimension) on the curve of zero variety in the Bidisk, and wk be the

interpolation values in C. Suppose for simplicity that n = 3 and the 3-point id set is given by

D2
3 = {(zk, wk) ∈ (D2 × C) : k = 1, 2, 3}.

First, we have to verify whether the data set D2
3 is feasible; i.e., we are seeking the matrices

P1 =
[
P k,`
1

]3
k,`=1

and P2 =
[
P k,`
2

]3
k,`=1

to satisfy the Agler’s condition:

1− wkw` =
2∑

j=1

(
1− zkj z`j

)
P k,`
j for k, ` = 1, 2, 3. (4.43)

See also the equation (2.38) on page 27. If such P1 and P2 exist and are positive-semidefinite,

we shall call D2
3 the feasible 3-point id set.
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Suppose that the 3-point id set is feasible. Then we consider only the first two data points

for a moment and recompute for the matrices P̃1 =
[
P̃ k,`
1

]2
k,`=1

, and P̃2 =
[
P̃ k,`
2

]2
k,`=1

satisfying

the Agler’s condition (4.43) for k = 1, 2.

One can check that such P̃1 and P̃2 do exist and are positive-semidefinite since they are

constructed from the feasible id set D2
3. Also, it turns out in general that P̃1 and P̃2 generated

by LMItoolbox are different from the 2× 2 block-matrices of the top-left corner of P1 and P2.

Finally, we add the last data points and compute P ′1 and P ′2 satisfying the following:

1. both must satisfy the Agler’s condition (4.43),

2. both must be positive-semidefinite, and

3. P ′1 =

[
P̃1 ∗
∗ ∗

]
, and P ′2 =

[
P̃2 ∗
∗ ∗

]
.

However, it is obvious from the following examples that the extension matrices P ′1 and P ′2
may or may not exist in the sense that the solutions of lmi are infeasible even though P1 and

P2 are feasible solutions.

Example 9. The 3-point interpolation data set D2
3 on the Bidisk is given by:

k zk = (αk, βk) wk

1 (0.2i, 0.15) 0.2

2 (−0.8− 0.1i, 0.5) 0.1i

3 (0.2 + 0.5i,−0.8i) 0.25 + 0.25i

Table 4.1: Interpolation data

Using matlab’s LMItoolbox, two positive-semidefinite matrices P1 and P2 satisfying the

Agler’s condition (2.38) for 3 points are given by:

P1 =



0.4754 0.6472− 0.0756i 0.3183 + 0.0443i

0.6472 + 0.0756i 1.5348 0.4031 + 0.1453i

0.3183− 0.0443i 0.4031− 0.1453i 0.5100




P2 =



0.5152 0.3544− 0.0070i 0.6496 + 0.1009i

0.3544 + 0.0070i 0.6038 0.3888 + 0.1079i

0.6496− 0.1009i 0.3888− 0.1079i 1.4247




Since P1 and P2 are positive-definite, the given id set D2
3 is feasible. Now we drop the last data

points (i.e., the 3-rd row of Table 4.1) and using LMItoolbox to recompute the 2× 2 matrices
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P̃1 and P̃2:

P̃1 =

[
0.6286 0.7769− 0.1082i

0.7769 + 0.1082i 1.7615

]

P̃2 =

[
0.3647 0.2057 + 0.0066i

0.2057− 0.0066i 0.4980

]

One can verify that P̃1 and P̃2 are positive-definite and satisfy the Agler’s condition (2.38) for

2 points. In fact, these two matrices are constructed from the feasible id set, and hence they

must be positive-definite. What we want to do next is to add the last data point (z3, w3) and

recompute the 3 × 3 matrices satisfying the conditions 1–3 given above. In this particular id

set, we obtain:

P ′1 =



0.6286 0.7769− 0.1082i 0.4253 + 0.0573i

0.7769 + 0.1082i 1.7615 0.4893 + 0.1777i

0.4253− 0.0573i 0.4893− 0.1777i 0.5444




P ′2 =



0.3647 0.2057 + 0.0066i 0.5551 + 0.0821i

0.2057− 0.0066i 0.4980 0.2905 + 0.0621i

0.5551− 0.0821i 0.2905− 0.0621i 1.3570




The extension matrices P ′1 and P
′
2 are positive-definite and the 2×2 top-left corner block-matrix

of P ′i is exactly P̃i for i = 1, 2. ♦

In the previous example, one can obtain the extension matrices P ′1 and P ′2 as desired.

However, this is not always the case. The next example illustrates the case when P ′1 and P ′2 do

not exist (i.e., the solutions of lmi are infeasible).

Example 10. The 3-point interpolation data set D2
3 on the Bidisk is given by:

k zk = (αk, βk) wk

1 (0.15− 0.5i, 0.21) 0.2i

2 (0.2i,−0.05i) −0.19
3 (0.9 + 0.1i,−0.65) −0.85 + 0.25i

Table 4.2: Interpolation data

Using matlab’s LMItoolbox, two positive-semidefinite matrices P1 and P2 satisfying the
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Agler’s condition (2.38) for 3 points are given by:

P1 =



1.1806 0.8466− 0.0319i 0.8789− 0.2706i

0.8466 + 0.0319i 0.8895 0.8076 + 0.0912i

0.8789 + 0.2706i 0.8076− 0.0912i 1.1084




P2 =



0.1058 0.0673 + 0.0484i 0.0232 + 0.0103i

0.0673− 0.0484i 0.1102 0.0309 + 0.0075i

0.0232− 0.0103i 0.0309− 0.0075i 0.0268




Since both P1 and P2 are positive-definite, the given interpolation data set is feasible. Now we

drop the last data point (z3, w3) and recompute P̃1, P̃2 as before:

P̃1 =

[
0.9411 0.7319 + 0.0077i

0.7319− 0.0071i 0.7184

]

P̃2 =

[
0.2880 0.1950 + 0.0097i

0.1950− 0.0097i 0.2749

]

However, when the last data point (z3, w3) is added back to the id set and recompute the

extension 3× 3 matrices satisfying the conditions 1–3, the result yields the infeasible solutions.

Thus, in this case, the extension matrices P ′1, P
′
2 do not exist. ♦

From these experiments, we observe that even though the 3-point id set is feasible, if we

choose inappropriate 2 × 2 matrices P̃i, the extension matrices P ′i may or may not be feasible.

This fact is fundamentally different from the Schur algorithm for one variable case in which one

can construct an n× n positive-semidefinite matrix from the extension of the (n− 1)× (n− 1)

positive-semidefinite matrix associated with dropping one id point.

4.5 An Operator-theoretic Formulation of the Model Matching

Problem

This Section presents an operator-theoretic formulation of the Model Matching Problem which

lends itself to a solution via the recent polydisk Commutant Lifting Theorem in [BLTT99]. For

a thorough introduction to the Commutant Lifting approach for the classical case, we refer the

reader to [FF90, FFGK98].

Assume that we have arrived at the Model Matching Problem: given stable T1, T2 and T3,

find stable Q (all matrix functions of compatible sizes) so that F = T1 − T2QT3 satisfies the

norm constraint (4.36); here in general we say that the (m × n)-matrix valued function X is

stable if each matrix entry of X is bounded and holomorphic on Dd, i.e. X ∈ H∞(Dd,Cm×n).
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In this Section, we assume that T3 is invertible with T−13 also stable. In this case the new

Q parameter Q′ := QT3 sweeps all holomorphic functions on the polydisk Dd while Q does, and

we may use Q′ as our new Q parameter. When this is done, the problem reduces to the case

where T3(z) = I and our model-matching form is simply F = T1 − T2Q. Thus, for the rest of

this Section, we assume that T3 = I. To be specific, we assume that T1 and T2 have sizes l×m
and l × p respectively. The size of the Q-parameter then is p×m.

H 
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D 
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Q 
 T 
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Figure 4.4: The model matching set up in the operator theoretic approach.

The next result is formulated in the operator-theoretic approach. Let H2(Dd,Cm) be the

Hardy space of Cm-valued holomorphic functions f(z) =
∑∞
|j|=0 Cjz

j with square-summable

coefficients (Cj ∈ Cm with
∑∞
|j|=0 ‖Cj‖2 <∞). For G any bounded holomorphic matrix function

of size l×m, we denote by MG : H2(Dd,Cm)→ H2(Dd,Cl) the multiplication operator given by

MG : f(z)→ G(z)f(z) ∈ H2(Dd,Cl).

Thus, for any f ∈ H2(Dd,Cm), we have

MT1 : f(z) 7→ T1(z)f(z) ∈ H2(Dd,Cl) = T1H
2(Dd,Cm),

MT2 : Q(z)f(z) 7→ T2(z)Q(z)f(z) ∈ H2(Dd,Cl) = T2H
2(Dd,Cp).

The only assumption which we impose on T2 is that MT2H
2(Dd,Cp) is a closed subspace of

H2(Dd,Cl); this is the case for example with T2 ∈ Rl×l
s (z) with inverse T−12 existing and uni-

formly bounded on the distinguished boundary Td. Then we define M ⊂ H2(Dd,Cl) to be the

orthogonal complement of T2H
2(Dd,Cp) in H2(Dd,Cl), i.e.

M = H2(Dd,Cl)ª T2H2(Dd,Cp). (4.44)

Since the matrix function T1 ∈ H∞(Dd,L(Cm,Cl)) is given, we then use T1 to define an
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Figure 4.5: The lifting diagram for an operator X

operator X acting from H2(Dd,Cm) directly to the subspace M by:

X = PMMT1 : H
2(Dd,Cm)→M (4.45)

where PM is the orthogonal projection from H2(Dd,Cl) onto M (see Figure 4.5).

The following Lemma provides a necessary and sufficient condition for a matrix-valued

holomorphic function to have a Model Matching Form.

Lemma 4.12. The l×m matrix-valued function F holomorphic on Dd has the model matching

form F = T1 − T2Q for some bounded p×m matrix function Q holomorphic on Dd if and only

if PMMF = X where X is given by (4.45).

Proof. Suppose now that there exists such an F of the model matching form, i.e. F = T1−T2Q.
Then, from (4.45), we have

PMMF = PMMT1−T2Q = PMMT1 − PMMT2Q = PMMT1

which is the definition of an operator X. Note that the last equality in the above expression

comes from the fact that M⊥ T2H
2(Dd,Cp).

Conversely, suppose that PMMF = X. Then PM(MT1 −MF ) = 0. This implies that

(MT1 −MF ) : H
2(Dd,Cm) 7→ T2H

2(Dd,Cp) since M = H2(Dd,Cl)ª T2H2(Dd,Cp).

Thus, one can solve for Q =
[
q1 · · · qm

]
∈ H2(Dd,L(Cm,Cp)) so that T1 − F = T2Q; i.e.,

choose qj ∈ H2(Dd,Cp) so that

(T1 − F )ej = T2qj , where {e1, . . . , em} is the standard basis in Cm.

Since multiplication by Q on the left necessarily maps H2(Dd,Cm) into H2(Dd,Cp), one can

argue that in fact Q ∈ H∞(Dd,Cp×m). Thus, one can deduce that F = T1 − T2Q with Q stable
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as required. ¥
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Figure 4.6: The lifting diagram for the Model Matching Problem

Suppose now that F has the Model Matching Form, i.e. F = T1 − T2Q. Then by

Lemma 4.12, we define the operator XF : H2(Dd,Cm) 7→ M so that PMMF = XF where

the subscript of X indicates its corresponding lifting operator. If F̃ also admits the Model

Matching Form, say F̃ = T1 − T2Q̃. Then for any function f ∈ H2(Dd,Cm),

(XF −XF̃ )f = PMMF f − PMMF̃ f

= PM

(
MT1−T2Q −MT1−T2Q̃

)
f

= PMMT2(Q−Q̃)f

= 0 (since MT2(Q−Q̃)f ∈ T2H2(Dd,Cp))

and hence XF = XF̃ := X is independent of the choice of Q. In other words, X depends only

on the data T1 and T2.

Two more operators needed here are the multiplication by the coordinate function zj on

H2(Dd,Cm) denoted by Mzj , and the so-called model operator SM,j on M which is given by:

SM,j = PMMzj

∣∣
M

for j = 1, . . . , d.

Finally, let us verify that such an operator X defined above intertwines the multiplication

operator Mzj on H2(Dd,Cm) with the operator SM,j on M:

X Mzj

∣∣
H2(Dd,Cm)

= SM,jX for j = 1, . . . , d.

To see this, let f ∈ H2(Dd,Cm). Then,

XMzjf = PMMT1Mzjf = PMMzjMT1f

= PMMzj

(
PM + PT2H2(Dd,Cp)

)
MT1f
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= PMMzjPMMT1f + PMMzjPT2H2(Dd,Cp)MT1f

= PMMzjPMMT1f + PMPT2H2(Dd,Cp)MzjPT2H2(Dd,Cp)MT1f

= PMMzjPMMT1f = SM,jXf

(This idea originates from the seminal paper of [Sar67]).

We are thus in a position to apply the polydisk Commutant Lifting Theorem from [BLTT99].

One more piece of notation is required: for Y any operator on M, we let ΓY denote the com-

pletely positive operator on L(M) given by

ΓY : X → ΓY [X] := Y XY ∗ for X ∈ L(M).

The following result, an immediate application of Theorem 5.1 from [BLTT99], reduces the

problem to solving a Linear Operator Inequality ( loi).

Theorem 4.13. Let T1 and T2 be bounded matrix functions holomorphic on Dd with T2H
2(Dd,Cp)

a closed subspace of H2(Dd,Cl) as above, and define the subspace M and the operator X on M
as in (4.44) and (4.45). Then there is a bounded matrix function Q holomorphic on Dd such

that F := T1− T2Q is in the Schur-Agler class SAd(Cm,Cl) (i.e. F satisfies (4.37)) if and only

if there exists positive operators

G1 ≥ 0, . . . , Gd ≥ 0 on M

such that

I −XX∗ = G1 + · · ·+Gd and Π
j:j 6=i

(
I − ΓSM,j

)
[Gi] ≥ 0 for i = 1, . . . , d. (4.46)

For example, let us consider the case when d = 3. Then the loi (4.46) becomes: for

I −XX∗ = G1 +G2 +G3 where Gi ≥ 0 on M, and

for i = 1, Π
j=2,3

(
I − ΓSM,j

)
[G1]

=
(
I − ΓSM,3

) [(
I − ΓSM,2

)
[G1]

]

=
(
I − ΓSM,2

)
[G1]− ΓSM,3

[(
I − ΓSM,2

)
[G1]

]

= G1 − SM,2G1S
∗
M,2 − SM,3

(
G1 − SM,2G1S

∗
M,2

)
S∗M,3

= G1 − SM,2G1S
∗
M,2 − SM,3G1S

∗
M,3 − SM,3SM,2G1S

∗
M,2S

∗
M,3 ≥ 0,

for i = 2, Π
j=1,3

(
I − ΓSM,j

)
[G2]

= G2 − SM,1G2S
∗
M,1 − SM,3G2S

∗
M,3 − SM,3SM,1G2S

∗
M,1S

∗
M,3 ≥ 0,

for i = 3, Π
j=1,2

(
I − ΓSM,j

)
[G3]
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= G3 − SM,1G3S
∗
M,1 − SM,2G3S

∗
M,2 − SM,2SM,1G3S

∗
M,1S

∗
M,2 ≥ 0.

Remark 17. As was the case for the interpolation approach in Section 4.4, Theorem 4.13 gives

necessary and sufficient condition for the existence of a solution of the Model Matching Problem

in the smaller class SAd(Cm,Cl). Thus, this is also necessary and sufficient for the existence

of solutions in the physically desired class Sd(Cm,Cl) for the case d = 1, 2, but in general only

sufficient for the case d > 2. N

Remark 18. In Theorem 4.13, we do not require T2 to be square and invertible. Thus Theorem

4.13 includes interpolation along varieties of any co-dimension (see Remark 13). N

4.6 Solution of the d-D H
∞ control problem

We now return to the H∞ control problem introduced in Section 4.2: given a d-D plant P (see

Fig. 4.2) design a stabilizing controller K for which the sensitivity function S = (I + PK)−1

achieves ‖S‖ = ‖(I + PK)−1‖ ≤ 1. Collecting the results of the previous sections, we now have

the following solution procedure of the H∞ control problem:

1. Construct a dcf (4.5) for P satisfying the Bézout identity. While the existence of such

a dcf in general appears not to have been proved at the moment, it is conjectured that

such a dcf always does exist; one scenario guaranteeing the existence of such a dcf is the

set of conditions in Proposition (4.6).

2. Identify T1, T2, T3 so that (I + PK)−1 = T1 − T2QT3 where Q is the Youla parameter, as

in (4.8). Assume that T2 and T3 are invertible in Rl×l(z) and Rm×m(z) respectively with

inverse T−12 and T−13 existing and uniformly bounded on the distinguished boundary Td.

3. Form the id set DT1,T2,T3 from T1, T2, and T3 as in Theorem 4.10.

4. Assume that the interpolation data set is such that no qu is also a sv as in the hypotheses of

Theorem 4.11. Then a sufficient (and also necessary if d ≤ 2) condition for the H∞ control

problem to have a (not necessarily well-posed) solution is that the Schur-Agler bitangential

npip (4.19)–(4.20) with the norm constraint (4.37) and the id set DT1,T2,T3 have a solution,

or equivalently, that the infinite lmi (4.39) have a positive solution P (ω′, ω).

In this case, there are explicit realization formulas for solutions S of the Schur-Agler

bitangential npip (see [BB, Problem 1.4 and Theorem 1.5]); choose any such S with meets

in addition the well-posedness condition detS 6= 0. Then K = (DrQ+Yr)(−NrQ+Xr)
−1

withQ = T−12 (T1−S)T−13 gives a stabilizing controllerK which meets theH∞ performance

criterion ‖(I + PK)−1‖ ≤ 1.
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Alternatively, in case T−13 is stable, at Step 3 one could apply Theorem 4.13 to arrive at a

solution criterion for the existence of (not necessarily well-posed) solutions in terms of the loi

(4.46). The procedure described above can be viewed as an extension of the basic idea in [Hel01]

from the siso, stable case to a mimo, possibly unstable setting.
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Noncommutative Multidimensional

Linear Systems

90



Chapter 5

Introduction to Noncommutative

Linear Systems

In this Part, we introduce an input-state-output (i/s/o) linear system with evolution along a

free semigroup. The corresponding transfer function for such a system is a formal power series

in noncommuting indeterminants. Motivation for the study of such formal power series comes

from the paper of C. Beck and J. Doyle [BD99] on the robust control for systems with structured

uncertainty. In that paper, they used the linear fractional transformations (lft’s) as a tool for

modeling the uncertain systems with structured perturbations on a nominal model. We denote

by ∆̃ = diag{δ1, . . . , δd}, δiδj 6= δjδi unless i = j the uncertainty operator, where for each i,

δi represents noise or small disturbance entering to the system in different location, and can

be regarded as arbitrary time-varying operator on the square summable space `2, a real-valued

parameter uncertainty, or a noncommuting indeterminant. If the system realization matrix

of the nominal model is assumed to be known and is partitioned as Ũ =

[
Ã B̃

C̃ D̃

]
, then the

input/output (i/o) map from an input sequence ũ to an output sequence ỹ is given by the upper

lft representation as:

LFTu(Ũ, ∆̃) = D̃+ C̃∆̃
(
I − Ã∆̃

)−1
B̃, (5.1)

provided that the inverse of
(
I − Ã∆̃

)
exists.

The authors in [BD99] also reviewed the realization theory and the Lyapunov stability

theory for uncertain systems, proposed a necessary and sufficient condition for reducibility in

terms of a coupling Lyapunov inequalities, and discussed the controllability and observability of

an uncertain system realization; however, they did not provide the state-space interpretation for

these objects. The main goal here is to formulate an i/s/o system, with evolution along elements

of a free semigroup, with transfer function of the form (5.1) (with δ1, . . . , δd interpreted as

formal noncommuting indeterminants), with tests for controllability and observability giving rise

91
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to the controllability/observability matrices appearing in [BD99], and with system minimality

connected with minimality of the lft representation (5.1). The lft representation (5.1) for

the transfer function of the system arises via the application of a noncommutative d-variable

Z-transform to the system equations, just as in the classical case.

This Chapter is organized as follows: In Section 5.1, we first briefly review some fundamen-

tal facts from the noncommutative algebra, and also introduce some terminologies and notation

that will be used throughout this Part of dissertation. We summarize the lft framework com-

monly used in the robust control literature for structured perturbations on a nominal model for

1D discrete-time linear system, and establish the connection between the robust control theory

and the multidimensional linear system theory in Section 5.2. Since the i/s/o linear system we

are dealing with in this Part is the system with evolution along elements of a free semigroup,

we then present the interpretation of the so-called “time-axis” of such a system via the notion

of a homogeneous tree with root in Section 5.3. Finally, in Section 5.4 we demonstrate some

examples of other types of systems close to the systems considered here which have appeared

in the engineering literature. It is not too much to conceive of the possibility that the system

models we describe here should also be interesting and applicable in engineering applications in

addition to the connection with robust control mentioned above.

5.1 Noncommutative Algebra

In the mathematical system theory, it is well known that one way to explore the structure of

the system we consider is by using an algebraic approach. The semigroup theory is one of

the most powerful tools for studying the behavior of the finite state machine in the automata

theory. Also, a formal power series plays an important role as a tool for studying the behavior of

noncommutative systems in the frequency domain analysis. As an introduction, we present here

a brief review on some properties of a free semigroup followed by the notion of formal power

series and its applications. For a more detailed treatment of this subject, see e.g. [BR88].

5.1.1 Free Semigroup

Definition 24 (Semigroup). A nonempty set E with a binary operation ∗ is called a semigroup

if the following properties are satisfied:

• E is closed under ∗, i.e. x ∗ y ∈ E for each x and y in E .

• ∗ is associative, i.e. for any x, y, and z ∈ E , x ∗ (y ∗ z) = (x ∗ y) ∗ z.

Let F be a nonempty finite set of d generators (letters), say F = {g1, . . . , gd}. A string or

word is any finite sequence of letters from the set F . The length of a word w, denoted by |w|, is
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a number of letters contained in the word. For instance, a word w = gingin−1 · · · gi1 has length

|w| = n. Given a word w, we denote by w> the word with the same letters but listed in reverse

order, i.e. if w = gingin−1 · · · gi1 then w> = gi1gi2 · · · gin .
Let Fd be a set of all words of finite length generated by letters from the set F . Then for

any words w1 = gingin−1 · · · gi1 and w2 = gjmgjm−1 · · · gj1 ∈ Fd where ik, j` ∈ Id := {1, . . . , d},
we define a closed binary operation ∗ on this set by

w1 ∗ w2 = gingin−1 · · · gi1gjmgjm−1 · · · gj1 ∈ Fd. (5.2)

Such an operation is known as a concatenation. It is easy to verify that ∗ is an associative

operation; i.e., for any w1, w2, w3 ∈ Fd, (w1 ∗ w2) ∗ w3 = w1 ∗ (w2 ∗ w3). Therefore Fd is a free

semigroup1 generated by letters from the set F with respect to the concatenation. Note that

the concatenation is not a commutative operation since, in general, w1 ∗ w2 6= w2 ∗ w1 unless

w1 = w2.

Suppose we now add the null word, denoted by λ, which is a word with no letters at all

and satisfies the following properties:

• for any w ∈ Fd, λ ∗ w = w ∗ λ = w,

• the length of the null word by definition is equal to 0 (|λ| = 0).

For convenience, let us still write Fd for Fd ∪ {λ}. Then (Fd, ∗) is a monoid or semigroup with

identity. Also this is called the free monoid generated by the set F .
Although (Fd, ∗) is a monoid, for convenience in analysis, we shall define the notion of

inverse on words in Fd as follows: for any words u, v ∈ Fd, if there exists w ∈ Fd such that

u = w∗v, we shall assign the expression w = u∗v−1 for w; otherwise, we shall say that u∗v−1 is
undefined. The expression of v−1 ∗ u can be defined in the similar way. It should be noted here

that since there are no “real” inverse elements in a monoid, the associativity property involving

with the inverse operation may fail: in general it is not the case that (u∗v−1)∗w = u∗ (v−1 ∗w),
for any u, v and w ∈ Fd. For instance, let u = g1, v = g1 and w = g2, then (u ∗ v−1) ∗w = g2 but

u ∗ (v−1 ∗w) is not defined. Thus Fd has the structure of a groupoid (multiplication by inverse

of an element is defined only on a certain domain).

5.1.2 Formal Power Series

In the automata theory and formal languages literature, a formal power series is abstractly

defined as a function T : Fd 7→ K such that

T =
∑

v∈Fd

Tv · v,

1A semigroup (Fd, ∗) is said to be free if it consists of words of finite length generated by the set F .
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where K is a semiring defined as follows:

Definition 25 (Semiring). A set K equipped with two operations: sum + and product ·, is
said to be a semiring if the following properties hold:

1. (K,+) is a commutative monoid with identity element denoted by 0,

2. (K, ·) is a monoid with identity element denoted by 1,

3. The product is distributive with respect to the sum,

4. For all k ∈ K, 0 · k = k · 0 = 0.

The support of T is a subset of Fd defined by

supp(T ) = {w ∈ Fd | Tv 6= 0}.

For our analysis purposes here, we consider in particular a formal power series of the form

T := T (z) =
∑

v∈Fd

Tvz
v, (5.3)

where Tv is called the coefficient of zv in T (z) and K in this case is either Cp, or Cp×q (or in

coordinate-free notation K = U ,Y or K = L(U ,Y)). A formal power series T (z) is said to be

proper if the coefficient of the null word vanishes (i.e., Tλ = 0). The set of all formal power series

with coefficients in K is denoted by Knc[[z1, . . . , zd]]. A polynomial is a formal power series with

finite support. The set of polynomials is denoted by Knc[z1, . . . , zd].

Given two formal power series T (z) and T ′(z) with compatible coefficient spaces K (e.g.,

both T (z) and T ′(z) in Cp×q
nc [[z1, . . . , zd]] for addition, T (z) ∈ Cp×r

nc [[z1, . . . , zd]] and T ′(z) ∈
Cr×q
nc [[z1, . . . , zd]] for multiplication), then their sum is given by

[T (z) + T ′(z)]v = Tv + T ′v,

and their product by

[T (z) · T ′(z)]v =
∑

ww′=v

TwT
′
w′ .

Define T ∗ =
∑∞

k=0 T (z)
k and T+ =

∑∞
k=1 T (z)

k. Clearly, T ∗ = I + T+, and T+ = T (z) · T ∗ =
T ∗ · T (z). From these, we have

T ∗(I − T (z)) = T ∗ − T ∗ · T (z) = T ∗ − T+ = I.

Thus, it follows that if K is a ring, then T ∗, the star of a formal power series T (z), is the inverse

of I − T (z) (i.e., (I − T (z))−1 =
∑∞

k=0 T (z)
k). These three operations (the sum, the product,
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the star operation or the inverse) are called the rational operations and a formal power series

T (z) is called a rational series if it is an element of the smallest subset of Cnc[[z1, . . . , zd]] which

is closed under the rational operations. An element of Cp×q
ns [[z1, . . . , zd]] is said to be rational if

its matrix entries are all rational. Basically, a formal power series is a rational series if it can be

expressed as a finite number of sums, products and inversions of polynomials.

Definition 26 (Recognizable Series). A formal power series T (z) =
∑

v∈Fd
Tvz

v ∈ L(U ,Y)
(here U and Y are finite-dimensional linear spaces) is said to be recognizable if there exist a

finite-dimensional linear space H and operators F1, . . . , Fd on H, G : U 7→ H, and H : H 7→ Y
such that Tv = HF vG where F v := FinFin−1 · · ·Fi1 if v = gingin−1 · · · gi1 .

The following is the fundamental theorem of rational series proposed by M. Schützenberger

in 1961.

Theorem 5.1 ([Sch61]). A formal power series T (z) =
∑

v∈Fd
Tvz

v ∈ Knc[[z1, . . . , zd]] is

rational if and only if it is recognizable.

Given a formal power series T (z) =
∑

v∈Fd
Tvz

v ∈ Knc[[z1, . . . , zd]], the Hankel operator

HT associated with T (z) has a matrix representation with rows indexed by v ∈ Fd and columns

indexed by w ∈ Fd, and each entry of HT is defined by

[HT ]v,w = Tvw. (5.4)

If T (z) ∈ Knc[[z1, . . . , zd]] is recognizable, then [HT ]v,w = Tvw = HF vwG for all v, w ∈ Fd (for

some F = (F1, . . . , Fd), H,G).

Theorem 5.2 ([Fli74]). A formal power series T (z) is rational if and only if

rank(HT ) = n <∞.

In this case, n is equal to the smallest possible size for the square matrices F1, . . . , Fd so that Tv

has a representation of the form Tv = HF vG.

5.2 Linear Fractional Transformation

It is well known in the robust control literature that many control problems can be formulated

in a linear fractional transformation (lft) framework which provides a structural paradigm to

analyze and design stabilizing linear controllers for the closed-loop system in an effective way. In

fact, the terminology of lft originates from the theory of one complex variable which is stated

as follows: An lft is a mapping f : C 7→ C of the form

f(s) =
a+ bs

c+ ds
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where a, b, c and d ∈ C.
This definition can be generalized to the matrix case. Let M be a complex matrix which

is partitioned as

M =

[
A B

C D

]
∈ C(m1+m2)×(n1+n2),

and let ∆u ∈ Cn1×m1 , and ∆` ∈ Cn2×m2 be two other complex matrices. Then the mapping

LFTu(M,∆u) := D + C∆u(I −A∆u)
−1B

is called an upper lft with respect to ∆u whenever the inverse of (I −A∆u) exists. Likewise,

the mapping

LFT`(M,∆`) := A+B∆`(I −D∆`)
−1C

is called a lower lft with respect to ∆` whenever the inverse of (I −D∆`) exists.

We now show the connection between the lft described above and the classical control

system. Let us consider the following diagrams

u


z
1
x
1


y
1
 u
1


M


M


l


z
2
x
2


u
2
y
2


Figure 5.1: Block diagrams of the upper and the lower lfts

The diagram on the left hand side of Figure 5.1 represents the set of equations:

[
x1

y1

]
=M

[
z1

u1

]
=

[
A B

C D

][
z1

u1

]
,

z1 = ∆ux1.

It is easy to verify that the mapping from u1 to y1 is given by D+C∆u(I −A∆u)
−1B which is

exactly the LFTu(M,∆u). The diagram on the right corresponds to the system equations:

[
y2

x2

]
=M

[
u2

z2

]
=

[
A B

C D

][
u2

z2

]
,

z2 = ∆`x2,
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and the closed-loop system is given by LFT`(M,∆`).

Thus, ifM represents a system realization and ∆u is replaced by a complex variable z, then

the upper lft is neither more nor less than a transfer function of the classical discrete-time linear

system, i.e.

LFTu(M, z) = D + zC(I − zA)−1B.

For further discussion, see e.g. [ZDG96].

5.2.1 Classical Discrete-time Linear Time-invariant Systems

The main purpose of this Subsection is to present the system model for the classical discrete-

time linear time-invariant systems in the operator theoretical approach, which will be used to

illustrate the connection between the robust control and the noncommutative d-D linear system

in Subsection 5.2.3.

For any Hilbert space H, we denote by `2+(H) = `2(Z+,H) the set of all H-valued functions

consisting of all infinite tuples of the form f =
[
f0 f1 f2 . . .

]>
, for each fk ∈ H, and such

that

‖f‖2`2+(H) ,
∑

k∈Z+
‖fk‖2H <∞. (5.5)

Let S be the forward shift operator acting on `2+(H) defined by

S




f0

f1

f2
...



:=




0 0 0 · · ·
I 0 0 · · ·
0 I 0 · · ·
...

...
...







f0

f1

f2
...



=




0

f0

f1
...



, (5.6)

where the size of the identity operator I is determined from the context. Note that we shall

write S rather than S if the identity operator I is replaced by 1.

Suppose now that the Hilbert spacesH,U and Y are the state space, the input space and the

output space, respectively, and U denotes the connecting operator. Then the system equation

of the classical discrete-time linear time-invariant system can be described by (see Section 3.2

for further discussion):

[
xk+1

yk

]
= U

[
xk

uk

]
:=

[
A B

C D

][
xk

uk

]
, x0 = 0 (5.7)

where A ∈ L(H,H), B ∈ L(U ,H), C ∈ L(H,Y), and D ∈ L(U ,Y). In particular, one may

consider the case when H = Cn,U = Cnu , and Y = Cny for simplicity.

Under assumption that the state sequence x := {xk}∞k=0, the input sequence u := {uk}∞k=0,
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and the output sequence y := {yk}∞k=0 are all square summable, i.e. x ∈ `2+(H), u ∈ `2+(U), and
y ∈ `2+(Y), respectively, the system equation (5.7) can be expressed as an infinite block matrix

[
x

y

]
=

[
S 0

0 I

]
U

[
x

u

]
:=

[
S 0

0 I

][
A B

C D

][
x

u

]
, (5.8)

where U :

[
`2+(Cn)

`2+(Cnu)

]
7→
[
`2+(Cn)

`2+(Cny)

]
, and A,B,C, and D are block-diagonal operators defined

as follows:

Definition 27. For any Hilbert spaces F and G, a bounded linear operator Q ∈ L(`2(F), `2(G))
is said to admit a block-diagonal structure if there exists an operator Q ∈ L(F ,G) such that, if

g = Qf for any f ∈ F and g ∈ G, then gk = Qfk for all k = 0, 1, . . . . The representation of such

Q can be expressed as an infinite diagonal matrix: Q = diag{Q,Q, . . . }.

5.2.2 Systems with Uncertainty

Suppose that the system in (5.7) is disturbed by some external perturbation sources or involved

with system uncertainty—e.g., noises, small disturbances, unmodeled dynamics, non-dominant

nonlinearities, or parameter variations—which we shall model as ∆, the uncertainty operator.

Since each perturbation source is likely to enter the system in which we are interested at a

different location, the uncertainty operator can be represented by a block diagonal matrix:

∆ := diag





r1⊕

j=1

δ1, . . . ,

rs⊕

j=1

δs,∆1, . . . ,∆f



 : H∆ 7→ H∆, (5.9)

where H∆ is the space on which the uncertainty operator acts and has a direct sum structure as

H∆ =
s⊕

i=1




ri⊕

j=1

Hδi


⊕




f⊕

j=1

H∆j


 . (5.10)

In the robust control literature, the nominal plant in general can be represented by

Σk =





xk+1 = Axk +B1wk +B2uk

zk = C1xk +D1wk +D2uk

yk = C2xk +D3wk +D4uk

; x0 = 0 (5.11)

together with the uncertainty portion: wk = ∆zk.

To keep the exposition simple, we here assume that Hδi = C with δi ∈ C, and H∆j
= Cnj

with ∆j ∈ L(Cnj ) (i.e., ∆j equal to any nj × nj matrix). Thus the perturbation space H∆ is
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Cn∆ where n∆ =
∑s

i=1 ri +
∑f

j=1 nj .

If we also assume that all signals x := {xk}∞k=0, u := {uk}∞k=0, y := {yk}∞k=0, z := {zk}∞k=0,

and w := {wk}∞k=0 are square summable, then the system equation (5.11) can be expressed as

Σ =





x = S [Ax+B1w +B2u]

z = C1x+D1w +D2u

y = C2x+D3w +D4u

, and w = ∆z, (5.12)

where ∆ = diag{∆,∆, . . . }. The block diagram of the overall system (the nominal system plus

disturbances, ∆) is depicted in Figure 5.2.

z
 w


S


x
x


y
 u


U


Figure 5.2: A block diagram of the system with disturbances, ∆

To condense notation, let us define an operator U as

U =

[
A B

C D

]
:



`2+(Cn)

`2+(Cn∆)

`2+(Cnu)


 7→



`2+(Cn)

`2+(Cn∆)

`2+(Cny)


 ,

where B,C, and D are partitioned as follows:

B =
[
B1 B2

]
,C =

[
C1

C2

]
, and D =

[
D1 D2

D3 D4

]
.

Thus, we have 

x

z

y


 =

[
S 0

0 I

]
U



x

w

u


 and w = ∆z, (5.13)

If we consider now that

[
w

u

]
is the input and

[
z

y

]
is the output of the plant, and by assuming
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that the system is well-defined2, then the input/output (i/o) mapping operator

G(S) :
[
`2+(Cn∆)

`2+(Cnu)

]
7→
[
`2+(Cn∆)

`2+(Cny)

]
,

is given by [
z

y

]
= G(S)

[
w

u

]
where G(S) := D+C(I − SA)−1SB. (5.14)

Clearly, this operator can also be viewed as an upper lft, i.e. G(S) = LFTu(U,S). Since
w = ∆z, one can write (5.14) as

[
w

y

]
=

[
∆ 0

0 I

]
G(S)

[
w

u

]
.

z


y
 u

G
(
S
)


w


Figure 5.3: An equivalent diagram of the system in Figure 5.2 where G(S) = LFTu(U,S).

We then apply the upper lft again with G(S) acting on the uncertainty operator ∆ to get

the closed loop system T∆ (i.e., the i/o map from u to y) when the perturbation ∆ is presented

as shown in Figure 5.3. Thus, we have

T∆(S) = LFTu(G(S),∆) = LFTu(LFTu(U,S),∆).

For analysis purposes, it is of interest to combine the shift operator S and the uncertainty

operator ∆ together in the same block. To this end, let us consider the system equation

(5.12) for the moment. Since w = ∆z, one can replace z = C1x + D1w + D2u by w =

2If U :=

[
A B

C D

]
is contraction, then G(S) is well-defined as

lim
r↑1

C(I − rSA)−1x exists for each x

(see [BLTT99] for an explanation).
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∆ [C1x+D1w +D2u]. Thus, we have the following

Σ =






x
w


 =


S 0

0 ∆






A B1

C1 D1




x
w


+


B2

D2


u




y =
[
C2 D3

]

x
w


+D4u.

(5.15)

For notational convenience, let us introduce some operators as follows:

∆̂ :=

[
S 0

0 ∆

]
:

[
`2+(Cn)

`2+(Cn∆)

]
7→
[
`2+(Cn)

`2+(Cn∆)

]
,

Â :=

[
A B1

C1 D1

]
, B̂ :=

[
B2

D2

]
, Ĉ :=

[
C2 D3

]
, D̂ := D4.

Hence, (5.15) becomes 

x

w

y


 =

[
∆̂ 0

0 I

]
Û



x

w

u


 , (5.16)

where

Û =

[
Â B̂

Ĉ D̂

]
:



`2+(Cn)

`2+(Cn∆)

`2+(Cnu)


 7→



`2+(Cn)

`2+(Cn∆)

`2+(Cny)


 .

y
 u


U


x
 x


z
 w


Figure 5.4: An equivalent diagram of the system in Figure 5.2 where ∆̂ = diag{S,∆}

The system equation in the form of (5.16) yields the i/o map (from the input u to the

output y), which can be expressed directly in terms of an upper lft with constant coefficients

acting on the uncertainty operator ∆ augmented by the shift operator S:

y = LFTu(Û, ∆̂) · u =

[
D̂+ Ĉ

(
I − ∆̂Â

)−1
∆̂B̂

]
· u. (5.17)
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By the definition of the upper lft and the application of the inversion lemma, one can easily

verify that

LFTu(Û, ∆̂) = LFTu(LFTu(U,S),∆) = T∆(S). (5.18)

Before we move on to the next Section, let us point out that the space `2+(Cp) is isomorphic

to p copies of the space `2+(C), i.e.

`2+(Cp) ∼=
p⊕

i=1

`2+(C).

The application of this fact is illustrated in the following. Let us first consider the system

equation (5.15) for a moment. By using the rows and columns permutation appropriately, one

can verify that the system described as in (5.15) is equivalent to

Σ̃ =






 x̃
w̃


 =



⊕n

i=1 S 0

0 ∆̃






 Ã B̃1

C̃1 D̃1




 x̃
w̃


+


B̃2

D̃2


 ũ




ỹ =
[
C̃2 D̃3

]

 x̃
w̃


+ D̃4ũ,

(5.19)

where

1. f̃ =




f̃1
...

f̃p


, each f̃j ∈ `2+(C) if f =




f1
...

fp


, each fj ∈ C,

2. the uncertainty operator ∆̃ is given by

∆̃ = diag





r1⊕

j=1

δ1, . . . ,

rs⊕

j=1

δs, ∆̃1, . . . , ∆̃f



 : H

∆̃
7→ H

∆̃
, (5.20)

where δj = diag{δj , δj , . . . } = δjI`2 , ∆̃k = [δki,j ]
nk
i,j=1 = [δki,jI`2 ]

nk
i,j=1, andH∆̃

=
⊕n∆

i=1 `
2
+(C),

3. the operator Ã = [ai,j ]
n
i,j=1, where ai,j := diag{ai,j , ai,j , . . . } = ai,jI`2 if A = [ai,j ]

n
i,j=1.

Note that the other operators in (5.19) are also defined in the similar way as Ã.

Let us now define the following operators:

∆̃ :=

[⊕n
i=1 S 0

0 ∆̃

]
:

[⊕n
i=1 `

2
+(C)⊕n∆

i=1 `
2
+(C)

]
7→
[⊕n

i=1 `
2
+(C)⊕n∆

i=1 `
2
+(C)

]
,

Ã :=

[
Ã B̃1

C̃1 D̃1

]
, B̃ :=

[
B̃2

D̃2

]
, C̃ :=

[
C̃2 D̃3

]
, D̃ := D̃4,
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and hence the system Σ̃ in (5.19) becomes



x̃

w̃

ỹ


 =

[
∆̃ 0

0 I

]
Ũ



x̃

w̃

ũ


 , (5.21)

where

Ũ =

[
Ã B̃

C̃ D̃

]
:




⊕n
i=1 `

2
+(C)⊕n∆

i=1 `
2
+(C)⊕nu

i=1 `
2
+(C)


 7→




⊕n
i=1 `

2
+(C)⊕n∆

i=1 `
2
+(C)⊕ny

i=1 `
2
+(C)


 .

The above discussion is illustrated in the following example.

Example 11. Let xk =

[
x1

x2

]

k

∈ C2, wk =



w1

w2

w3




k

∈ C3, uk ∈ C, and ∆ =



δ1 0 0

0 δ1 0

0 0 δ2


. To

save the space, let us also assume that Â = 0. Then, from (5.15) we have

[
x

w

]
=

[
S 0

0 ∆

][
B2

D2

]
u where x ∈ `2+(C2), w ∈ `2+(C3), u ∈ `2+(C)




xk=0

xk=1

xk=2

...

wk=0

wk=1

wk=2

...




=




02×2 02×2 · · · 02×3 02×3 · · ·
I2×2 02×2 · · · 02×3 02×3 · · ·
02×2 I2×2 · · · 02×3 02×3 · · ·
...

...
. . .

...
...

. . .

03×3 03×3 · · · ∆ 03×3 · · ·
03×3 03×3 · · · 03×3 ∆ · · ·
03×3 03×3 · · · 03×3 03×3 · · ·
...

...
. . .

...
...

. . .







[
b2,1

b2,2

] [
0

0

]
· · ·

[
0

0

] [
b2,1

b2,2

]
· · ·

...
...

. . .

d2,1

d2,2

d2,3






0

0

0


 · · ·



0

0

0






d2,1

d2,2

d2,3


 · · ·

...
...

. . .







uk=0

uk=1

uk=2

...



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=




[
0

0

] [
0

0

]
· · ·

[
b2,1

b2,2

] [
0

0

]
· · ·

[
0

0

] [
b2,1

b2,2

]
· · ·

...
...

. . .

δ1d2,1

δ1d2,2

δ2d2,3






0

0

0


 · · ·



0

0

0






δ1d2,1

δ1d2,2

δ2d2,3


 · · ·

...
...

. . .







uk=0

uk=1

uk=2

...



,

which is equivalent to




(
x̃1

x̃2

)



w̃1

w̃2

w̃3






=







0 0 0 · · ·
b2,1 0 0 · · ·
0 b2,1 0 · · ·
...

...
...

. . .







0 0 0 · · ·
b2,2 0 0 · · ·
0 b2,2 0 · · ·
...

...
...

. . .







δ1d2,1 0 0 · · ·
0 δ1d2,1 0 · · ·
...

...
...

. . .







δ1d2,2 0 0 · · ·
0 δ1d2,2 0 · · ·
...

...
...

. . .







δ2d2,3 0 0 · · ·
0 δ2d2,3 0 · · ·
...

...
...

. . .







ũ =




[
S 0

0 S

]
0

0



δ1 0 0

0 δ1 0

0 0 δ2













b2,1 0 · · ·
0 b2,1 · · ·
...

...
. . .







b2,2 0 · · ·
0 b2,2 · · ·
...

...
. . .







d2,1 0 · · ·
0 d2,1 · · ·
...

...
. . .







d2,2 0 · · ·
0 d2,2 · · ·
...

...
. . .







d2,3 0 · · ·
0 d2,3 · · ·
...

...
. . .







ũ

[
x̃

w̃

]
=

[⊕2
i=1 S 0

0 ∆̃

][
B̃2

D̃2

]
ũ, where x̃ ∈

2⊕

i=1

`2+(C), w̃ ∈
3⊕

i=1

`2+(C), ũ ∈ `2+(C). ♦
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5.2.3 The Connection with Multidimensional Linear Systems

The point here of working with i/o map in the time domain rather than the transfer function in

the frequency domain as has been done in the earlier µ-synthesis literature is that we can easily

introduce time-varying disturbances in this formalism. Recall that the system Σ̃ is described by

Σ̃ =






 x̃
w̃


 =



⊕n

i=1 S 0

0 ∆̃




Ã


 x̃
w̃


+ B̃ũ




ỹ = C̃


 x̃
w̃


+ D̃ũ.

(5.22)

Formally, if we replace δjI`2 and δki,jI`2 , respectively with general operators on `2, say

δj ∈ L(`2) and δki,j ∈ L(`2) (these operators are regarded as time-varying uncertainty operators),

and form the uncertainty operator ∆̃ as in (5.20), then with this more general meaning for ∆̃,

all the formulas derived previously go through in the same way; i.e., one can check that the i/o

map from ũ ∈⊕nu
i=1 `

2
+(C) to ỹ ∈⊕ny

i=1 `
2
+(C) is given by the upper lft

ỹ = LFTu(Ũ, ∆̃) · ũ =

[
D̃+ C̃

(
I − ∆̃Ã

)−1
∆̃B̃

]
· ũ. (5.23)

In this case, LFTu(Ũ, ∆̃) represents the i/o operator for a time-varying linear system,

where the entries of ∆̃ no longer commute with the forward shift operator S on `2+. Here

the nominal system ((5.22) with ∆̃ = 0) is time-invariant, but the system perturbed by the

time-varying disturbance ∆̃ is time-varying. The role of formal power series in analyzing linear

time-invariant plants having time-varying structured uncertainties was introduced in the work

of Beck, D’Andrea, Doyle and Glover [Bec01, BD99, BD97, ZDG96] in a more formal, but less

precise way.

From the above arguments, we now define

δ := (S, δ1, . . . , δs, δ
1
1,1, δ

1
1,2, . . . , δ

1
n1,n1 , . . . , δ

f
1,1, δ

f
1,2, . . . , δ

f
nf ,nf

),

and recall that δi and δ
k
i,j are general operators in `2 representing noises or small perturba-

tion parameters entering to the system in different locations. From the mathematical point of

view these operators including the shift operator in general can be regarded as noncommuting

indeterminants.

Thus, one may replace δ by z = (z1, z2, . . . , zd) the noncommutative variables where d =

1 + s +
∑f

i=1 n
2
i and zizj 6= zjzi unless i = j, and hence the i/o map (5.23) is neither more

nor less than the noncommutative d-variable transfer function of input/state/output (i/s/o)

multidimensional linear systems with evolution along a free semigroup. We shall show that in
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fact such a transfer function can also be expressed as a formal power series
∑

v∈Fd
T̃vz

v where

T̃λ = D̃, T̃wgj = C̃ÃwB̃j , and Ãw = ÃinÃin−1 · · · Ãi1 if w = gingin−1 · · · gi1 .

To do so, let us replace the operator ∆̃ =

[⊕n
i=1 S 0

0 ∆̃

]
with

Z(z) =




z1IH 


z2Ir1
. . .

zs+1Irs






zs+2 · · · zs+1+n1
...

...

zs+2+n21−n1
· · · zs+1+n21




. . . 


zd−n2
f
+1 · · · zd−n2

f
+nf

...
...

zd−nf+1 · · · zd







From this point on, we shall refer to the matrix Z(z) as the generalized structured noncommu-

tative dynamics. It should be noted that Z(z) can be expanded as a finite sum

Z(z) = z1




IH 0 · · · 0

0 0 · · · 0
...

...
...

0 0 · · · 0



+ z2




0 0 · · · 0

0 Ir1 · · · 0
...

...
...

0 0 · · · 0



+ · · ·+ zd




0 0 · · · 0

0 0 · · · 0
...

...
...

0 0 · · · 1



, (5.24)

and hence Z(z)Ã =
∑d

j=1 zjÃj where Ãj =




0 0 · · · 0

0 I︸︷︷︸
(at the location of zj)

· · · 0

...
...

...

0 0 · · · 0



Ã and the size of

the identity operator I is determined from the context. Similarly, Z(z)B̃ =
∑d

j=1 zjB̃j . Thus,

one can rewrite the i/o map (5.23) as

ỹ =

[
D̃+ C̃

(
I − ∆̃Ã

)−1
∆̃B̃

]
· ũ
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=


D̃+ C̃


I −

d∑

j=1

zjÃj



−1

d∑

j=1

zjB̃j


 · ũ , T

Σ̃
(z)ũ. (5.25)

Since the inverse
(
I −∑d

j=1 zjÃj

)−1
exists as a formal power series

∑∞
k=0

(∑d
j=1 zjÃj

)k
, we

have the following

T
Σ̃
(z) = D̃+ C̃


I −

d∑

j=1

zjÃj



−1

d∑

j=1

zjB̃j

= D̃+ C̃
∞∑

k=0




d∑

j=1

zjÃj



k

d∑

j=1

zjB̃j

= D̃+
∑

w∈Fd

d∑

j=1

(
C̃ÃwB̃j

)
zwgj ,

∑

v∈Fd

T̃vz
v, (5.26)

where T̃λ = D̃, T̃wgj = C̃ÃwB̃j , and Ãw = ÃinÃin−1 · · · Ãi1 if w = gingin−1 · · · gi1 . Thus, the

i/o map from the input sequence ũ ∈ ⊕nu
i=1 `

2
+(C) to the output sequence ỹ ∈⊕ny

i=1 `
2
+(C) can

be expressed as a formal power series as required.

Conversely, suppose we are given a formal power series T
Σ̃
(z) =

∑
v∈Fd

T̃vz
v, where z =

(z1, . . . , zd) the noncommuting d-indeterminants. Then the i/o operator LFTu(Ũ, ∆̃) for the

system Σ̃ with time-varying perturbation ∆̃ is obtained by formally replacing z by disturbance

operator3 δ = (δ1, . . . , δd). Therefore, we have

T
Σ̃
(δ) = D ⊗ I`2 + (C ⊗ I`2)


I −

d∑

j=1

Aj ⊗ δj



−1


d∑

j=1

Bj ⊗ δj


 , (5.27)

which can also be expressed as

T
Σ̃
(δ) =

∑

v∈Fd

T̃v ⊗ δv. (5.28)

(See Appendix A for a brief discussion on tensor product and the proof.)

Thus, the above discussion gives a connection between the robust control theory and the

noncommutative multidimensional linear system theory, which motivates the author to study

the possibility to construct linear models representing the i/s/o d-D linear system described

above. The discussion on modeling such a system and the corresponding transfer function will

be presented in Chapter 6.

Remark 19. It is worth noting that the generalized structured noncommutative dynamics

3To simplify the exposition, let us rename δ = (S, δ1, . . . , δs, δ
1
n1,n1

, . . . , δfnf ,nf
) by (δ1, . . . , δd).
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Z(z) is a generalized version of the noncommutative Givone-Roesser (or, ncgr) dynamics (see

Chapter 6 for more details on system modelling issue),

Zd(z) = diag{z1IH1 , . . . , zdIHd},

and the noncommutative Fornasini-Marchesini (or, ncfm) dynamics,

Zr(z) =
[
z1IH · · · zdIH

]
.

Obviously, the ncgr dynamics is a particular case of the generalized structured noncommutative

dynamics. Now if the transfer function has the form

TΣ(z) = D + C(I − Zr(z)Ac)
−1Zr(z)Bc,

where

[
Ac Bc

C D

]
=




A1 B1

...
...

Ad Bd

C D




then the transfer function has the explicit representation TΣ(z) =
∑

v∈Fd
Tvz

v where Tλ =

D and Twgj = C(Ac)
w(Bc)j . Thus the transformation (Ã, B̃, C̃, D̃) 7→ (Ãj , B̃j , C̃, D̃) as in

(5.25) can be viewed as a transformation from a transfer function with generalized structured

noncommutative dynamics to one with ncfm dynamics. In Chapter 6 we shall see this more

explicitly in terms of state-space representations for the case of ncgr dynamics Zd(z). N

One interesting question arising here is: given a formal power series as in (5.26), can one

write it in the form of the generalized ncgr model (with the generalized structured noncommu-

tative dynamics Z(z) specified up to the dimensions so the various blocks), or in the form of the

ncgr model (with Zd(z)), or in the form of the ncfm model (with Zr(z))—and with minimal

state space dimension(s)? This question is the so-called minimal realization problem which we

shall give a discussion on this issue in Chapter 8.

5.3 Notion of Time-axis

This Section is devoted to a discussion on how to formulate the “time-axis” for the i/s/o linear

systems with evolution along the elements of a free semigroup, Fd. We shall see that in fact the

time-axis of such systems can be represented by a so-called homogeneous tree with a root in the

graph theory literature, which is defined as follows:
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Definition 28 (Homogeneous Tree). A homogeneous tree T with a root (or base point at

λ) of order q is an infinite acyclic, connected graph (i.e., a connected graph which contains no

cycles) such that every vertex of T has exactly q+1 branches except for a vertex λ at the bottom

of a tree called a root which has only q branches.

Given two vertices on a graph, say v and w, a (v, w)-path is a sequence of vertices with

adjacent vertices connected by a branch, beginning at v and ending at w. The distance between

two vertices v and w, denoted by d(v, w), is the number of branches along the unique path

connecting v and w. A path through a tree, denoted by Γw is a path leading up and away from

the root, and ending at w. A level in a tree is the collection of all vertices at a fixed distance

from the root.

r


a


b


c


d


e


f


g


h


Figure 5.5: An example of a tree T

For example, let us consider the finite tree T depicted in Figure 5.5. A (b, g)-path is

{b, e, g} and the distance d(b, g) = 2. The path Γf = {r, b, d, f}. The levels of the tree are

{r}, {a, b}, {c, d, e} and {f, g, h}. For further discussion on graph theory, see e.g. [BCLF79,

HHM00].

Now for a given free semigroup Fd, one may represent Fd as a homogeneous tree T by

labelling each vertex of T by a word w ∈ Fd, where

• the root of T is labelled by λ, and

• each level of T is defined by the length of words, i.e. a level n of T consists of all words of

length n (|w| = n).

There is a branch between v and w of distance d(v, w) = 1 if v = gjw for some j ∈ Id. Thus,

there is a one-to-one correspondence between a free semigroup Fd and a homogeneous tree T

with a root at λ of order d.
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Given any word w ∈ Fd \ {λ}, there always exists a path Γw defined as a set of all words

w̃ such that vw̃ = w for some v ∈ Fd, listed in order of increasing length. For instance, if w is

given by w = gingin−1 · · · gi1 , then

Γw = {λ, gi1 , gi2gi1 , . . . , gin−1gin−2 · · · gi1 , gingin−1 · · · gi1}. (5.29)

For example, the path Γ{011} associated with a word {011} is given by Γ{011} = {λ, 1, 11, 011}.
An example of the finite portion of a homogeneous tree of order 2 is illustrated in Figure 5.6.

|w|=1


|w|=0


0
 1


00
 11
10
 01


empty

element


010
100

011


101
110
000
 001
 111
 |w|= 3


|w|=2


Figure 5.6: A finite portion of a homogeneous tree of order 2

Let x be a mapping x : Fd → H defined by x : w → x(w) ∈ H where H is a Hilbert space;

i.e., we assign the value at each particular word by x(w) which we shall call the state at the

word w, and the Hilbert space H in this case is called the state space.

Suppose we are given a state at a particular word w, then the natural question arising

here is whether or not one can find a control sequence {u(v)} along the path Γw so that such

a state can be reached from the zero initial state at λ. This property is called w-reachability 4

of the system, and the system is said to be w-reachable if there does exist a control sequence

satisfying the reachability condition for arbitrary final state at w. We also have a notion of

w-controllability, which is parallel with the notion of reachability but in the reverse direction.

Suppose the path associated with a word w = gingin−1 · · · gi1 is given by

Γw = {λ, gi1 , gi2gi1 , . . . , gin−1gin−2 · · · gi1 , gingin−1 · · · gi1},
4Notions of length-n-reachability and length-n-controllability will be given in Chapter 7.
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and let us relabel each word contained in the path Γw as follows:

λ 7→ λ′ = gingin−1 · · · gi1
gi1 7→ g′i1 = gingin−1 · · · gi2

gi2gi1 7→ g′i2g
′
i1 = gingin−1 · · · gi3

...

gingin−1 · · · gi2 7→ g′ing
′
in−1 · · · g

′
i2 = gin

gingin−1 · · · gi2gi1 7→ g′ing
′
in−1 · · · g

′
i2g
′
i1 = λ.

Then the reverse path of Γw, denoted by wΓ, is defined as

wΓ = {λ′, g′i1 , g
′
i2g
′
i1 , . . . , g

′
in−1g

′
in−2 · · · g

′
i1 , g

′
ing

′
in−1 · · · g

′
i1}

= {gingin−1 · · · gi1 , gingin−1 · · · gi2 , gingin−1 · · · gi3 , . . . , gin , λ}. (5.30)

Thus, for given a word w, the system is said to be w-controllable if there does exist a control

sequence {u(v)} along the path wΓ so that a given state at w can be controlled to the state at

λ within finite steps of iteration.

empty
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Figure 5.7: A path Γ{gi4gi3gi2gi1} and its reverse {gi4gi3gi2gi1}Γ

For analysis purposes, we shall distinguish between the path Γw associated with a word

w and its reverse wΓ. We shall call Γw the Future-path and a homogeneous tree spanned by

all possibilities of the Future-path is called the Future-time. Thus the homogeneous tree in

Figure 5.6 is an example of the Future-time for 2D system in this setting. The Past-time is a

homogeneous tree spanned by all possibilities of the Past-path, wΓ. To make it more applicable,

we connect the Past-time and the Future-time at the root labelled by λ, and we also use λ
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as an index to identify whether a word belongs to the Past-time or to the Future-time. This

construction leads to the notion of “time axis” for i/s/o linear systems with evolution along a

free semigroup Fd. The “time axis” for such systems when d = 2 is shown in Figure 5.8.

Definition 29. Let Tf , {(w, λ) ∈ (Fd × {λ})} and Tp , {(λ,w) ∈ ({λ} × Fd \ {λ})} denote

respectively the homogeneous trees spanned by paths Γw and wΓ for all words in a free semigroup

Fd. Then the “time axis” for noncommutative d-D linear systems is represented by the set

T = Tp ∪ Tf ⊂ Fd ×Fd equipped with the partial ordering:

• (w, λ) Â (λ, v) for all w ∈ Fd, v ∈ Fd \ {λ},

• (w, λ) º (w′, λ) if and only if w = w̃w′ for some w̃ ∈ Fd,

• (λ, v) º (λ, v′) if and only if v′ = ṽv for some ṽ ∈ Fd,

and the sets Tp and Tf are called the Past-time and the Future-time, respectively.

Future
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Figure 5.8: Time axis for the noncommutative 2D linear system

By using the concepts of Future and Past defined above, the notion of state in our setting

can be stated as in the classical discrete-time 1D linear system: the state is the summary of

the past history of the system required to completely determine the future outputs from only a
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knowledge of future inputs. Now we are in a position to establish the state-space formalism of

an i/s/o linear system where the time-axis is given as in Definition 29. If we assume that the

initial conditions xk(λ, v), k ∈ Id where |v| = n are given, then the system update equations

must generate the state sequence in such a way that the length of word v is reduced by one in

each step of iteration (i.e., solve the system equations in the Past-time). When the states arrive

at the time (λ, λ), the system update equations must generate the state sequence at every point

(w, λ), w ∈ Fd such that the length of w is increasing by one in every step of recursive process.

Thus, from the above discussion, it is reasonable to define two sets of system equations:

one for the Past-time and the other for the Future-time. For further details on system modelling

and system update equations, see Chapter 6.

5.4 Some Noncommutative Systems in the Literature

The system we are dealing with is a multidimensional linear system with “time axis” equal to

a homogeneous tree of order d generated by a free semigroup Fd on d letters. The resulting

transfer function TΣ(z) is a formal power series TΣ(z) =
∑

w∈Fd
Twz

w in the noncommuting

indeterminants z = (z1, . . . , zd) (see Subsection 5.2.3). This setting should be distinguished

from other settings in the system theory literature where free semigroups Fd or noncommuting

power series come up. We mention here a few examples:

1. In automata theory (see [Arb69]), the state space and input space are taken to be a finite

set and the time axis is the usual 1-dimensional Z+. In this context, if we let {g1, . . . , gd}
be the set of admissible inputs, then the free semigroup arises as the space of possible

input signals: a signal up to time n corresponds to a word w = gi1 . . . gin of length n. In

our setting the free semigroup Fd arises as the time axis and the space of input signals is

`2(Fd,U). To get a parallel with the automata theory, we could consider the case where

the input space U is a finite set rather than a Hilbert space. Then the space of input

signals become functions defined on words (rather then a positive integer) with values in

a finite set.

2. In the algebraic theory for time-varying systems presented in [FLR93], noncommutative

Laurent series of the form
∑

ν≥ν0
Tνs

−ν arise. Here the rules are different. There is only

one variable or indeterminant s and the noncommutativity arises from the fact that the

variable s does not commute with the coefficients Tν ; we are in the setting of a skew-field,

or specifically, a differential field. In our setting, z1, . . . , zd do not commute with each

other but do commute with the coefficients Tν . To get an analogue of this skew-field

setting in our context, we would have to consider a time-varying version of our system

equations where the system matrix depends on the “time”, i.e., on the current word w and
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the system equations have the form

xj(gjw) = Aj,1(w)x1(w) + · · ·+Aj,d(w)xd(w) +Bj(w)u(w)

y(w) = C1(w)x1(w) + · · ·+ Cd(w)xd(w) +D(w)u(w).

We have no motivation to consider these generalizations at this time.

3. The closely related system to what we are considering here is a a so-called discrete event

system (see, e.g. [RW89]) defined as follows: A discrete event system is a dynamical

system with a discrete state space and piecewise constant trajectories, where the time axis

is the conventional one-dimension Z. At each time instant tk at which state transitions
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Figure 5.9: State trajectory for a Discrete Event System

occur, they assign an event, say gik ∈ F , the finite set of event labels. Then a system

trajectory is defined as a sequential order of the events occurring along the time axis. For

instance, if F = {g1, g2, g3}, then the state trajectory is one of the form g1g3g2g3g1 · · · .
From the practical point of view, the state transitions occur randomly throughout the

process. Thus one is able to assign the events to the process as long as the process is

running. Consequently, the string consists of infinitely many events. It is of interest to

consider a partial trajectory which contains a finite number of events rather than an infinite

one. A typical state trajectory is depicted in Figure 5.9.

4. The subject of systems on a tree has been studied from several perspectives, e.g. Benveniste

et al. [BNW94] studied a process of successive operations of filtering-and-decimation in the

multiresolution signal processing. They formulated linear models of systems and stochastic

processes on the dyadic tree and showed that such models provide a natural and powerful

setting for multiscale modeling and processing. In addition, they also introduced a special

class of transfer functions on a tree called stationary transfer functions.
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Alpay and Volok [AV] have formulated a notion of time-varying point evaluation of an i/o

operator along such a point in connection with the counterpart of the Hardy space for a

class of stationary transfer functions defined by [BNW94].

The closely related i/s/o d-D linear systems with evolution along a free semigroup Fd were

studied in [BVa, BVb] in connection with problems in operator theory (representations

of the Cuntz algebra, multivariable generalization of Lax-Phillips scattering theory, and

model theory for row contractions).



Chapter 6

Noncommutative Multidimensional

Linear Models

This Chapter presents the mathematical models of input/state/output (i/s/o) multidimensional

linear systems with evolution along a free semigroup (i.e., the time-axis represented by a ho-

mogeneous tree as described in Section 5.3). This class of systems may be regarded as a finite

automaton in such a way that the word-length of data, say n, is arbitrarily large, but finite.

There are two models discussed in this Chapter, namely a noncommutative d-D Fornasini-

Marchesini (or, ncfm) and a noncommutative d-D Givone-Roesser (or, ncgr) linear models1.

In fact, these two models have similar mathematical structures as the Fornasini-Marchesini (fm)

and the Givone-Roesser (gr) models, which have already been discussed in Part 1 except that

in this Part, we are dealing with a system whose transfer function is a formal power series in

several noncommuting indeterminants, and hence we expect to obtain analogous results as those

in Part 1.

This Chapter is organized as follows: We first introduce two mathematical models: the

ncfm and the ncgr models, and then establish the identification between these models in

Section 6.1. Since under suitable conditions, we can identify the ncfm with the ncgr, without

loss of generality, we shall focus on the system equations of the ncgr model as well as its adjoint

system in Section 6.2; the general solution of such system equations is also presented in this

Section. The last Section is devoted to the noncommutative d-variable Z-transform analysis.

Application of the Z-transform to the system equations yields the transfer function of several

noncommuting indeterminants described by the ncgr model.

1Besides the ncfm and the ncgr models, we also have the generalized structured ncgr model with the
structured dynamics Z(z) (see Subsection 5.2.3); however, we do not consider this generalization at this time.
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6.1 Operator Colligations and State-Space Formalisms

As in the classical discrete-time case, in order to fully understand the behavior of the systems

in which we are interested, we need to analyze such systems in both the sequential (time) and

the Z-transformed (frequency) domains. In this Section, we shall first formulate two state-space

models representing the i/s/o d-D linear systems with evolution along a free semigroup Fd. Such

models are called noncommutative d-D Fornasini-Marchesini (ncfm) and noncommutative d-D

Givone-Roesser (ncgr) linear models which have parallel mathematical structures as fm and gr

models described in Part 1. As in the commutative case, both models are not independent; in

fact, when certain conditions are imposed on the ncfm model, one can show that these models

are equivalent to each other.

Now let us recall some terminology in operator theory that we shall use throughout this

Part (see also Section 3.2 on page 33). A quadruple Σ = (H,U ,Y, U) is said to be a d-variable

operator colligation if there exist three Hilbert spaces H (the state space), U (the input space),

and Y (the output space) together with a connecting operator U given by

U =

[
A B

C D

]
:

[
H
U

]
7→
[
H
Y

]
(6.1)

where A ∈ L(H,H), B ∈ L(U ,H), C ∈ L(H,Y), and D ∈ L(U ,Y).
In the control theory literature, the operators A,B,C, and D are called the state operator,

the input operator, the output operator, and the feedforward operator, respectively. The colli-

gation Σ is said to be contractive, isometric, coisometric, or unitary if the connecting operator

U is respectively contractive, isometric, coisometric, or unitary. Associated with any d-variable

operator colligation is a d-D linear system. Since our interest is focusing on an infinite automata

system dealing with letters or words where the commutative property does not hold, this leads

to the state-space formalism which is a so-called noncommutative d-D linear model.

6.1.1 Noncommutative d-D Givone-Roesser (NCGR) Model

The noncommutative d-D Givone-Roesser (ncgr) model has a connecting operator2 UGR of the

form

UGR ,

[
AGR BGR

CGR DGR

]
=




AGR
1,1 · · · AGR

1,d BGR
1

...
. . .

...
...

AGR
d,1 · · · AGR

d,d BGR
d

CGR
1 · · · CGR

d DGR



:

[⊕d
i=1Hi

U

]
7→
[⊕d

i=1Hi

Y

]
(6.2)

2For notational convenience we here use the same superscript GR as in Chapter 3 since the corresponding
operators behave in the similar way.
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where AGR
ij ∈ L(Hj ,Hi), B

GR
i ∈ L(U ,Hi), C

GR
i ∈ L(Hi,Y), and DGR ∈ L(U ,Y). Here the state

space H is decomposed into a fixed d-fold orthogonal direct-sum H = H1 ⊕ · · · ⊕ Hd, and we

shall call Hk the k-th partial state space.

Associated with the connecting operator UGR is the ncgr model:

Past-time:

ΣGR
p ,





x1(λ, vg
−1
1 ) =

∑d
k=1A

GR
1,k xk(λ, v) +BGR

1 u(λ, v)
...

...

xd(λ, vg
−1
d ) =

∑d
k=1A

GR
d,k xk(λ, v) +BGR

d u(λ, v)

y(λ, v) =
∑d

k=1C
GR
k xk(λ, v) +DGRu(λ, v)

(6.3)

Future-time:

ΣGR
f ,





x1(g1w, λ) =
∑d

k=1A
GR
1,k xk(w, λ) +BGR

1 u(w, λ)
...

...

xd(gdw, λ) =
∑d

k=1A
GR
d,k xk(w, λ) +BGR

d u(w, λ)

y(w, λ) =
∑d

k=1C
GR
k xk(w, λ) +DGRu(w, λ).

(6.4)

For compactness, the systems ΣGR
p and ΣGR

f , respectively can be rewritten as

[
x(λ, vg−1)

y(λ, v)

]
= UGR

[
x(λ, v)

u(λ, v)

]
=

[
AGR BGR

CGR DGR

][
x(λ, v)

u(λ, v)

]
, (6.5)

and [
x(gw, λ)

y(w, λ)

]
= UGR

[
x(w, λ)

u(w, λ)

]
=

[
AGR BGR

CGR DGR

][
x(w, λ)

u(w, λ)

]
, (6.6)

where

x(λ, vg−1) =




x1(λ, vg
−1
1 )

...

xd(λ, vg
−1
d )


 , x(λ, v) =




x1(λ, v)
...

xd(λ, v)


 , x(gw, λ) =




x1(g1w, λ)
...

xd(gdw, λ)


 , x(w;λ) =




x1(w, λ)
...

xd(w, λ)




Remark 20. In fact, the system equations for the Past-time (6.3) and those for the Future-time

(6.4) are derived from the same system. Suppose that we are given a word, say w = gingin−1 · · · gi1
and use the Future-time system equation (6.6) to update the state x(v, λ), and to generate the

output sequence {y(v, λ)} for v ∈ Γw (see page 110 for the definition of a path) from a given

x(λ, λ) and u(v, λ). We then set u(λ, v′) = u(v, λ), x(λ, v′) = x(v, λ), and y(λ, v′) = y(v, λ),

where v′ ∈w Γ, to obtain a trajectory (u(λ, v′), x(λ, v′), y(λ, v′)) along the reverse path wΓ (see

(5.30) on page 111).
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One can verify that this trajectory along wΓ satisfies the Past-time system equations (6.3).

In this way, the Past-time system equations (6.3) follow from the Future-time system equations

(6.4) via the reverse path change of variable (v, λ) 7→ (λ, v′) taking Γw to wΓ.

For example, the state at a word w = g1g2g2 along the path Γw is

x1(g1g2g2, λ) = A11x1(g2g2, λ) +A12x2(g2g2, λ) +B1u(g2g2, λ)

= A11x1(g2g2, λ) +A12A21x1(g2, λ) +B1u(g2g2, λ) +A12B2u(g2, λ)

+A12A22B2u(λ, λ) +A12A22A21x1(λ, λ) +A12A22A22x2(λ, λ).

By letting

λ 7→ g1g2g2, g2 7→ g1g2, g2g2 7→ g1, g1g2g2 7→ λ,

and setting u(λ, v′) = u(v, λ), x(λ, v′) = x(v, λ) as above, we have

x1(λ, λ) = A11x1(λ, g1) +A12A21x1(λ, g1g2) +B1u(λ, g1) +A12B2u(λ, g1g2)

+A12A22B2u(λ, g1g2g2) +A12A22A21x1(λ, g1g2g2) +A12A22A22x2(λ, g1g2g2)

which is identical to x1(λ, λ) computed by the Past-time system equations. N

6.1.2 Noncommutative d-D Fornasini-Marchesini (NCFM) Model

For the case of a noncommutative d-D Fornasini-Marchesini (ncfm) linear model, the connecting

operator3 UFM has the form

UFM ,

[
AFM BFM

CFM DFM

]
=




AFM
1 BFM

1
...

...

AFM
d BFM

d

CFM DFM



:

[
H
U

]
7→
[⊕d

1H
Y

]
(6.7)

where AFM
j ∈ L(H,⊕d

1H), BFM
j ∈ L(U ,⊕d

1H), CFM ∈ L(H,Y), and DFM ∈ L(U ,Y).
Associated with this connecting operator UFM is the ncfm model:

Past-time:

ΣFM
p ,




x(λ, v) =

∑d
k=1A

FM
k x(λ, vgk) +

∑d
k=1B

FM
k u(λ, vgk)

y(λ, v) = CFMx(λ, v) +DFMu(λ, v)
(6.8)

3Note also that the operators Aj , Bj , C and D in this Section behave in the similar way as those in the classical
fm model discussed in Chapter 3. Therefore, we shall use the same superscript FM for ncfm as well.
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Future-time:

ΣFM
f ,





x(g1w, λ) = AFM
1 x(w, λ) +BFM

1 u(w, λ)
...

...

x(gdw, λ) = AFM
d x(w, λ) +BFM

d u(w, λ)

y(w, λ) = CFMx(w, λ) +DFMu(w, λ)

(6.9)

For notational convenience, let us write x(gv, λ) =




x(g1v, λ)
...

x(gdv, λ)


. Then, the system ΣFM

f becomes:

[
x(gw, λ)

y(w, λ)

]
= UFM

[
x(w, λ)

u(w, λ)

]
=

[
AFM BFM

CFM DFM

][
x(w, λ)

u(w, λ)

]
. (6.10)

Remark 21. As in the ncgr case, the Past-time system equations (6.8) can be derived as a

consequence of the Future-time system equations (6.9) under the reverse-path change of variable:

Γw 7→ wΓ. In the ncfm case, when considering all possible paths, one adds the update increments

coming in from all d immediate predecessor locations; whereas, in the ncgr case, each state

component at a given location in the Past has a unique immediate predecessor which influences

its value. N

6.1.3 Identification between NCGR and NCFM Models

As in the commutative case discussed in Part 1, we here investigate the connection between the

ncgr and the ncfm models. In fact, one will see that the results here are analogous to the ones

in Section 3.5. That is, the ncgr can be embedded into the ncfm in a natural way; on the

other hand, the dimension of the state-space in general is enlarged when we embed the ncfm

model into the ncgr model. However, it is possible to preserve the dimension of the state-space

if we impose certain assumptions on the ncfm model.

Embedding NCGR to NCFM

Let us first consider the case when d = 2, for simplicity. The system equations for the Past-time

2D ncgr model are given by:

ΣGR
p =






x1(λ, vg

−1
1 )

x2(λ, vg
−1
2 )


 =


A

GR
1,1 AGR

1,2

AGR
2,1 AGR

2,2




x1(λ, v)
x2(λ, v)


+


B

GR
1

BGR
2


u(λ, v)

y(λ, v) =
[
CGR
1 CGR

2

]

x1(λ, v)
x2(λ, v)


+DGRu(λ, v).

(6.11)
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By changing variables, the system (6.11) is equivalent to

ΣGR
p =





x1(λ, v) = AGR
1,1 x1(λ, vg1) +AGR

1,2 x2(λ, vg1) +BGR
1 u(λ, vg1)

x2(λ, v) = AGR
2,1 x1(λ, vg2) +AGR

2,2 x2(λ, vg2) +BGR
2 u(λ, vg2)

y(λ, v) = CGR
1 x1(λ, v) + CGR

2 x2(λ, v) +DGRu(λ, v).

(6.12)

Define x(λ, v) :=

[
x1(λ, v)

x2(λ, v)

]
. Then (6.12) becomes:





x(λ, v) =


A

GR
1,1 AGR

1,2

0 0


x(λ, vg1) +


 0 0

AGR
2,1 AGR

2,2


x(λ, vg2)

+


B

GR
1

0


u(λ, vg1) +


 0

BGR
2


u(λ, vg2)

y(λ, v) =
[
CGR
1 CGR

2

]
x(λ, v) +DGRu(λ, v),

(6.13)

which is exactly the system equations for the Past-time 2D ncfm model (6.8) where we set

AFM
1 =

[
AGR
1,1 AGR

1,2

0 0

]
, AFM

2 =

[
0 0

AGR
2,1 AGR

2,2

]
, BFM

1 =

[
BGR
1

0

]
, BFM

2 =

[
0

BGR
2

]
,

CFM = CGR =
[
CGR
1 CGR

2

]
, DFM = DGR.

For the Future-time, the system equations are described by:

ΣGR
f =






x1(g1w, λ)
x2(g2w, λ)


 =


A

GR
1,1 AGR

1,2

AGR
2,1 AGR

2,2




x1(w, λ)
x2(w, λ)


+


B

GR
1

BGR
2


u(w, λ)

y(w, λ) =
[
CGR
1 CGR

2

]

x1(w, λ)
x2(w, λ)


+DGRu(w, λ).

(6.14)

Let us define x(w, λ) :=

[
x1(w, λ)

x2(w, λ)

]
. Then ΣGR

f in (6.14) becomes:

x(g1w, λ) =

[
x1(g1w, λ)

x2(g1w, λ)

]
=

[
x1(g1w, λ)

0

]
=

[
AGR
1,1 AGR

1,2

0 0

]
x(w, λ) +

[
BGR
1

0

]
u(w, λ), (6.15)

x(g2w, λ) =

[
x1(g2w, λ)

x2(g2w, λ)

]
=

[
0

x2(g2w, λ)

]
=

[
0 0

AGR
2,1 AGR

2,2

]
x(w, λ) +

[
0

BGR
2

]
u(w, λ), (6.16)
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and the output equation is

y(w, λ) =
[
CGR
1 CGR

2

]
x(w, λ) +DGRu(w, λ). (6.17)

Thus, we arrive at the Future-time 2D ncfm model where we set AFM
i , BFM

i (i = 1, 2), CFM ,

and DFM as in the Past-time case.

This embedding can be generalized to the case when d > 2 by introducing the orthogonal

projection Pk : H 7→ H with image equal to Hk identified as a subspace of H for k = 1, . . . , d.

By setting x(λ, v) :=




x1(λ, v)
...

xd(λ, v)


, and x(w, λ) :=




x1(w, λ)
...

xd(w, λ)


, we have

x(λ, v) =
d∑

k=1

PkA
GRx(λ, vgk) +

d∑

k=1

PkB
GRu(λ, vgk),

y(λ, v) = CGRx(λ, v) +DGRu(λ, v),

x(gkw, λ) = PkA
GRx(w, λ) + PkB

GRu(w, λ) for k ∈ Id,
y(w, λ) = CGRx(w, λ) +DGRu(w, λ).

Finally, we let

AFM
k = PkA

GR, BFM
k = PkB

GR for k = 1, . . . , d, CFM = CGR, DFM = DGR,

and hence we arrive at the general d-D ncfm formalism as required.

Embedding NCFM to NCGR

To embed the ncfm model into the ncgr formalism, we need to construct the Hilbert spaces

Hk for k = 1, . . . , d, such that the direct sum (not necessarily orthogonal) ud
k=1Hk = H. To do

so, let us assume that

im
[
AFM
j BFM

j

]
∩ im

[
AFM
k BFM

k

]
= {0}, k 6= j (6.18)

and define Hk so that im
[
AFM
k BFM

k

]
⊂ Hk. Set

AGR
i,j = PiA

FM
i

∣∣
Hj

: Hj 7→ Hi, BGR
i = PiB

FM
i : U 7→ Hi,

CGR
j = CFM

∣∣
Hj

: Hj 7→ Y, DGR = DFM : U 7→ Y.
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Thus, for each k = 1, . . . , d,

Pkx(λ, v) = xk(λ, v) = Pk

[
d∑

`=1

AFM
` x(λ, vg`) +

d∑

`=1

BFM
` u(λ, vg`)

]

= PkA
FM
k x(λ, vgk) + PkB

FM
k u(λ, vgk)

=

d∑

j=1

PkA
FM
k

∣∣
Hj
xj(λ, vgk) + PkB

FM
k u(λ, vgk)

=
d∑

j=1

AGR
k,j xj(λ, vgk) +BGR

k u(λ, vgk), (6.19)

and also,

Pkx(gkw, λ) = xk(gkw, λ) = Pk
[
AFM
k x(w, λ) +BFM

k u(w, λ)
]

=
d∑

j=1

PkA
FM
k

∣∣
Hj
xj(w, λ) + PkB

FM
k u(w, λ)

=
d∑

j=1

AGR
k,j xj(w, λ) +BGR

k u(w, λ). (6.20)

Clearly, the state equations (6.19) and (6.20) are the k-th state equation of the Past-time (6.3)

and of the Future-time (6.4) ncgr models, respectively.

For the output equations, we have

y(λ, v) = CFMx(λ, v) +DFMu(λ, v)

=
d∑

j=1

CFM
∣∣
Hj
xj(λ, v) +DFMu(λ, v)

=
d∑

j=1

CGR
j xj(λ, v) +DGRu(λ, v), (6.21)

and

y(w, λ) = CFMx(w, λ) +DFMu(w, λ)

=

d∑

j=1

CFM
∣∣
Hj
xj(w, λ) +DFMu(w, λ)

=
d∑

j=1

CGR
j xj(w, λ) +DGRu(w, λ), (6.22)
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Thus, these form the output equations for the Past-time and for the Future-time of the ncgr

linear models as required.

6.2 The Adjoint System and the General Response of the NCGR

Systems

In this Section, we shall focus on the system equations of the i/s/o d-D linear system described

by the ncgr model. We then construct the adjoint system, and investigate the general response

of the ncgr linear model. The results from this Section can be obtained in the similar way for

the i/s/o system described by the ncfm model since one can identify the ncgr model with the

ncfm model under suitable conditions as we have already discussed in Section 6.1.3. Since the

system in which we are interested now is described in the form of the ncgr model, we shall

drop the superscript GR for notational convenience.

6.2.1 The Adjoint Systems

Recall that the ncgr linear model is described by:

Past-time:




x1(λ, vg
−1
1 )

...

xd(λ, vg
−1
d )

y(λ, v)



= U




x1(λ, v)
...

xd(λ, v)

u(λ, v)



=




A1,1 · · · A1,d B1

...
. . .

...
...

Ad,1 · · · Ad,d Bd

C1 · · · Cd D







x1(λ, v)
...

xd(λ, v)

u(λ, v)



, (6.23)

Future-time:




x1(g1w, λ)
...

xd(gdw, λ)

y(w, λ)



= U




x1(w, λ)
...

xd(w, λ)

u(w, λ)



=




A1,1 · · · A1,d B1

...
. . .

...
...

Ad,1 · · · Ad,d Bd

C1 · · · Cd D







x1(w, λ)
...

xd(w, λ)

u(λ, v)



. (6.24)

Let us consider the Past-time system first. The adjoint system Σ∗p is a system in which its

trajectories (u∗, x∗, y∗) are characterized as those (U∗×H×Y∗)-valued functions on Fd satisfying
the adjoint pairing relation:

〈x1(λ, vg−11 ), x∗1(λ, vg
−1
1 )〉+ · · ·+ 〈xd(λ, vg−1d ), x∗d(λ, vg

−1
d )〉+ 〈y(λ, v), u∗(λ, v)〉

= 〈x1(λ, v), x∗1(λ, v)〉+ · · ·+ 〈xd(λ, v), x∗d(λ, v)〉+ 〈u(λ, v), y∗(λ, v)〉 (6.25)
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which is equivalent to

〈



x1(λ, vg
−1
1 )

...

xd(λ, vg
−1
d )

y(λ, v)



,




x∗1(λ, vg
−1
1 )

...

x∗d(λ, vg
−1
d )

u∗(λ, v)




〉
=

〈



x1(λ, v)
...

xd(λ, v)

u(λ, v)



,




x∗1(λ, v)
...

x∗d(λ, v)

y∗(λ, v)




〉
. (6.26)

By substituting (6.23) into (6.26), we have

〈



x1(λ, v)
...

xd(λ, v)

u(λ, v)



, U∗




x∗1(λ, vg
−1
1 )

...

x∗d(λ, vg
−1
d )

u∗(λ, v)




〉
=

〈



x1(λ, v)
...

xd(λ, v)

u(λ, v)



,




x∗1(λ, v)
...

x∗d(λ, v)

y∗(λ, v)




〉
(6.27)

in which we deduce that trajectories (u∗, x∗, y∗) for the adjoint system Σ∗p are characterized by




x∗1(λ, v)
...

x∗d(λ, v)

y∗(λ, v)



= U∗




x∗1(λ, vg
−1
1 )

...

x∗d(λ, vg
−1
d )

u∗(λ, v)



. (6.28)

Thus, the equations of the Past-time adjoint system Σ∗p are

Σ∗p ,





x∗1(λ, v) =
∑d

j=1(Aj,1)
∗x∗j(λ, vg

−1
j ) + (C1)

∗u∗(λ, v)
...

x∗d(λ, v) =
∑d

j=1(Aj,d)
∗x∗j(λ, vg

−1
j ) + (Cd)

∗u∗(λ, v)

y∗(λ, v) =
∑d

j=1(Bj)
∗x∗j(λ, vg

−1
j ) + (D)∗u∗(λ, v).

(6.29)

The equations of the Future-time adjoint system Σ∗f can be constructed in the similar way and

are given by

Σ∗f ,





x∗1(w, λ) =
∑d

j=1(Aj,1)
∗x∗j(gjw, λ) + (C1)

∗u∗(w, λ)
...

x∗d(w, λ) =
∑d

j=1(Aj,d)
∗x∗j(gjw, λ) + (Cd)

∗u∗(w, λ)

y∗(w, λ) =
∑d

j=1(Bj)
∗x∗j(gjw, λ) + (D)∗u∗(w, λ),

(6.30)
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or in the vector-matrix form




x∗1(w, λ)
...

x∗d(w, λ)

y∗(w, λ)



= U∗




x∗1(g1w, λ)
...

x∗d(gdw, λ)

u∗(w, λ)



, (6.31)

where the adjoint pairing relation in this case is given by

〈x1(g1w, λ), x∗1(g1w, λ)〉+ · · ·+ 〈xd(gdw, λ), x∗d(gdw, λ)〉+ 〈y(w, λ), u∗(w, λ)〉
= 〈x1(w, λ), x∗1(w, λ)〉+ · · ·+ 〈xd(w, λ), x∗d(w, λ)〉+ 〈u(w, λ), y∗(w, λ)〉. (6.32)

An i/s/o linear system is said to be conservative provided that a (U ,H,Y)-valued function

(u, x, y) is a trajectory of such a system if and only if (y, x, u) is a trajectory of its adjoint system.

Now we shall verify that the system is conservative if and only if the connecting operator U is

unitary. To see this, let us first consider the Past-time system equations (6.23) and substitute

(y, x, u) by (u∗, x∗, y∗). Thus, we have




x∗1(λ, vg
−1
1 )

...

x∗d(λ, vg
−1
d )

u∗(λ, v)



= U




x∗1(λ, v)
...

x∗d(λ, v)

y∗(λ, v)



= UU∗




x∗1(λ, vg
−1
1 )

...

x∗d(λ, vg
−1
d )

u∗(λ, v)



. (6.33)

Also, from (6.28),




x1(λ, v)
...

xd(λ, v)

u(λ, v)



= U∗




x1(λ, vg
−1
1 )

...

xd(λ, vg
−1
d )

y(λ, v)



= U∗U




x1(λ, v)
...

xd(λ, v)

u(λ, v)



. (6.34)

Similarly, for the Future-time system equations (6.24),




x∗1(g1w, λ)
...

x∗d(gdw, λ)

u∗(w, λ)



= U




x∗1(w, λ)
...

x∗d(w, λ)

y∗(w, λ)



= UU∗




x∗1(g1w, λ)
...

x∗d(gdw, λ)

u∗(w, λ)



, (6.35)
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and from (6.31), 


x1(w, λ)
...

xd(w, λ)

u(w, λ)



= U∗




x1(g1w, λ)
...

xd(gdw, λ)

y(w, λ)



= U∗U




x1(λ, v)
...

xd(λ, v)

u(λ, v)



. (6.36)

From the above relations, it is clear that the connecting operator U is unitary since UU ∗ =

U∗U = I. If an i/s/o d-D linear system is conservative (i.e. U is unitary), then the adjoint

pairings (6.25) and (6.32) collapse to the energy balance relations:

d∑

k=1

‖xk(λ, vg−1k )‖2 + ‖y(λ, v)‖2 =
d∑

k=1

‖xk(λ, v)‖2 + ‖u(λ, v)‖2 for Σp, (6.37)

d∑

k=1

‖x∗k(λ, vg−1k )‖2 + ‖u∗(λ, v)‖2 =
d∑

k=1

‖x∗k(λ, v)‖2 + ‖y∗(λ, v)‖2 for Σ∗p, (6.38)

d∑

k=1

‖xk(gkw, λ)‖2 + ‖y(w, λ)‖2 =
d∑

k=1

‖xk(w, λ)‖2 + ‖u(w, λ)‖2 for Σf , (6.39)

d∑

k=1

‖x∗k(gkw, λ)‖2 + ‖u∗(w, λ)‖2 =
d∑

k=1

‖x∗k(w, λ)‖2 + ‖y∗(w, λ)‖2 for Σ∗f . (6.40)

Moreover, the equations of the Past-time adjoint system Σ∗p (6.29), and those of the Future-time

adjoint system Σ∗f (6.30) become:

Σ∗p,b ,





x1(λ, v) =
∑d

j=1(Aj,1)
∗xj(λ, vg

−1
j ) + (C1)

∗y(λ, v)
...

xd(λ, v) =
∑d

j=1(Aj,d)
∗xj(λ, vg

−1
j ) + (Cd)

∗y(λ, v)

u(λ, v) =
∑d

j=1(Bj)
∗xj(λ, vg

−1
j ) + (D)∗y(λ, v),

(6.41)

Σ∗f,b ,





x1(w, λ) =
∑d

j=1(Aj,1)
∗xj(gjw, λ) + (C1)

∗y(w, λ)
...

xd(w, λ) =
∑d

j=1(Aj,d)
∗xj(gjwλ) + (Cd)

∗y(w, λ)

u(w, λ) =
∑d

j=1(Bj)
∗xj(gjwλ) + (D)∗y(w, λ).

(6.42)

We shall call (6.41) (resp., (6.42)) the backward-time system equations for the Past-time (resp.,

the Future-time) ncgr linear model.
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6.2.2 The General Response of the NCGR Systems

In this Section, we are seeking the general response of the i/s/o d-D linear system described by

the ncgr model. Suppose now that we are given the initial conditions xk(λ, v), k ∈ Id and for

all v such that |v| = n, say v = gingin−1 · · · gi1 . Then one can solve the system equations

ΣGR
p ,





x1(λ, vg
−1
1 ) =

∑d
k=1A1,kxk(λ, v) +B1u(λ, v)

...
...

xd(λ, vg
−1
d ) =

∑d
k=1Ad,kxk(λ, v) +Bdu(λ, v)

y(λ, v) =
∑d

k=1Ckxk(λ, v) +Du(λ, v)

(6.43)

recursively as follows:

xi1(λ, gin · · · gi2) =
d∑

k=1

Ai1,kxk(λ, gingin−1 · · · gi1) +Bi1u(λ, gingin−1 · · · gi1)

xi2(λ, gin · · · gi3) =
d∑

i1,k=1

Ai2,i1Ai1,kxk(λ, gingin−1 · · · gi1)

+
d∑

i1=1

Ai2,i1Bi1u(λ, gingin−1 · · · gi1) +Bi2u(λ, gin · · · gi2)

xi3(λ, gin · · · gi4) =
d∑

i2,i1,k=1

Ai3,i2Ai2,i1Ai1,kxk(λ, gingin−1 · · · gi1)

+
d∑

i2,i1=1

Ai3,i2Ai2,i1Bi1u(λ, gingin−1 · · · gi1)

+
d∑

i2=1

Ai3,i2Bi2u(λ, gin · · · gi2) +Bi3u(λ, gin · · · gi3)

...

xin(λ, λ) =

d∑

in−1,...,i1,k=1

Ain,in−1 · · ·Ai2,i1Ai1,kxk(λ, gingin−1 · · · gi1)

+
d∑

in−1,...,i1=1

Ain,in−1 · · ·Ai2,i1Bi1u(λ, gingin−1 · · · gi1)

+ · · ·+
d∑

in−1=1

Ain,in−1Bin−1u(λ, gingin−1) +Binu(λ, gin). (6.44)

To condense notation, let us embed the ncgr system matrices A and B into the ncfm
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system matrices A and B respectively by using the orthogonal projection Pk : H 7→ H from H
onto Hk identified as a subspace of H for k = 1, . . . , d as before. We then set

Ak = PkA, Bk = PkB (6.45)

i.e.,

Ak =




0 · · · 0
...

...

Ak,1 · · · Ak,d

...
...

0 · · · 0




and Bk =




0
...

Bk

...

0



.

Then by simple algebra, one can verify that the general response (6.44) collapses to

x(λ, λ) =
∑

v:|v|=n

Avx(λ, v) +
d∑

k=1

∑

v:|v|<n

AvBku(λ, vgk), (6.46)

where Av = AinAin−1 · · ·Ai1 if v = gingin−1 · · · gi1 .

Example 12. Suppose that we are given all initial conditions xk(λ, v) for k = 1, 2 and v ∈ F2

such that |v| = 3. Then, for i3 ∈ {1, 2}, we have

xi3(λ, λ) =
2∑

i2,i1,k=1

Ai3,i2Ai2,i1Ai1,kxk(λ, gi3gi2gi1) +
2∑

i2,i1=1

Ai3,i2Ai2,i1Bi1u(λ, gi3gi2gi1)

+
2∑

i2=1

Ai3,i2Bi2u(λ, gi3gi2) +Bi3u(λ, gi3)

= Ai3,1A
2
11x1(λ, gi3g1g1) +Ai3,1A11A12x2(λ, gi3g1g1) +Ai3,1A12A21x1(λ, gi3g1g2)

+Ai3,1A12A22x2(λ, gi3g1g2) +Ai3,2A21A11x1(λ, gi3g2g1) +Ai3,2A21A12x2(λ, gi3g2g1)

+Ai3,2A22A21x1(λ, gi3g2g2) +Ai3,2A
2
22x2(λ, gi3g2g2) +Ai3,1A11B1u(λ, gi3g1g1)

+Ai3,1A12B2u(λ, gi3g1g2) +Ai3,2A21B1u(λ, gi3g2g1) +Ai3,2A22B2u(λ, gi3g2g2)

+Ai3,1B1u(λ, gi3g1) +Ai3,2B2u(λ, gi3g2) +Bi3u(λ, gi3). ♦

Suppose we now arrive at the state x(λ, λ) as shown in (6.46). Then one can continue the

recursive process using the Future-time system update equations (see (6.4) on page 118) to get

the general response for any w, say w = gjmgjm−1 · · · gj1 in the Future-time. From (6.4), we have

xj1(gj1 , λ) =
d∑

in=1

Aj1,inxin(λ, λ) +Bj1u(λ, λ)
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xj2(gj2gj1 , λ) =

d∑

k=1
k 6=j1

Aj2,kxk(gj1 , λ) +Aj2,j1

d∑

in=1

Aj1,inxin(λ, λ) +Aj2,j1Bj1u(λ, λ) +Bj2u(gj1 , λ)

xj3(gj3gj2gj1 , λ) =
d∑

k=1
k 6=j2

Aj3,kxk(gj2gj1 , λ) +Aj3,j2

d∑

k=1
k 6=j1

Aj2,kxk(gj1 , λ)

+Aj3,j2Aj2,j1

d∑

in=1

Aj1,inxin(λ, λ) +Aj3,j2Aj2,j1Bj1u(λ, λ)

+Aj3,j2Bj2u(gj1 , λ) +Bj3u(gj2gj1 , λ)

...

xj(gjw, λ) = ICj +BCj +Bju(gjmgjm−1 · · · gj1 , λ) +Aj,jmBjmu(gjm−1 · · · gj1 , λ)
+Aj,jmAjm,jm−1Bjm−1u(gjm−2 · · · gj1 , λ) + · · ·
+Aj,jmAjm,jm−1 · · ·Aj3,j2Bj2u(gj1 , λ)

+Aj,jmAjm,jm−1 · · ·Aj3,j2Aj2,j1Bj1u(λ, λ) (6.47)

where

ICj = Aj,jmAjm,jm−1 · · ·Aj3,j2Aj2,j1

d∑

in=1

Aj1,inxin(λ, λ)

and BCj =
d∑

k=1
k 6=jm

Aj,kxk(gjm · · · gj1 , λ) +Aj,jm

d∑

k=1
k 6=jm−1

Ajm,kxk(gjm−1 · · · gj1 , λ)

+Aj,jmAjm,jm−1

d∑

k=1
k 6=jm−2

Ajm−1,kxk(gjm−2 · · · gj1 , λ) + · · ·

+Aj,jmAjm,jm−1 · · ·Aj3,j2

d∑

k=1
k 6=j1

Aj2,kxk(gj1 , λ).

For convenience, we assume that the boundary conditions BCj = 0. In fact, this as-

sumption is reasonable since upon this assumption, there exists the one-to-one correspondence

between the particular word and the state. In other words, suppose the word is given by

w = gjmgjm−1 · · · gj1 6= λ, then the state corresponding to this particular word w is xjm(w, λ)

where xj(w, λ) = 0 for all j 6= jm ∈ Id.
By embedding the system matrix A of the ncgr model into the ncfm system matrix A as

before, one can check that the general response (6.47) is
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x(gw, λ)−
d∑

k=1

Agkwx(λ, λ)

=




B1 A1,jmBjm · · · A1,jm · · ·Aj2,j1Bj1
...

...
...

Bd Ad,jmBjm · · · Ad,jm · · ·Aj2,j1Bj1


 ·




u(gjmgjm−1 · · · gj1 , λ)
u(gjm−1 · · · gj1 , λ)

...

u(gj1 , λ)

u(λ, λ)



. (6.48)

6.3 Frequency domain analysis

To maintain an analogue with the commutative case as described in Part 1, it is more conve-

nient to introduce the noncommutative d-variable Z-transform which considerably simplifies the

analysis of the i/s/o d-D linear systems with evolution along a free semigroup. For convenience,

we shall refer to the noncommutative d-variable Z-transform as the Z-transform.

For any Hilbert space H, we denote by `2((Fd × Fd),H) the set of all H-valued function

(w, v) 7→ f(w, v) on Fd ×Fd where

‖f‖2`2((Fd×Fd),H) ,
∑

(w,v)∈Fd×Fd

‖f(w, v)‖2H <∞. (6.49)

For any function f(w, v) ∈ `2((Fd ×Fd),H), the Z-transform of f is defined by:

f∧(Fd×Fd)(z, ξ) ,
∑

(w,v)∈(Fd×Fd)

f(w, v)zwξv, (6.50)

where z = (z1, . . . , zd) and ξ = (ξ1, . . . , ξd) are two d-tuples of noncommutative indeterminants.

Here we write

zw = zjm · · · zj1 if w = gjmgjm−1 · · · gj1 for any jk ∈ Id,

and

ξv = ξin · · · ξi1 if v = gingin−1 · · · gi1 for any i` ∈ Id.

From this definition, the Z-transform is indeed a formal power series mapping from the space

`2((Fd×Fd),H) onto the space L2((Fd×Fd),H), where L2((Fd×Fd),H) denotes the set of all

such formal power series f∧(Fd×Fd)(z, ξ) in the frequency domain.

Application of the Z-transform to the Future-time system (6.4) where the Cartesian product
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(Fd ×Fd) is replaced by Tf = (Fd × {λ}) yields

∑

(w,λ)∈Tf

xk(gkw, λ)z
w =

d∑

j=1

∑

(w,λ)∈Tf

Ak,jxj(w, λ)z
w +

∑

(w,λ)∈Tf

Bkuk(w, λ)z
w

=
d∑

j=1

Ak,jx
∧Tf
j (z, 0) +Bku

∧Tf (z, 0). (6.51)

Multiply both sides of (6.51) by zk, we have

∑

(w,λ)∈Tf

xk(gkw, λ)z
gkw = zk

d∑

j=1

Ak,jx
∧Tf
j (z, 0) + zkBku

∧Tf (z, 0). (6.52)

Let us consider the left hand side of (6.52) for a moment. Note that
∑

(w,λ)∈Tf
xk(gkw, λ)z

gkw is

equivalent to
∑∞

w:|w|=0 xk(gkw, λ)z
gkw, and as we always assume that the boundary conditions

are all zero (i.e., xk(gjw) = 0 for all w ∈ Fd unless k = j), we have

∞∑

w:|w|=0

xk(gkw, λ)z
gkw =

∞∑

w̃:|w̃|=1

xk(w̃, λ)z
w̃

=
∞∑

w̃:|w̃|=0

xk(w̃, λ)z
w̃ − xk(λ, λ)

= x
∧Tf
k (z, 0)− xk(λ, λ).

Thus the Z-transform of the k-th state equation (6.51) becomes:

x
∧Tf
k (z, 0) = zk

d∑

j=1

Ak,jx
∧Tf
j (z, 0) + zkBku

∧Tf (z, 0) + xk(λ, λ). (6.53)

More compactly, let us introduce the matrix Zd(z) =




z1IH1
. . .

zdIHd


 , where zizj 6= zjzi

unless i = j. Hence, the Z-transform of the state equations (6.4) is

x∧Tf (z, 0) ,




x
∧Tf
1 (z, 0)

...

x
∧Tf
d (z, 0)


 = (I − Zd(z)A)−1Zd(z)Bu∧Tf (z, 0) + (I − Zd(z)A)−1x(λ, λ), (6.54)

where u∧Tf (z, 0) ∈ L2((Fd × {λ}),H).
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Application of the Z-transform to the output equation of the Future-time system yields

y∧Tf (z, 0) = Cx∧Tf (z, 0) +Du∧Tf (z, 0)

=
[
C (I − Zd(z)A)−1 Zd(z)B +D

]
· u∧Tf (z, 0) + C(I − Zd(z)A)−1x(λ, λ)

, TΣf (z) · u∧Tf (z, 0) + C(I − Zd(z)A)−1x(λ, λ), (6.55)

where TΣf (z) is called the noncommutative Givone-Roesser (ncgr) transfer function for the

Future-time system. Note that (I −Zd(z)A)−1 does exist as a geometric series
∑∞

j=0(Zd(z)A)
j ,

then the transfer function TΣf (z) admits a formal power series representation as follows:

(I − Zd(z)A)−1 =
∞∑

j=0

(Zd(z)A)
j =

∞∑

j=0

(
d∑

k=1

zkAk

)j

=
∑

w∈Fd

Awzw. (6.56)

Also, Zd(z)B =
∑d

k=1Bkzk and therefore, the transfer function TΣf can also be rewritten as

TΣf (z) = D + C (I − Zd(z)A)−1 Zd(z)B

= D + C



∞∑

j=0

(
d∑

k=1

Akzk

)j

 ·

d∑

k=1

Bkzk

= D +
∑

w∈Fd

d∑

k=1

(CAwBk) z
wgk :=

∑

v∈Fd

Tvz
v, (6.57)

where Tλ = D and Twgk = CAwBk. See Section 5.1.2 for discussion on a formal power series.

Similarly, let us consider the k-th backward-time system equation for the Past-time ncgr

linear system (see (6.41) on page 127). Application of the Z-transform to (6.41) over all the

time set Tp = ({λ} × Fd \ {λ}) yields,

∑

(λ,v)∈Tp

xk(λ, v)ξ
v =

d∑

j=1

∑

(λ,v)∈Tp

(Aj,k)
∗xj(λ, vg

−1
j )ξv +

∑

(λ,v)∈Tp

(Ck)
∗y(λ, v)ξv

Or, x
∧Tp
k (0, ξ) =

d∑

j=1

∑

(λ,v)∈Tp

(Aj,k)
∗xj(λ, vg

−1
j )ξv + (Ck)

∗y∧Tp(0, ξ). (6.58)

Note that

d∑

j=1

∑

(λ,v)∈Tp

(Aj,k)
∗xj(λ, vg

−1
j )ξv =

d∑

j=1

∞∑

v:|v|=1

(Aj,k)
∗xj(λ, vg

−1
j )ξv
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=

d∑

j=1

(Aj,k)
∗

∞∑

v:|v|=1

xj(λ, vg
−1
j )ξvg

−1
j · ξj

=
d∑

j=1

(Aj,k)
∗

∞∑

ṽ:|ṽ|=0

xj(λ, ṽ)ξ
ṽ · ξj

=
d∑

j=1

(Aj,k)
∗




∞∑

ṽ:|ṽ|=1

xj(λ, ṽ)ξ
ṽ + xj(λ, λ)


 · ξj

=
d∑

j=1

(Aj,k)
∗


 ∑

(λ,ṽ)∈Tp

xj(λ, ṽ)ξ
ṽ + xj(λ, λ)


 · ξj

=
d∑

j=1

(Aj,k)
∗
[
x
∧Tp
j (0, ξ) + xj(λ, λ)

]
· ξj .

By substituting the above expression into (6.58), we have

x
∧Tp
k (0, ξ) =

d∑

j=1

(Aj,k)
∗
[
x
∧Tp
j (0, ξ) + xj(λ, λ)

]
· ξj + (Ck)

∗y∧Tp(0, ξ)

=
d∑

j=1

(Aj,k)
∗ξj

[
x
∧Tp
j (0, ξ) + xj(λ, λ)

]
+ (Ck)

∗y∧Tp(0, ξ).

Or in more compact form,

x∧Tp(0, ξ) = (I −A∗Zd(ξ))−1C∗y∧Tp(0, ξ) + (I −A∗Zd(ξ))−1A∗Zd(ξ)x(λ, λ), (6.59)

where Zd(ξ) = diag(ξ1IH1 , . . . , ξdIHd).

We now apply the Z-transform to the backward-time output equation for the Past-time

system and hence, we get

u∧Tp(0, ξ) =
d∑

j=1

B∗j ξj

[
x
∧Tp
j (0, ξ) + xj(λ, λ)

]
+D∗y∧Tp(0, ξ)

= B∗Zd(ξ)x
∧Tp(0, ξ) +D∗y∧Tp(0, ξ) +B∗Zd(ξ)x(λ, λ). (6.60)

Substituting x∧Tp(0, ξ) from (6.59) into the Z-transform of the output equation (6.60), we have

u∧Tp(0, ξ) =
[
B∗Zd(ξ)(I −A∗Zd(ξ))−1C∗ +D∗

]
· y∧Tp(0, ξ) +B∗Zd(ξ)(I −A∗Zd(ξ))−1x(λ, λ)

, TΣ∗
p,b
(ξ) · y∧Tp(0, ξ) +B∗Zd(ξ)(I −A∗Zd(ξ))−1x(λ, λ), (6.61)

where TΣ∗
p,b
(ξ) is called the noncommutative Givone-Roesser (ncgr) adjoint transfer function
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for the Past-time system.

6.4 Conclusion

This Chapter presents the mathematical linear models for the input/state/output (i/s/o) d-D

linear systems with evolution along a free semigroup, namely a noncommutative d-D Givone-

Roesser (ncgr) model and a noncommutative d-D Fornasini-Marchesini (ncfm) model. These

models are not completely independent; in fact, one can identify one model with the other if

the appropriate assumptions are imposed on the ncfm model. We also establish the adjoint

systems of the Future-time and the Past-time linear systems which are regarded as systems

whose state equations iterate backward in time. Application of the noncommutative d-variable

Z-transform yields the transfer functions of i/s/o systems which in the form of a formal power

series in noncommuting d-indeterminants.



Chapter 7

Reachability, Controllability, and

Observability

This Chapter presents the fundamental concepts of reachability, controllability and observabil-

ity having been used extensively in conjunction with the state-space analysis for the classical

discrete-time linear system. It is well-known that the controllability and the reachability involve

the influence of the input signal on the state vector; while the observability deals with the in-

fluence of the state vector on the output. These concepts can be extended and applied to the

analysis and design procedure of the i/s/o linear systems where the time-axis represented by a

free semigroup Fd.
In the state-space analysis, it is known that there are many choices of states in the math-

ematical models representing the same quantities of the physical system. As a result, these

mathematical models describe the behavior and convey the same information of the same phys-

ical system even though they have different system matrices {A,B,C,D}. Sometimes the given

state-space representation is much more difficult to implement in the physical aspects. One has

a choice to choose state-space representation in an alternative way as long as it preserves full

information of the system. For instance, one may choose a new state by changing the state-space

coordinates as x̃ = Sx, where S is an arbitrary invertible matrix. The Future-time system (6.6)

is then described by

[
x̃(gw, λ)

y(w, λ)

]
= Ũ

[
x̃(w, λ)

u(w, λ)

]
=

[
Ã B̃

C̃ D̃

][
x̃(w, λ)

u(w, λ)

]
, (7.1)

where

Ã = SAS−1, B̃ = SB, C̃ = CS−1, D̃ = D (7.2)

The transformation matrix, S is called the similarity transformation, and the Future-time system

136
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(6.6) and (7.1) are said to be similar to each other. Sometimes we may write:

[
A B

C D

]
S∼
[
Ã B̃

C̃ D̃

]
, (7.3)

if (7.2) holds. This result is applicable similarly for the Past-time system.

Since the similarity transformation is an alternative way to convert the original state to

a new one without changing information of a system, the question arising here is that if two

systems are similar to each other (i.e., there exists an invertible matrix S satisfying the similarity

transformation (7.2)), do they still provide the same transfer function? The answer is YES and

it follows from the following Lemma. It should be noted here that in general the transformation

must commute with the ncgr dynamics Zd(z) = diag{z1IH1 , . . . , zdIHd} where zizj 6= zjzi

unless i = j. This leads to the definition of the admissible similarity transformation.

Definition 30 (Admissible Transformation). For a given ncgr dynamics Zd, a set S is

called the commutative matrix set with respect to Zd if each member in this set commutes with

Zd, i.e.

S =
{
S ∈ Cn×n : SZd(·) = Zd(·)S

}

where n =
∑d

i=1 dim (Hi).

Since Zd(·) is a diagonal matrix, any matrix S ∈ S admits block diagonal structure. In

addition, a matrix S ∈ S is said to be an admissible transformation if S is invertible.

Lemma 7.1. The transfer function is invariant under the admissible similarity transformation

Proof. Suppose that T̃Σf be transfer function of the similar Future-time system (7.1). Then, it

follows that for any S ∈ S

T̃Σf (z) = C̃
(
I − Zd(z)Ã

)−1
Zd(z)B̃ + D̃

= CS−1
(
I − Zd(z)SAS−1

)−1
Zd(z)SB +D

= C(I − Zd(z)A)−1Zd(z)B +D = TΣf (z).

Likewise, let T̃Σ∗
p,b

be an adjoint transfer function of similar Past-time system. Then, it follows

that

T̃Σ∗
p,b
(ξ) = B̃∗Zd(ξ)

(
I − Ã∗Zd(ξ)

)−1
C̃∗ + D̃∗

= B∗S∗Zd(ξ)
(
I − (S−1)∗A∗S∗Zd(ξ)

)−1
(S−1)∗C∗ +D∗

= B∗Zd(ξ) (I −A∗Zd(ξ))−1C∗ +D∗ = TΣ∗
p,b
(ξ) ¥
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This Lemma establishes the fact that the transfer function is invariant with respect to the

similarity transformation. Conversely, if two collections of system matrices, say {Ai, Bi, Ci, Di}
for i = 1, 2, have the same transfer function, it is not always the case that these system ma-

trices are similar to each other. In this case, the concepts of controllability, reachability and

observability of a system play an important role to verify whether or not two given collections

of system matrices are similar to each other.

7.1 Reachability

In this Section, two notions of reachability: {w}-reachability and length-n-reachability, are

introduced. Suppose the word w is given. Then one may ask if there does exist a control sequence

such that the state sequence starting from the zero initial conditions will reach the desired state

at “time w”. We shall call this property as {w}-reachability. There is another concept of

reachability called length-n-reachability which is somewhat weaker than the {w}-reachability.
The length-n-reachability means that for given n ∈ Z+, there does exist a control sequence such

that the system generates the state sequence starting from the zero initial conditions so that

the span of state-values on words of length n is the whole space. The precise definitions are

provided as follows:

Definition 31 ({w}-Reachability). Let w be a given word, say w = gingin−1 · · · gi1 , ik ∈ Id.
Then the system is said to be {w}-reachable if, for zero initial and boundary conditions, and

any desired state xd ∈ Hin , there exists a control sequence {u(v, λ)}ṽv=w:ṽ 6=λ along the path Γw

so that the system starts at the zero initial condition x(λ, λ) = 0, it generates a state sequence

{xk(gkv, λ)}|v|<n satisfying xin(w, λ) = xd.

Definition 32 (Length-n-Reachability). Given n ∈ Z+, the system is said to be length-

n-reachable if for zero initial and boundary conditions, and any desired state xdin ∈ Hin , for

each in ∈ Id, there exists a control sequence {u(v, λ)}|v|<n so that the system starts at the

zero initial conditions x(λ, λ) = 0, it generates a state sequence {xk(gkv, λ)}|v|<n satisfying

xdin =
∑

w′∈Fd,
|w′|=n−1

xin(ginw
′, λ) for all in ∈ Id.

Definition 33 (Reachability). The system is said to be reachable if it is length-n-reachable

for some n ∈ Z+.

By the definition of {w}-reachability, it is of interest for us to find a condition such that

the system starts at the zero initial condition x(λ, λ) = 0 and then it will reach at the desired

state xd at a given word w. Thus, in this case, we consider the system update equations for the



Tanit Malakorn Chapter 7. Reachability, Controllability, and Observability 139

Future-time which are given by

Σf =




xk(gkw, λ) =

∑d
j=1Ak,jxj(w, λ) +Bku(w, λ) for k = 1, . . . , d

y(w, λ) =
∑d

j=1Cjxj(w, λ) +Du(w, λ)

and recall that the general response of this state equation is (see (6.48))

x(gw, λ)−
d∑

k=1

Agkwx(λ, λ) =




B1 A1,inBin · · · A1,in · · ·Ai2,i1Bi1
...

...
...

Bd Ad,inBin · · · Ad,in · · ·Ai2,i1Bi1


 ·




u(gingin−1 · · · gi1 , λ)
u(gin−1 · · · gi1 , λ)

...

u(gi1 , λ)

u(λ, λ)



. (7.4)

Let xd be the desired state corresponding to the given word, w = gingin−1 · · · gi1 . Then the

{w}-reachability property implies that

xd = xin(w, λ) =
[
Bin Ain,in−1Bin−1 · · · Ain,in−1 · · ·Ai2,i1Bi1

]
·




u(gin−1 · · · gi1 , λ)
...

u(gi1 , λ)

u(λ, λ)




= row ṽv=w given
ṽ=gingin−1 ···gin−` 6=λ

`=0,1,...,n−1

[Ain,in−1 · · ·Ain+1−`,in−`Bin−` ] · colv∈Γw\{w}[u(v, λ)]

, Rin
w · colv∈Γw\{w}[u(v, λ)] (7.5)

where Γw is a path corresponding to the given word w = gingin−1 · · · gi1 , and Rin
w is called the

{w}-reachability matrix. It is clear from (7.5) that xd ∈ im(Rin
w ).

If rank(Rin
w ) < dim(Hin) we cannot possibly find a solution for every xk(gkw̃, λ) for k ∈ Id

such that xd = xin(w, λ) for given xd with zero initial and boundary conditions. Hence the

system is not {w}-reachable. Therefore, by the definition of {w}-reachability, the system Σf

is {w}-reachable whenever the {w}-reachability matrix Rin
w is full row rank, i.e. rank(Rin

w ) =

dim(Hin). Equivalently, im(Rin
w ) = Hin . These results lead to the following Theorem.

Theorem 7.2. Given a word w = gingin−1 · · · gi1 where ik ∈ Id. Then the following statements

are equivalent:

1. A system is {w}-reachable,
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2. im(Rin
w ) = Hin,

3. rank(Rin
w ) = dim(Hin).

Now we let xin denote the span of states at all words of length n starting with a letter gk

given by xin :=
∑

w′:|w′|=n−1 xin(ginw
′, λ) and assume that all boundary conditions {xk(g`w)} =

0 whenever k 6= `. Thus we have

xin − ICin = Binu(

n−1︷ ︸︸ ︷
g1g1 · · · g1, λ) +Binu(

n−1︷ ︸︸ ︷
g1g1 · · · g2, λ) + · · ·+Binu(

n−1︷ ︸︸ ︷
gdgd · · · gd, λ)

+Ain,1B1u(

n−2︷ ︸︸ ︷
g1g1 · · · g1, λ) + · · ·+Ain,1B1u(

n−2︷ ︸︸ ︷
gdgd · · · gd, λ)

+Ain,2B2u(

n−2︷ ︸︸ ︷
g1g1 · · · g1, λ) + · · ·+Ain,dA

n−3
d,d Ad,d−1Bd−1u(λ, λ)

+Ain,dA
n−2
d,d Bdu(λ, λ) (7.6)

where

ICin = Ain,1A
n−2
1,1

d∑

j=1

A1,jxj(λ, λ) +Ain,1A
n−3
1,1 A1,2

d∑

j=1

A2,jxj(λ, λ) + · · ·

+Ain,in−1A
n−2
in,in

d∑

j=1

Ain,jxj(λ, λ) +An−1
in,in

d∑

j=1

Ain,jxj(λ, λ).

Let xdin be the desired state such that xdin =
∑

w′∈Fd,
|w′|=n−1

xin(ginw
′, λ) = xin . Then (7.6) can be

written in a condense notation as

xdin = roww:w=gin w̃
|w̃|=n−1

[
Rin
w

]
· colv:|v|<n [u(v, λ)] , Rin

n · colv:|v|<n [u(v, λ)] (7.7)

Since some columns in Rin
n are identical, the rank condition does not change if such columns are

dropped. By using the same notation for convenience, the matrix Rin
n corresponding to each

xin , in ∈ Id is given by

Rin
n =

[
Bin Ain,1B1 · · · Ain,dBd Ain,1A1,1B1 · · · Ain,dA

n−3
d,d Ad,d−1Bd−1 Ain,dA

n−2
d,d Bd

]
,

where Rin
n is called the length-n-reachability matrix with respect to a letter gin . Thus (7.7)

implies that xdin ∈ im(Rin
n ) ⊆ Hin . If im(Rin

n ) = Hin , it implies that for all words of length

n starting with a letter gin , the desired state can be reached from the zero initial conditions.

By using the same argument as in the {w}-reachability, one can conclude that the system is

length-n-reachable if and only if im(Rin
n ) = Hin for all in ∈ Id. Equivalently, for each in, the
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matrix Rin
n is full row rank, i.e. rank(Rin

n ) = dim(Hin).

Let us denote by Rn the length-n-reachability matrix which is a diagonal block matrix

defined as follows:

Rn = diag {R1
n,R2

n, . . . ,Rd
n} =




R1
n 0 · · · 0

0 R2
n · · · 0

...
...

. . .
...

0 · · · 0 Rd
n



. (7.8)

Hence, the condition such that rank(Rin
n ) = dim(Hin) for all in ∈ Id is equivalent to rank(Rn) =

dim(H). Now let XR
n denote the space such that (7.7) holds for all in ∈ Id, i.e.

XR
n = {x ∈ H | xin = Rin

n · colv:|v|<n[u(v, λ)], ∀in ∈ Id}.

We shall call XR
n the reachability subspace. Clearly, XR

n ⊆ H. If XR
n = H, then every state

xin(ginw̃, λ) ∈ Hin , where |w̃| = n− 1 is given and for all in ∈ Id, can be reached from the zero

initial condition which implies also that the system is length-n-reachable. These results lead to

the following Theorem.

Theorem 7.3. Let n be a positive integer. Then the following statements are equivalent:

1. A system is length-n-reachable,

2. for each in ∈ Id, Rin
n is full row rank, i.e. im(Rin

n ) = Hin ,

3. the length-n-reachability matrix Rn given in (7.8) is full rank, i.e. im(Rn) =
⊕d

in=1Hin ,

4. the reachability subspace XR
n = H.

Obviously, if the system is {w}-reachable, then it is also length-n-reachable for n = |w|.
Note that if there exists at least one j ∈ Id such that rank(Rj

n) is not full row rank, the system is

unreachable and the state xj is said to be an unreachable mode. In addition, such a system can

be decomposed into reachable and unreachable subspaces using a linear transformation operator

such as an admissible transformation S in Definition 30. To be more precise, suppose that

rank(Rj
n) = rj < nj := dim(Hj). Then there exists nonsingular matrices Sj ∈ S ⊂ Cnj×nj such

that

SjRj
n =

[
R̃j
n

0

]
, where R̃j

n has rj rows,
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i.e.,

Sj ·
[
Bj Aj,1B1 · · · Aj,dBd Aj,1A1,1B1 · · · Aj,dA

n−3
d,d Ad,d−1Bd−1 Aj,dA

n−2
d,d Bd

]

=

[
B̃j Ãj,1B̃1 · · · Ãj,dB̃d Ãj,1Ã1,1B̃1 · · · Ãj,dÃ

n−3
d,d Ãd,d−1B̃d−1 Ãj,dÃ

n−2
d,d B̃d

0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0

]

This implies that SjBj =

[
B̃j

0

]
, and for each k = 1, . . . , d, SjAj,kBk =

[
Ãj,kB̃k

0

]
. Thus, there

exists a nonsingular matrix Sk ∈ S ⊂ Cnk×nk such that

SjAj,kBk = (SjAj,kS
−1
k )(SkBk) =

[
Ãj,k ∗
0 ∗

][
B̃k

0

]
,

where ∗ is arbitrary.

Note that the results for Aj,kAk,` · · ·Bd terms can be obtained in the similar way. Then

we set S = diag{S1, . . . , Sd} to be the admissible transformation which decomposes the realiza-

tion {A,B,C,D} into unreachable and reachable submatrices corresponding to unreachable and

reachable subspaces, respectively.

Remark 22. If n is arbitrary, we shall write R := diag{R1, . . . ,Rd} rather than Rn for some

fixed n and R itself is called the reachability matrix. For each k ∈ Id, Rk is an infinite row

matrix and we consider it acting on columns of infinite length but with finite support (all but

finitely many entries are zero, but which finitely many and how many depends on the particular

vector). Thus the reachability means that this infinite matrix R has full rank. N

Example 13. Suppose F = {0, 1} and the desired states is such that the word-length |w| =
n = 3 where w ∈ F2. Then one can verify that

[
x1(000, λ)

x2(100, λ)

]
=

[
B1 A11B1 A2

11B1

B2 A21B1 A21A11B1

]

u(00, λ)

u(0, λ)

u(λ)




[
x1(001, λ)

x2(101, λ)

]
=

[
B1 A11B1 A11A12B2

B2 A21B1 A21A12B2

]

u(01, λ)

u(1, λ)

u(λ)




[
x1(010, λ)

x2(110, λ)

]
=

[
B1 A12B2 A12A21B1

B2 A22B2 A22A21B1

]

u(10, λ)

u(0, λ)

u(λ)



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[
x1(011, λ)

x2(111, λ)

]
=

[
B1 A12B2 A12A22B2

B2 A22B2 A2
22B2

]

u(11, λ)

u(1, λ)

u(λ)




This system is length-3-reachable if and only if R3 = diag
{
R1

3,R2
3

}
is of full rank, where

R1
3 =

[
B1 A11B1 A12B2 A2

11B1 A11A12B2 A12A21B1 A12A22B2

]

R2
3 =

[
B2 A21B1 A22B2 A21A11B1 A21A12B2 A22A21B1 A2

22B2

]

Now if we are interested in the reachability of a system at a particular word, say w = 110, then

the system is {110}-reachable if and only if R{110} =
[
B2 A22B2 A22A21B1

]
is of full row

rank. ♦

7.2 Controllability

The concept of controllability is parallel with the concept of reachability but in the reverse

direction of the path. The concept of reachability concerns whether or not the given state xd in

the Future can be reached from the initial state at the Present time x(λ, λ) within finite number

of steps of iteration. In contrast, the concept of controllability concerns whether or not the given

state xd in the Future can be controlled back to the initial state x(λ, λ) at the Present time

within finite number of steps of iteration. Since the trajectory (u(v, λ), x(v, λ), y(v, λ)) along

the path Γw is identical to the trajectory (u(λ, v′), x(λ, v′), y(λ, v′)) along the reverse path wΓ

(by the change of varible (v, λ) 7→ (λ, v′)), the concept of controllability may be viewed as the

the reachability of the system at the Present-time λ from the zero initial state x(λ, gw) given in

the Past. For further discussion on this construction, we refer to Section 5.3 and Remark 20.

There are also two notions of controllability: {w}-controllability and length-n-controllability.

A {w}-controllability means that for a given word w, there exists a control sequence {u(λ, v)}vṽ=w
such that the system starts at the word w, it generates a state sequence until it reaches the initial

state x(λ, λ) within finite steps. Instead, if we are given n ∈ Z+ the length of a word rather

than a specified word, and asked whether or not there exists a control sequence {u(λ, v)}|v|≤n to

control any state of length n to the initial state within finite steps of iteration, this is a concept

of length-n-controllability. The precise definitions are provided as follows:

Definition 34 ({w}-Controllability). Let w be a given word, say w = gingin−1 · · · gi1 6= λ,

where ik ∈ Id. Then the system is said to be {w}-controllable if, for zero initial conditions

x(λ,w), |w| = n, there exists a control sequence {u(λ, v)}vṽ=w along the path wΓ so that the

system starting at the word w, can generate a state sequence {xk(λ, vg−1k )}vṽ=w until it reaches

the state xi1(λ, λ).
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Definition 35 (Length-n-Controllability). Given n ∈ Z+, the system is said to be length-

n-controllable if for zero initial conditions xk(λ,w) = 0, for each k ∈ Id and for all w ∈ Fd
such that |w| = n, there exists a control sequence {u(λ, v)}|v|≤n so that the system starting at

any word of length n can generate a state sequence {xk(λ, vg−1k )}|v|<n until it reaches the state

x(λ, λ).

Definition 36 (Controllability). The system is said to be controllable if it is length-n-

controllable for some n ∈ Z+.

Recall that the Past-time system equations are given by

Σp =




xk(λ,wg

−1
k ) =

∑d
j=1Ak,jxj(λ,w) +Bku(λ,w) for k = 1, . . . , d

y(λ,w) =
∑d

j=1Cjxj(λ,w) +Du(λ,w).

Suppose that the initial conditions at the level n are all zero, i.e. xk(λ,w) = 0 for all k ∈ Id
and for all w ∈ Fd, |w| = n. Then the general solution of this system (see (6.46) on page 129)

collapses to

x(λ, λ) =
d∑

k=1

∑

w:|w|<n

AwBku(λ,wgk) (7.9)

where Aw = AinAin−1 · · ·Ai1 if w = gingin−1 · · · gi1 . It is easy to check that the solution in (7.9)

can be expressed as

x(λ, λ) =




C1n 0 · · · 0

0 C2n · · · 0
...

...
. . .

...

0 · · · 0 Cdn



·




u1n

u2n
...

udn



, Cn · col v:|v|<n

k=1,...,d

[u(λ, gkv)] (7.10)

where ukn := u(λ, gkv) for all v ∈ Fd, |v| < n, and

Ckn :=
[
Bk Ak,1B1 · · · Ak,dBd Ak,1A1,1B1 · · · Ak,dA

n−1
d,d Bd

]
.

We shall refer to Ckn and Cn as the length-n-controllability matrix with respect to a letter gk and

the length-n-controllability matrix, respectively. Clearly, the matrix Cn is full rank if and only if

for each k ∈ Id, Ckn is full rank.

Now let XC
n be the space such that (7.10) holds, i.e.

XC
n = {x ∈ H | x(λ, λ) = Cn · colv:|v|≤n[u(λ, v)]}

where XC
n is called the controllability subspace. Obviously, XC

n ⊆ H. If XC
n = H, then every
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state xk(λ,w) ∈ Hk, where w ∈ Fd, |w| = n can be transferred to the state x(λ, λ) which implies

that the system is length-n-controllable. Thus, we have

Theorem 7.4. Let n be a positive integer. Then the following statements are equivalent:

1. A system is length-n-controllable,

2. for each k ∈ Id, Ckn is full row rank, i.e. im(Ckn) = Hk,

3. the length-n-controllability matrix Cn given in (7.10) is full rank, i.e., im(Cn) =
⊕d

k=1Hk,

4. the controllability subspace XC
n = H.

If n is arbitrary, we shall write C := diag{C1, . . . , Cd} rather than Cn for some fixed n, and

call C as the controllability matrix, which is in fact an infinite matrix. This fact is analogous

to the reachability matrix R (see Remark 22). We should note that if there exists at least one

j ∈ Id such that rank(Cjn) is not of full row rank, the system is uncontrollable and the state

xj is said to be an uncontrollable mode. In addition, such a system can be decomposed into

controllable and uncontrollable subspaces using an admissible transformation S.

Suppose we are interested in a specified word, say w = gingin−1 · · · gi1 and consider only

state along the path wΓ (i.e., x(λ, v) = 0 unless v ∈ wΓ), then from the explicit formula for

xin(λ, λ) in (6.44), we have:

xin(λ, λ) = Ain,in−1 · · ·Ai2,i1Bi1u(λ,w) + · · ·+Ain,in−1Bin−1u(λ, gingin−1) +Binu(λ, gin)

=
[
Bin Ain,in−1Bin−1 · · · Ain,in−1 · · ·Ai2,i1Bi1

]
·




u(λ, gin)

u(λ, gingin−1)
...

u(λ, gingin−1 · · · gi1)




= row vṽ=w given
ṽ=gin−` ···gi1
for `=1,...,n−1;
if ṽ=λ, set `=n

[
Ain,in−1Ain−1,in−2 · · ·Ain−`+2,in−`+1Bin−`+1

]
· colv∈(wΓ\{λ})[u(λ, v)]

, Cinw · colv∈(wΓ\{λ})[u(λ, v)], (7.11)

where wΓ is a reverse path of Γw corresponding to the given word w = gingin−1 · · · gi1 , and Cinw is

called the {w}-controllability matrix. It is clear from (7.11) that xin(λ, λ) ∈ im(Cin
w ). By using

the similar argument as in the {w}-reachability case, we obtain the following Theorem.

Theorem 7.5. Given a word w = gingin−1 · · · gi1 , where ik ∈ Id. Then the following statements

are equivalent:

1. A system is {w}-controllable,
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2. im(Cinw ) = Hin,

3. rank(Cinw ) = dim(Hin).

Clearly, if the system is {w}-controllable, then it is also length-n-controllable.

Remark 23. As mentioned previously, the notions of controllability and of reachability are

parallel to each other. In fact the system generating a state sequence from the zero initial

condition x(λ, λ) to the desired state x(w, λ) along the path Γw is the same as the system

generating a state sequence from the zero initial condition x(λ,w) to the state x(λ, λ) along the

reverse path wΓ. It is obvious from analysis that the controllability matrix C, etc. is identical to
the reachability matrix R, etc. Thus, one may use interchangeably between the notion of {w}-
reachability (resp., reachability) and that of {w}-controllability (resp., controllability). N

7.3 Observability

The observability property of a system involves the influence of the state vector on the output. It

is of interest to investigate to what extent it is possible to reconstruct the state x when the output

sequence {y(w, λ)} is known. Often one is able to measure the output sequence and prescribe

the known input, whereas the state variable is hidden. This Section presents two concepts of

observability which act in the dual manner of the controllability property. The {w}-observability
means that for given word w, one is able to completely determine the initial condition x(λ, λ)

from the measurement data {y(v, λ)} for all v along the path Γw. Rather than considering the

particular word, we have the notion of length-n-observability which is somewhat weaker than the

{w}-observability. Given n ∈ Z+, the length-n-observability implies that every initial condition

x(λ, λ) is completely determined from an output sequence {y(v, λ)} for all possible v such that

|v| ≤ n. The precise definitions are provided as follows:

Definition 37 ({w}-observability). Let w be a given word, say w = gingin−1 · · · gi1 , ik ∈ Id.
Then the system is said to be {w}-observable if, for zero input and zero boundary conditions,

there exists an output sequence {y(v, λ)}ṽv=w such that any initial condition xi1(λ, λ), corre-

sponding to a given word, w, can be completely determined.

Definition 38 (Length-n-observability). Given n ∈ Z+, then the system is said to be length-

n-observable if for zero input and zero boundary conditions, every initial condition x(λ, λ) can

be determined from an output sequence {y(v, λ)}|v|≤n.

Definition 39 (Observability). The system is said to be observable if it is length-n-observable

for some n ∈ Z+.
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Consider the unforced input/state/output d-D linear system (i.e., the system with zero

input sequence). Suppose we are given a word w = gingin−1 · · · gi1 6= λ. Then, from the Future-

time system equations, we have

y(λ, λ) =
d∑

k=1

Ckxk(λ, λ)

y(gi1 , λ) =
d∑

k=1
k 6=i1

Ckxk(gi1 , λ) + Ci1

d∑

k=1

Ai1,kxk(λ, λ)

y(gi2gi1 , λ) =

d∑

k=1
k 6=i2

Ckxk(gi2gi1 , λ) + Ci2

d∑

k=1
k 6=i1

Ai2,kxk(gi1 , λ) + Ci2Ai2,i1

d∑

k=1

Ai1,kxk(λ, λ)

y(gi3gi2gi1 , λ) =
d∑

k=1
k 6=i3

Ckxk(gi3gi2gi1 , λ) + Ci3

d∑

k=1
k 6=i2

Ai3,kxk(gi2gi1 , λ)

+ Ci3Ai3,i2

d∑

k=1
k 6=i1

Ai2,kxk(gi1 , λ) + Ci3Ai3,i2Ai2,i1

d∑

k=1

Ai1,kxk(λ, λ)

...

y(w, λ) =
d∑

k=1
k 6=in

Ckxk(gingin−1 · · · gi1 , λ) + Cin

d∑

k=1
k 6=in−1

Ain,kxk(gin−1 · · · gi1 , λ)

+ · · ·+ CinAin,in−1Ain−1,in−2 · · ·Ai3,i2

d∑

k=1
k 6=i1

Ai2,kxk(gi1 , λ)

+ CinAin,in−1Ain−1,in−2 · · ·Ai2,i1

d∑

k=1

Ai1,kxk(λ, λ) (7.12)

Suppose now that the boundary conditions xk(g`w̃, λ) = 0 unless k = `. Then, the output

equation (7.12) becomes

y(w, λ) =





∑d
k=1Ckxk(λ, λ), if w = λ;

CinAin,in−1Ain−1,in−2 · · ·Ai2,i1

∑d
k=1Ai1,kxk(λ, λ), if w = gingin−1 · · · gi1 6= λ,

,





∑d
k=1 y

k
λ(λ, λ), if w = λ;

∑d
k=1 y

k(w, λ), if w = gingin−1 · · · gi1 6= λ.
(7.13)

where ykλ(λ, λ) = Ckxk(λ, λ) and y
k(w, λ) = CinAin,in−1Ain−1,in−2 · · ·Ai2,i1Ai1,kxk(λ, λ).
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Consider now when xk(λ, λ) = 0 unless k = i1, i.e. x(λ, λ) =
[
0 · · · x>i1(λ, λ) · · · 0

]>
.

Then the output equation (7.13) collapses to

y(w, λ) =




yi1λ (λ, λ) = Ci1xi1(λ, λ), if w = λ;

yi1(w, λ) = CinAin,in−1Ain−1,in−2 · · ·Ai2,i1Ai1,i1xi1(λ, λ), if w 6= λ.
(7.14)

Therefore, the output sequence {y(v, λ)}ṽv=w along the path Γw corresponding to the given

word, w = gingin−1 · · · gi1 , is given by:




y(λ, λ)

y(gi1 , λ)
...

y(gingin−1 · · · gi1 , λ)



=




Ci1

Ci1Ai1,i1
...

CinAin,in−1Ain−1,in−2 · · ·Ai2,i1Ai1,i1



xi1(λ, λ) (7.15)

Or in the condensed notation,

Yw = Oi1
w · xi1(λ, λ)

where Yw = colv∈Γw [y(v)], Oi1
w = col ṽv=w given

ṽ=gingin−1 ···gin−`
for `=0,1,...,n−1;
if ṽ=λ, set `=−1

[
Cin−`−1Ain−`−1,in−`−2 · · ·Ai2,i1Ai1,i1

]
,

and Ci0 is defined as Ci1 . The matrix Oi1
w is called the {w}-observability matrix corresponding

to the given word w = gingin−1 · · · gi1 .
Now if rank(Oi1

w ) < dim(Hi1) the initial state xi1(λ, λ) cannot be observed from the output

sequence {y(v, λ)}, and hence the system is not {w}-observable. Thus, the system is {w}-
observable if by definition rank(Oi1

w ) = rank(Hi1). In particular, for the system to be {w}-
observable, the rank condition must hold if the output sequence is set to be a zero vector. Thus,

this implies that ker(Oi1
w ) = {0}. This observation leads to the following Theorem.

Theorem 7.6. Given a word w = gingin−1 · · · gi1 , where ik ∈ Id. Then the following statements

are equivalent:

1. A system is {w}-observable,

2. ker(Oi1
w ) = {0} ∈ Hi1 ,

3. rank(Oi1
w ) = dim(Hi1).

Suppose now that one can measure all output sequences {y(v, λ)} described in the preceding

paragraph for all words with length less than or equal to n, and define

Yk , Ok
nxk(λ, λ)
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where

Ok
n =




Ck

C1A1,k

...

CdAd,k

C1A1,1A1,k

...

CdA
n−1
d,d Ad,k




(7.16)

and we shall refer to it as the length-n-observability matrix with respect to a letter gk.

This yields,

colv:|v|≤n[y(v, λ)] =




Y1

Y2

...

Yd



=




O1
n 0 · · · 0

0 O2
n · · · 0

...
...

. . .
...

0 · · · 0 Od
n







x1(λ, λ)

x2(λ, λ)
...

xd(λ, λ)



. (7.17)

To condense notation, we shall write (7.17) as Y = On ·x(λ, λ), where On is called the length-n-

observability matrix. In order to determine every initial condition x(λ, λ), rank(On) must be of

full column rank, i.e., rank(On) = dim(H). Equivalently, rank(Ok
n) = dim(Hk) for each k ∈ Id.

The system is length-n-observable if the condition (7.17) holds for all Y. In particular, it is of

interest to consider when Y = 0. Thus, (7.17) collapses to

0 =




O1
n 0 · · · 0

0 O2
n · · · 0

...
...

. . .
...

0 · · · 0 Od
n



x(λ, λ), (7.18)

i.e., x(λ, λ) ∈ ker(On). Now let XO
n be the space such that (7.18) holds, i.e.

XO
n = {x ∈ H | On · x = 0}.

We shall call XO
n the observability subspace. Clearly, XO

n ⊆ H. If there is only a trivial solution

x ≡ 0 ∈ H contained in XO
n for given n, then the system is length-n-observable. Otherwise,

the matrix On degenerates rank; i.e., there does exist a vector x 6= 0 so that On · x = 0. This

implies that the individual state xk cannot be completely determined by the measurement data.

In fact, the measurement data provides only the information of the linear combination of state

xk, k ∈ Id rather than the individual xk. Thus, the system is not length-n-observable. This

result leads to the following theorem.
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Theorem 7.7. Let n be a positive integer. Then the following statements are equivalent:

1. A system is length-n-observable,

2. for each k ∈ Id, Ok
n is full column rank, i.e. ker(Ok

n) = {0} ∈ Hk.

3. the length-n-observability matrix On given in (7.17) is full column rank, i.e.

ker(On) = {0} ∈ H =
d⊕

i1=1

Hi1 ,

4. the observability subspace XO
n = {0}.

Obviously, if the system is {w}-observable, then it is also length-n-observable for n = |w|.
If there exists at least one j ∈ Id such that rank(Oj

w) is not of full column rank, the system is

unobservable and the state xj is said to be an unobservable mode. In addition, such a system can

be decomposed into observable and unobservable subspaces using an admissible transformation

in Definition 30. Since the notion of observability is a dual concept of the reachability, the reader

is referred to Section 7.1 for further discussion on this issue.

Example 14. Suppose F = {0, 1}. Then one can check that




y(λ, λ)

y(0, λ)

y(1, λ)

y(00, λ)

y(01, λ)

y(10, λ)

y(11, λ)




=




C1 C2

C1A11 C1A12

C2A21 C2A22

C1A
2
11 C1A11A12

C1A12A21 C1A12A22

C2A21A11 C2A21A12

C2A22A21 C2A
2
22




[
x1(λ, λ)

x2(λ, λ)

]

Hence, O1
2 =




C1

C1A11

C2A21

C1A
2
11

C1A12A21

C2A21A11

C2A22A21




, and O2
2 =




C2

C1A12

C2A22

C1A11A12

C1A12A22

C2A21A12

C2A
2
22




and the length-2-observability matrix,

O2 = diag{O1
w,O2

w}. This system is length-2-observable if and only if O2 is of full rank. Suppose

we are interested in the observability of a system at a particular word, say w = 11, then the



Tanit Malakorn Chapter 7. Reachability, Controllability, and Observability 151

system is {11}-observable if and only if O{11} =




C2

C2A21

C2A22A11


 is of full column rank. ♦

In the next example, the matrices A,B, and C are adopted from [BD99].

Example 15. Suppose the realization matrices {A,B,C} of 2-D Roesser system are given by:

A =

[
A11 A12

A21 A22

]
=




[
0.5 −0.4
0.05 0.2

] [
0.25 0.2

0.15 0.05

]

[
0.1 −0.2
0.2 −0.4

] [
−0.3 0.35

−1.0 0.9

]




B =

[
B1

B2

]
=

[[
1 4

0 2

][
1 1

2 2

]]
, and C =

[
C1 C2

]
=
[[
1 −2

] [
0 1

]]

Then the length-3-reachability matrix, C3 = diag
{
C13 , C23

}
where,

C13 =
[
B1 A11B1 A12B2 A2

11B1 A11A12B2 A12A21B1 A12A22B2

]

=

[
1.00 4.00 0.50 1.20 0.65 0.65 0.23 0.36 0.225 0.225 0.065 0.00 0.26 0.26

0.00 2.00 0.05 0.60 0.25 0.25 0.035 0.18 0.0825 0.0825 0.025 0.00 0.10 0.10

]

C23 =
[
B2 A21B1 A22B2 A21A11B1 A21A12B2 A22A21B1 A2

22B2

]

=

[
1.00 1.00 0.10 0.00 0.40 0.40 0.04 0.00 0.015 0.015 0.04 0.00 0.16 0.16

2.00 2.00 0.20 0.00 0.80 0.80 0.08 0.00 0.03 0.03 0.08 0.00 0.32 0.32

]

and the observability matrix, O = diag
{
O1

2,O2
2

}
where,

O1
2 =




1.0000 −2.0000
0.4000 −0.8000
0.2000 −0.4000
0.1600 −0.3200
0.0150 −0.0300
0.0800 −0.1600
0.0800 −0.1600




, and O2
2 =




0 1.0000

−0.0500 0.1000

−1.0000 0.9000

−0.0200 0.0400

−0.0850 0.0725

−0.0100 0.0200

−0.6000 0.4600




Since rank(C13) = 2 but rank(C23) = 1, the system is unreachable. Also, since rank (O1
2) = 1

but rank(O2
2) = 2, the system is unobservable. In addition, the state x1 is called a reachable-

unobservable mode; on the other hand the state x2 is called an unreachable-observable mode.

♦
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Remark 24. If n is arbitrary, we shall write O := diag{O1, . . . ,Od} rather than On for some

fixed n, and O is called the observability matrix. For each k ∈ Id, Ok is an infinite column matrix

corresponding to an infinite column output vector {y(w, λ)} but with finite support. Thus the

observability means that this infinite matrix O has full rank. N

Remark 25. Suppose we start with a collection of the ncgr system matrices {A,B,C,D} and
embed it into the ncfm model with system matrices {A1, . . . , Ad, B1, . . . , Ad, C,D} where we set
Ak = PkA

GR, Bk = PkB
GR for k = 1, . . . , d, then the observability and controllability matrices

in this case are given respectively by

O =




C

CA1
...

CAd

CA1A1
...




=




C1 · · · Cd

C1A1,1 · · · C1A1,d

...
...

CdAd,1 · · · CdAd,d

C1A
2
1,1 · · · C1A1,1A1,d

...
...




=
[
O1 · · · Od

]
. (7.19)

and

C =
[
B1 · · · Bd A1B1 · · · A1Bd A2B1 · · · A2Bd · · ·

]

=




B1 · · · 0 A1,1B1 · · · A1,dBd · · · 0 · · · 0 · · ·
...

...
...

...
...

...

0 · · · Bd 0 · · · 0 · · · Ad,1B1 · · · Ad,dBd · · ·


 (7.20)

where the matrices with underline can be viewed as the original ncfm system matrices or as

the ncgr system matrices embedded into the ncgr model. Thus, to distinguish between O
(resp., C) and O (resp., C) we shall call O (resp. C) as the ncfm-observability matrix (resp. the

ncfm-controllability matrix).

When one views the ncgr system as an ncfm system, then the ncfm-observability means

that the ncfm-observability matrix

O =
[
O1 · · · Od

]

be injective. This implies that each Ok for k = 1, . . . , d is also injective. Conversely, if each

Ok is injective individually, it does not guarantee that O be injective. Therefore, for a ncgr

system, the ncfm-observability implies the ncgr observability but in general not conversely.

To demonstrate this fact, let us consider Example 15 for a moment. It is clear that

rank(O2) = rank
([
O1

2 O2
2

])
= 2;
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while rank(O2
2) = 1. Evidently, the ncgr system is unobservable even though O2 is full rank.

Now let us consider the ncfm-controllability matrix C given in (7.20). Since the rank

condition of matrix does not change when columns are interchanged, one can observe that

rank(C) = rank







C1
. . .

Cd





 . (7.21)

We also note that the ncgr system is ncgr-controllable if Ck is surjective for each k. If we

view the ncgr system ΣGR as an ncfm system, then the system ΣGR is ncgr-controllable is

equivalent to ΣGR being ncfm-controllable. N

Since the ncfm-observability and ncgr-observability matrices are different, we shall estab-

lish the Similarity theory for each case separately.

Theorem 7.8 (Similarity Theorem for NCFM Model). Given two ncfm-realizations

{A1, . . . , Ad, B1, . . . , Bd, C,D} and {Ã1, . . . , Ãd, B̃1, . . . , B̃d, C̃, D̃}.

If both realizations are similar to each other, then they have an identical transfer function.

Conversely, if both realizations are ncfm-controllable and ncfm-observable, and such that

D + C

(
I −

d∑

k=1

zkAk

)−1 d∑

k=1

zkBk = D̃ + C̃

(
I −

d∑

k=1

zkÃk

)−1 d∑

k=1

zkB̃k,

then they both are similar to each other.

Proof. The proof of the first part is provided in Lemma 7.1. Now suppose that two realizations

are given such that they both have an identical transfer function, i.e.,

D + C

(
I −

d∑

k=1

zkAk

)−1 d∑

k=1

zkBk = D̃ + C̃
(
I −

∑
k = 1dzkÃk

)−1 d∑

k=1

zkB̃k

which can also be expressed as

D +
∑

w∈Fd

d∑

k=1

(CAwBk) z
wgk = D̃ +

∑

w∈Fd

d∑

k=1

(
C̃Ã

w
B̃k

)
zwgk .

By equating coefficients of zgkw-terms of the above expression, we have the following:

D = D̃, and CAwBk = C̃Ã
w
B̃k for all w ∈ Fd and k = 1, . . . , d. (7.22)
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Define the similarity transformation operator S ∈ S by

S : AwBku(λ,wgk) 7→ Ã
w
B̃ku(λ,wgk).

We have to verify that S is well-defined, one-to-one and onto.

Well-defined: Let ξ = row w∈Fd
k=1,...,d

[AwBk] · col w∈Fd
k=1,...,d

[u(λ,wgk)] = 0. Then,

0 = colw∈Fd [CA
w] ξ = colw∈Fd [CA

w] · row w∈Fd
k=1,...,d

[AwBk] · col w∈Fd
k=1,...,d

[u(λ,wgk)]

= colw∈Fd

[
C̃Ã

w
]
· row w∈Fd

k=1,...,d

[
Ã
w
B̃k

]
· col w∈Fd

k=1,...,d
[u(λ,wgk)]. (7.23)

But the system is ncfm-observable; i.e., colw∈Fd

[
C̃Ã

w
]
is of full rank. Hence, (7.23)

implies that

row w∈Fd
k=1,...,d

[
Ã
w
B̃k

]
· col w∈Fd

k=1,...,d
[u(λ,wgk)] = Sξ = 0.

Onto: We have to show that for given ξ̃ ∈ H̃, there exists ξ ∈ H such that Sξ = ξ̃. Since the

system is ncfm-controllable, there does exist a control sequence col w∈Fd
k=1,...,d

[u(λ,wgk)] so

that

ξ̃ = row w∈Fd
k=1,...,d

[
Ã
w
B̃k

]
· col w∈Fd

k=1,...,d
[u(λ,wgk)].

Now set ξ = row w∈Fd
k=1,...,d

[AwBk] · col w∈Fd
k=1,...,d

[u(λ,wgk)]. Then by definition, Sξ = ξ̃.

One-to-one: Suppose ξ = row w∈Fd
k=1,...,d

[AwBk] · col w∈Fd
k=1,...,d

[u(λ,wgk)] such that Sξ = 0, i.e.

row w∈Fd
k=1,...,d

[
Ã
w
B̃k

]
· col w∈Fd

k=1,...,d
[u(λ,wgk)] = 0.

Then colw∈Fd

[
C̃Ã

w
]
· row w∈Fd

k=1,...,d

[
Ã
w
B̃k

]
· col w∈Fd

k=1,...,d
[u(λ,wgk)] = 0. The conditions (7.22)

imply that

colw∈Fd [CA
w] · row w∈Fd

k=1,...,d
[AwBk] · col w∈Fd

k=1,...,d
[u(λ,wgk)] = 0. (7.24)

But the system is ncfm-observable; i.e., colw∈Fd [CA
w] is of full rank. Hence, (7.24) implies

that

row w∈Fd
k=1,...,d

[AwBk] · col w∈Fd
k=1,...,d

[u(λ,wgk)] = ξ = 0

Thus, S is well-defined, one-to-one and onto.
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For any control sequence {u(λ,wgk)} ∈ U , we define ξ as

ξ = row w∈Fd
k=1,...,d

[AwBk] · col w∈Fd
k=1,...,d

[u(λ,wgk)]

which we can rewrite as

ξ =
∑

w∈Fd

d∑

k=1

AwBku(λ,wgk).

Thus, for such ξ,

SAjξ = SAj

∑

w∈Fd

d∑

k=1

AwBku(λ,wgk)

= S
∑

w∈Fd

d∑

k=1

AgjwBku(λ,wgk)

=
∑

w∈Fd

d∑

k=1

Ã
gjw

B̃ku(λ,wgk)

= ÃjS
∑

w∈Fd

d∑

k=1

AwBku(λ,wgk) = ÃjSξ

Since ξ is arbitrary, one can deduce that SAj = ÃjS or Ãj = SAjS
−1 for j = 1, . . . , d.

From the preceding result, we also have

S
∑

w∈Fd

d∑

k=1

AwBku(λ,wgk) =
∑

w∈Fd

d∑

k=1

Ã
w
SBku(λ,wgk).

On the other hand, by the definition of S,

S
∑

w∈Fd

d∑

k=1

AwBku(λ,wgk) =
∑

w∈Fd

d∑

k=1

Ã
w
B̃ku(λ,wgk).

This implies that B̃k = SBk for k = 1, . . . , d.

Now for each ξ ∈ H,

C̃Sξ = C̃S
∑

w∈Fd

d∑

k=1

AwBku(λ,wgk) = C̃
∑

w∈Fd

d∑

k=1

Ã
w
B̃ku(λ,wgk)

= C
∑

w∈Fd

d∑

k=1

AwBku(λ,wgk) = Cξ
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Hence, C̃ = CS−1.

It follows from these arguments that such an S is an admissible similarity transformation

and this completes the proof. ¥

Theorem 7.9 (Similarity Theorem for NCGR Model). Given two ncgr-realizations

{A,B,C,D} and {Ã, B̃, C̃, D̃}. If both realizations are similar to each other, then they have

an identical transfer function. Conversely, if both realizations are ncgr-controllable and ncgr-

observable, and such that

D + C (I − Zd(z)A)−1 Zd(z)B = D̃ + C̃
(
I − Zd(z)Ã

)−1
Zd(z)B̃,

then they both are similar to each other.

Proof. The proof of the first part is provided in Lemma 7.1. Now suppose that two realizations

are given and such that they both have an identical transfer function, i.e.,

D + C (I − Zd(z)A)−1 Zd(z)B = D̃ + C̃
(
I − Zd(z)Ã

)−1
Zd(z)B̃.

Recall that the transfer function can be rewritten in terms of the ncfm system matrices as

(see (6.57) for details)

TΣ(z) = D +
∑

w∈Fd

d∑

k=1

(CAwBk) z
wgk , (7.25)

where Ak = PkA, and Bk = PkB (see (6.45) on page 129 for the definition of the orthogonal

projection, Pk).

Likewise, by assumption,

TΣ(z) = D̃ +
∑

w∈Fd

d∑

k=1

(
C̃Ã

w
B̃k

)
zwgk . (7.26)

By equating coefficients of zwgk -terms of (7.25) and (7.26), we have the following:

D = D̃, and CAwBk = C̃Ã
w
B̃k for all w ∈ Fd and k = 1, . . . , d, (7.27)

which is identical to

D = D̃, and CinAin,in−1 · · ·Ai1,kBk = C̃inÃin,in−1 · · · Ãi1,kB̃k for all ij , k ∈ Id, (7.28)

if w = gingin−1 · · · gi1 . Define the similarity transformation operator Sin ∈ S by

Sin : Ain,in−1 · · ·Ai1,kBku(λ,wgk) 7→ Ãin,in−1 · · · Ãi1,kB̃ku(λ,wgk)
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We have to verify that Sin is well-defined, onto and one-to-one. First let us recall that the

controllability matrix with respect to a letter gk is (see page 144)

Ck =
[
Bk Ak,1B1 · · · Ak,dBd Ak,1A1,1B1 · · · Ak,dAd,dBd · · ·

]
,

and the observability matrix with respect to a letter gin is (see page 149)

Oin =




Cin

C1A1,in
...

CdAd,in

C1A1,1A1,in
...




Well-defined: Let u := col w∈Fd
k=1,...,d

[u(λ,wgk)] and define ξ := Cku = 0. Then, it follows that

0 = Oin · ξ = Oin · Cku = Õin · C̃ku, (7.29)

where each block-matrix entry in Õin is the same as that in Oin with ˜ (similarly for C̃k).
Since the system is ncgr-observable, i.e. Õin is full rank. Hence, (7.29) implies that

C̃ku = Sinξ = 0.

Onto: Since the system is ncgr-controllable, there exists a control sequence {u(λ,wgk)} so

that ξ̃ = C̃ku. Set ξ = Cku and hence by definition of Sin , we have Sinξ = ξ̃.

One-to-one: Suppose ξ = Cku such that Sinξ = C̃ku = 0. Then, Õin · C̃ku = 0. The conditions

(7.28) implies that Oin · Cku = 0. It follows that Cku = ξ = 0 since Oin is full rank.

Thus, for each in = 1, . . . , d, Sin is well-defined, onto and one-to-one. Then the admissible

transformation matrix S is defined as a diagonal block-matrix

S =




S1
. . .

Sd




From now, it is more convenient to view the ncgr system matrices in terms of ncfm system

matrices (i.e., Aj = PjA and Bj = PjB). For any control sequence {u(λ,wgk)} ∈ U , we define

ξ as

ξ =
∑

w∈Fd

d∑

k=1

AwBku(λ,wgk).
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Thus, for such ξ,

SAξ = SA
∑

w∈Fd

d∑

k=1

AwBku(λ,wgk) = S




d∑

j=1

Aj




∑

w∈Fd

d∑

k=1

AwBku(λ,wgk)




= S
d∑

j=1

∑

w∈Fd

d∑

k=1

AgjwBku(λ,wgk)

=

d∑

j=1

∑

w∈Fd

d∑

k=1

Ã
gjw

B̃ku(λ,wgk)

=




d∑

j=1

Ãj


S


∑

w∈Fd

d∑

k=1

AwBku(λ,wgk)




= ÃS


∑

w∈Fd

d∑

k=1

AwBku(λ,wgk)


 = ÃSξ

Hence, SA = ÃS or Ã = SAS−1.

From the preceding result, we also have

S


∑

w∈Fd

d∑

k=1

AwBku(λ,wgk)


 =

∑

w∈Fd

d∑

k=1

Ã
w
SBku(λ,wgk).

On the other hand, by the definition of S,

S


∑

w∈Fd

d∑

k=1

AwBku(λ,wgk)


 =

∑

w∈Fd

d∑

k=1

Ã
w
B̃ku(λ,wgk).

This implies that B̃ = SB.

Now for each ξ ∈ H,

C̃Sξ = C̃S
∑

w∈Fd

d∑

k=1

AwBku(λ,wgk) = C̃
∑

w∈Fd

d∑

k=1

Ã
w
B̃ku(λ,wgk)

= C
∑

w∈Fd

d∑

k=1

AwBku(λ,wgk) = Cξ

Hence, C̃ = CS−1.

It follows from these arguments that such an S is an admissible similarity transformation

and this completes the proof. ¥
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7.4 Conclusion

This Chapter establishes the notions of similarity, reachability, controllability, and observability

via the system equations of the ncgr model; while these notions appeared in [BD99] were

defined based on the lft realization of linear systems with structured uncertainty. Evidently,

our results presented here give precise state-space interpretation of results of [BD99] and also

justify their terminology.



Chapter 8

Minimal Realization and Stability

This Chapter concerns with the so-called minimal realization problem and the stability issue

for the i/s/o d-D linear systems where the “time-axis” is a free semigroup1. Suppose we are

given system matrices {A,B,C,D}, one can easily compute the transfer function of the system

in the form of a formal power series TΣ(z) =
∑

v∈Fd
Tvz

v, where the coefficients Tv are uniquely

determined by system matrices. Conversely, given such a transfer function, the realization

problem is to find system matrices {A,B,C,D} defining the linear system equations described

by the ncfm model, or the ncgr model. If we require in addition that the size of the system

matrix A has to be the smallest one among other realizations, this problem is then called the

minimal realization problem. This issue will be discussed in Section 8.1. A good reference on

realization theory for the classical 1D discrete-time linear system using the operator theoretical

approach is [FFGK98].

Section 8.2 is devoted to the stability issue which is a crucial property of the control system.

We introduce the notions of finite `2-gain system, exponential stability and asymptotic stability,

and also establish the so-called Lyapunov theory for noncommutative linear systems. The reader

will see that the results here are analogous to those in the classical case.

8.1 Minimal Realization Theory

Realization theory in the classical control literature has been studied for over four decades. It

provides a connection between linear system equations and the corresponding input/output map

(or transfer function). From the practical point of view, the output sequence can be measured

whenever the known input sequence is fed through the system, and hence the input/output

map can be obtained easily via the experimental data. Our concern here is once we know the

input/output map, how can we find the set of system matrices {A,B,C,D} defining the linear

1one can also view the time axis as a homogeneous tree of order d with a root.

160
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system equations with the smallest dimension of the corresponding state-space which realizes the

given input/output map? This is a well-known problem in the classical case and we often refer to

it as the minimal realization problem2. In fact, a system realization of the classical discrete-time

linear system is minimal if and only if such a system is controllable and observable.

After the two-dimensional linear models were introduced in the seventies, the theory of

multidimensional (d-D) linear systems has been developed based on the classical one, and this

includes the realization theory as well. C. Beck [Bec01] established a connection between real-

ization theory results for formal power series and the concept of minimality, which is developed

for systems with uncertainty operator ∆ represented by the so-called Linear Fractional Trans-

formation. This can also be formulated in terms of linear system equations of the i/s/o linear

systems with evolution along the elements of a free semigroup Fd; however, as in [BD99], Beck

did not provide the state-space interpretation in her work.

Rather, we here establish the realization theory systematically based on the linear system

models described in Chapter 6. We first formulate the system equations in such a way that

its transfer function has the form of the recognizable series. Then by applying the results of

M. Schützenberger [Sch61] and M. Fliess [Fli74], one can conclude that the Hankel matrix HTR

associated with such systems has finite rank. Therefore, for any linear systems whose transfer

function can be expressed as a formal power series, if the associated Hankel matrix has finite

rank, then such systems are recognizable, and hence one can solve the minimal realization

problem.

From this fact, we shall begin this Section with the formulation of a linear system model

which we shall refer to it as the recognizable system in Subsection 8.1.1. In Subsection 8.1.2, we

formulate the Hankel matrix HTFM associated with the system described by the ncfm model,

and show that one can identify HTFM with the Hankel matrix HTR of the recognizable system.

We then establish the minimality condition(s) for ncfm model in connection with the rank of

the Hankel matrix HTFM . The method discussed in Subsection 8.1.2 (i.e., construction of a shift

realization by use of the Hankel matrix) can be modified to produce a minimal ncgr realization

of a given transfer function; we shall give a brief discussion on this issue in Subsection 8.1.3.

8.1.1 Recognizable System, ΣR

Let us consider the system described by the following equations:

ΣR =




x(gkw, λ) = Fkx(w, λ) +Gu(gkw, λ), x(λ, λ) = Gu(λ, λ)

y(w, λ) = Hx(w, λ).
(8.1)

2In practice, one may be able to measure only finitely many of the experimental data associated with the
input/output map. The partial realization problem is to construct a system realization {A,B,C,D} which is
consistent with such partial information. We do not discuss this type of problem here.
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Application of the Z-transform (see Section 6.3 for the definition of the Z-transform) to the

state equation in (8.1) yields,

∑

(w,λ)∈Tf

x(gkw, λ)z
w =

∑

(w,λ)∈Tf

Fkx(w, λ)z
w +

∑

(w,λ)∈Tf

Gw(gkw, λ)z
w,

where Tf = (Fd × {λ}). Multiplying both sides of the above equation by zk and sum over

k = 1, . . . , d to get

d∑

k=1

∑

(w,λ)∈Tf

x(gkw, λ)z
gkw =

d∑

k=1

∑

(w,λ)∈Tf

zkFkx(w, λ)z
w +

d∑

k=1

∑

(w,λ)∈Tf

Gw(gkw, λ)z
gkw,

which is equivalent to

x∧Tf (z, 0)− x(λ, λ) =
(
∞∑

k=1

zkFk

)
x∧Tf (z, 0) +Gu∧Tf (z, 0)−Gu(λ, λ),

Recall that x(λ, λ) = Gu(λ, λ), and hence we have

x∧Tf (z, 0) =

(
I −

∞∑

k=1

zkFk

)−1
Gu∧Tf (z, 0),

and the output equation becomes

y∧Tf (z, 0) = H

(
I −

∞∑

k=1

zkFk

)−1
G · u∧Tf (z, 0) , TΣR(z) · u∧Tf (z, 0). (8.2)

Note that

TΣR(z) = H

(
I −

d∑

k=1

Fkzk

)−1
G = H

∞∑

j=0

(
d∑

k=1

Fkzk

)j

G

=
∑

v∈Fd

HF vGzv ,
∑

v∈Fd

TR
v z

v. (8.3)

Evidently, this is of the form of the recognizable series (see Definition 26 on page 95). Thus,

we shall call TΣR(z) a transfer function of the recognizable system ΣR which is described by

the linear equations (8.1). Note that the set of system matrices {H,F1, . . . , Fd, G} is said to

be a recognizable-system realization of TΣR(z) if TR
v = HF vG for all v ∈ Fd, where F v =

FinFin−1 · · ·Fi1 if v = gingin−1 · · · gi1 .
Suppose now that we are given a transfer function TΣR(z), then the Hankel operator as-
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sociated with TΣR(z) is represented by the matrix with rows indexed by v ∈ Fd and columns

indexed by w ∈ Fd as

HTR =




HG HF1G · · · HFdG HF 2
1G HF1F2G · · ·

HF1G HF 2
1G · · · HF1FdG HF 3

1G HF 2
1F2G · · ·

...
...

...
...

...

HFdG HFdF1G · · · HF 2
dG HFdF

2
1G HFdF1F2G · · ·

HF 2
1G HF 3

1G · · · HF 2
1FdG HF 4

1G HF 3
1F2G · · ·

...
...

...
...

...




(8.4)

where the matrix entries of HTR are completely determined from the coefficients TR
v (v ∈ Fd)

as

[HTR ]v,w = TR
vw = HF vwG.

By Theorem 5.1 and Theorem 5.2, the rank of this Hankel matrix is always finite, say rank(HTR) =

n <∞, since it is constructed from the transfer function of the recognizable system. Conversely,

if rank(HTR) = n < ∞, then Theorem 5.2 implies that TΣR(z) is rational, and hence it is rec-

ognizable by Theorem 5.1. In other words, there exists a minimal realization {H,F1, . . . , Fd, G}
with the size of Fi = n.

Now one could observe from (8.4) that in fact the Hankel matrix HTR can be easily factored

as

HTR = [HF v][FwG] , OR · CR,

where OR and CR are the observability and the controllability matrices of the recognizable

system ΣR. Then the following Theorem shows that the recognizable system constructed from

the minimal realization discussed above is controllable and observable.

Theorem 8.1. A recognizable-system realization {H,F1, . . . , Fd, G} is minimal if and only if

the corresponding recognizable system is both controllable and observable.

Proof. A necessary part is quite straightforward. We need to show that, if the system is uncon-

trollable and/or unobservable, then a system realization {H,F1, . . . , Fd, G} is not minimal.

Suppose first that the system is uncontrollable. Then one can decompose the state space

H into a controllable subspace XC and an uncontrollable subspace H \ XC . In other words,

there exists an admissible transformation S ∈ S such that

SFjS
−1 =

[
F̃j ∗
0 ∗

]
, SG =

[
G̃

0

]
, (8.5)

where F̃j ∈ L(XC ,
⊕d

1X
C) and G̃ ∈ L(U ,⊕d

1X
C).
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It follows that the compression of the system realization to the controllable subspace

{H,F1, . . . , Fd, G}|XC = {H̃, F̃1, . . . F̃d, G̃}

has the same transfer function as {H,F1, . . . , Fd, G} since

TS
v = HF vG = HFin · · ·Fi1G

= HS−1

[
F̃in ∗
0 ∗

]
· · ·
[
F̃i1 ∗
0 ∗

][
G̃

0

]

= H̃F̃in · · · F̃i1G̃ = H̃F̃ vG̃ = T̃S
v , where HS−1 =

[
H̃ ∗

]
.

Therefore, the system realization is not minimal since it is obvious from (8.5) that the size of

Fj is greater than or equal to the size of F̃j .

By using the similar argument as shown above, one should be able to show that, if the

system is unobservable, then its realization is not minimal. Thus it follows immediately that if

the system realization is minimal, then the system is controllable and observable.

For sufficiency, let us assume that the system is both controllable and observable but its

realization {H,F1, . . . , Fd, G} is not minimal. More precisely, suppose that {H,F1, . . . , Fd, G}
is a realization of the controllable and observable system with state-space dimension n. Since

the system is assumed not to be minimal, there is another realization, say {H ′, F ′1, . . . , F
′
d, G

′},
of smaller state-space dimension, say n′ < n. Then there exists an admissible transformation

S ∈ S such that {H ′S−1, SF ′1S
−1, . . . , SF ′dS

−1, SG} has a Kalman-like decomposition structure

(i.e., decomposed into a controllable/observable-uncontrollable/unobservable structure), and the

corresponding state space is also decomposed into controllable/observable XC ∪XO and uncon-

trollable/unobservable H \ (XR ∪XO) subspaces.

Pick states in the controllable/observable subspace of dimension, say ñ ≤ n′, and form

a new system where the compression of its realization to the controllable/observable subspace

{H ′S−1, SF ′1S−1, . . . , SF ′dS−1, SG}
∣∣
XC∪XO has the same transfer function as {H,F1, . . . , Fd, G}.

It follows that two realizations: {H,F1, . . . , Fd, G} and {H ′S−1, SF ′1S−1, . . . , SF ′dS−1, SG}, are
similar to each other (by Similarity Theorem 7.8) and hence, it implies that the dimension of the

state-space must be preserved, i.e. n = ñ. On the other hand, we have ñ ≤ n′ < n. Therefore,

this implies that n < n which leads to contradiction. Thus, if the system is controllable and

observable, then its realization is minimal. This completes the proof. ¥

Remark 26. In [GKL88], the authors formulated an abstract notion of a node and examined

the issues of controllability, observability, minimality, and state-space similarity in this general

axiomatic setting. N
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8.1.2 Minimal Realization for NCFM Models, ΣFM

We begin this Subsection with a brief review on a linear system described by the ncfm model,

and then formulate the Hankel operator HTFM which is a linear map from input sequence in

the past to the output sequence in the future. We identify this Hankel operator HTFM with

the Hankel operator associated with the recognizable system HTR as shown in the previous

Subsection. We finally develop the minimality theorem for the ncfm model in connection with

the rank condition of HTFM .

Let us first recall that the Future-time i/s/o linear system described by the ncfm model is

ΣFM =





x(g1w, λ) = A1x(w, λ) +B1u(w, λ)
...

...

x(gdw, λ) = Adx(w, λ) +Bdu(w, λ)

y(w, λ) = Cx(w, λ) +Du(w, λ),

(8.6)

with initial condition

x(λ, λ) =
∑

v:|v|=n

Avx(λ, v) +
d∑

k=1

∑

v:|v|<n

AvBku(λ, vgk),

where Av = AinAin−1 · · ·Ai1 if v = gingin−1 · · · gi1 .
Now for k = 1, . . . , d, multiplication of the state equations in (8.6) by zkz

w yields,

x(gkw, λ)z
gkw = (zkAk)x(w, λ)z

w + (zkBk)u(w, λ)z
w.

Summing these over k = 1, . . . , d and all words (w, λ) ∈ Tf gives,

x∧Tf (z, 0)− x(λ, λ) =
d∑

k=1

zkAkx
∧Tf (z, 0) +

d∑

k=1

zkBku
∧Tf (z, 0),

and solving for x∧Tf ,

x∧Tf (z, 0) =

(
I −

d∑

k=1

zkAk

)−1
x(λ, λ) +

(
I −

d∑

k=1

zkAk

)−1 d∑

k=1

zkBku
∧Tf (z, 0). (8.7)

Application of the Z-transform to the output equation in (8.6) gives

y∧Tf (z, 0) = Cx∧Tf (z, 0) +Du∧Tf (z, 0)
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= C

(
I −

d∑

k=1

zkAk

)−1
x(λ, λ) +


C

(
I −

d∑

k=1

zkAk

)−1 d∑

k=1

zkBk +D


 · u∧Tf (z, 0)

, C

(
I −

d∑

k=1

zkAk

)−1
x(λ, λ) + TΣFM (z) · u∧Tf (z, 0), (8.8)

where TΣFM (z) is called the noncommutative Fornasini-Marchesini (ncfm) transfer function

for the system (8.6).

Now let {Tv}v∈Fd denote a sequence of operators along a free semigroup Fd mapping from

the input space U into the output space Y (i.e., Tv ∈ L(U ,Y)) defined by

Tλ = D and Twgk = CAwBk for all w ∈ Fd, k ∈ Id, (8.9)

where Aw = AinAin−1 · · ·Ai1 if w = gingin−1 · · · gi1 .

Definition 40 (Realization). A set of system matrices {A1, . . . , Ad, B1, . . . , Bd, C,D} is said

to be a realization of the sequence {Tv}v∈Fd if (8.9) holds.

Note that one could represent the ncfm transfer function TΣFM as a formal power series

of the sequence {Tv}v∈Fd with coefficients Tv defined in (8.9) as follows:

TΣFM (z) = C

(
I −

d∑

k=1

zkAk

)−1 d∑

k=1

zkBk +D

= C



∞∑

j=0

(
d∑

k=1

zkAk

)j



d∑

k=1

zkBk +D

=
∑

w∈Fd

∞∑

k=1

(CAwBk)z
wgk +D :=

∑

v∈Fd

Tvz
v, (8.10)

Thus, for given a set of system matrices {A1, . . . , Ad, B1, . . . , Bd, C,D}, the coefficients Tv can

be easily computed via the formula for the transfer function as in (8.10), and hence the set of

system matrices {A1, . . . , Ad, B1, . . . , Bd, C,D} is a realization of TΣFM (z) if and only if D = Tλ

and CAwBk = Twgk for all w ∈ Fd, k ∈ Id.
Our interest is in the reversing this computation, and in particular we want to establish

conditions on Tv that guarantee existence of the corresponding linear system equations (8.6).

In other words, given a formal power series T (z) =
∑

v∈Fd
Tvz

v, find the set of all minimal

realizations {A1, . . . , Ad, B1, . . . , Bd, C,D} satisfying Tλ = D and Twgk = CAwBk for all w ∈ Fd
and k = 1, . . . , d, where the notion of the minimal realization is defined as follows:

Definition 41 (Minimal Realization). The ncfm realization {A1, . . . , Ad, B1, . . . , Bd, C,D}
of a formal power series T (z) =

∑
v∈F Tvz

v is said to be minimal if given other realization, say
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{A′1, . . . , A′d, B′1, . . . , B′d, C ′, D′} of T (z), then the size of the square matrices Aj is less than or

equal to the size of A′j .

Now we are ready to establish the minimality theorem for the ncfm models which is an

analogue to the recognizable case.

Theorem 8.2. A ncfm realization {A1, . . . , Ad, B1, . . . , Bd, C,D} is minimal if and only if the

i/s/o linear system described by the ncfm model is both controllable and observable.

Proof. Use the similar argument as the proof of Theorem 8.1. ¥

Note that the concept of minimal realization makes sense only when (8.10) holds with the

dimension of the state-space is finite, say dimH < ∞. Before we move on, let us consider the

system equations (8.6) for a moment. It is of interest to solve recursively for the output sequence

of the system (8.6), i.e.




y(λ, λ)

y(g1, λ)
...

y(gd, λ)

y(g1g1, λ)

y(g1g2, λ)
...




=




C

CA1
...

CAd

CA1A1

CA1A2
...




x(λ, λ) +




D 0 0 · · · 0 0 0 · · ·
CB1 D 0 · · · 0 0 0 · · ·
...

...
...

...
...

... · · ·
CBd 0 0 · · · D 0 0 · · ·
CA1B1 CB1 0 · · · 0 D 0 · · ·
CA1B2 0 CB1 · · · 0 0 D · · ·

...
...

...
...

...
...

...
. . .







u(λ, λ)

u(g1, λ)
...

u(gd, λ)

u(g1g1, λ)

u(g1g2, λ)
...




Apparently, the first block column matrix of the above expression is the ncfm observability

matrix O, which is a linear map of the state-space H to the square summable sequence of the

outputs, i.e.

O : H 7→ `2((Fd × {λ}),Y).

Thus, one can write the output sequence {y(w, λ)}w∈Fd as

colw∈Fd [y(w, λ)] = Ox(λ, λ) + TTFM · colw∈Fd [u(w, λ)], (8.11)

where TTFM is the ncfm Toeplitz operator, which has a matrix representation generated by a

symbol Tv (v ∈ Fd) according to the formula

[TTFM ]v,w =




0 if |w| > |v|,
Tvw−1 if |w| ≤ |v|,

(8.12)

where [TTFM ]v,w denotes the entry of TTFM in row v and column w. As usual, we interpret

Tvw−1 to be zero if vw−1 is undefined. Obviously, such a matrix TTFM has rows and columns
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indexed by Fd.
Suppose now that the state at a time in the remote past is initialized to be zero (i.e.,

x(λ, v) = 0 for all v ∈ Fd such that |v| = n for n sufficiently large) and the system is fed by an

input sequence {u(w, v)} supported only in the past, i.e.

u(w, v) =




u(λ, v) if (w, v) ∈ Tp,

0 if (w, v) ∈ Tf .
(8.13)

Thus, the output sequence in (8.11) collapses to

colw∈Fd [y(w, λ)] = Ox(λ, λ), where x(λ, λ) =
d∑

k=1

∑

v:|v|<n

Av>Bku(λ, vgk).

Note that one can write x(λ, λ) explicitly in terms of the input sequence as

x(λ, λ) = row w∈Fd
k=1,...,d

[AwBk] · col v∈Fd
k=1,...,d

[u(λ, vgk)]

= C · col v∈Fd
k=1,...,d

[u(λ, vgk)],

where C is the ncfm controllability matrix, which is a linear map of the square summable

sequence of the inputs to the state-space H, i.e.

C : `2(({λ} × Fd \ {λ}),U) 7→ H.

Thus, we have

colw∈Fd [y(w, λ)] = O · C · col v∈Fd
k=1,...,d

[u(λ, vgk)] , HTFM · col v∈Fd
k=1,...,d

[u(λ, vgk)] (8.14)

where HTFM is the ncfm Hankel operator

HTFM : `2(({λ} × Fd \ {λ}),U) 7→ `2((Fd × {λ}),Y),

having a matrix representation with rows indexed by v ∈ Fd and columns indexed by wgk ∈ Fd·gk
where w ∈ Fd and k ∈ Id, i.e.

HTFM = colv∈Fd [CA
v] · row w∈Fd

k=1,...,d
[AwBk]



Tanit Malakorn Chapter 8. Minimality Realization and Stability 169

=




CB1 · · · CBd CA1B1 · · · CA1Bd CA2B1 · · ·
CA1B1 · · · CA1Bd CA2

1B1 · · · CA2
1Bd CA1A2B1 · · ·

...
...

...
...

... · · ·
CAdB1 · · · CAdBd CAdA1B1 · · · CAdA1Bd CAdA2B1 · · ·
CA2

1B1 · · · CA2
1Bd CA3

1B1 · · · CA3
1Bd CA2

1A2B1 · · ·
...

...
...

...
... · · ·




(8.15)

Note that the matrix entries of HTFM are determined from the coefficients Tv (v ∈ Fd) as

[HTFM ]v,wgk = Tvwgk = CAvwBk. (8.16)

Next we shall identify this Hankel operator HTFM with the Hankel operator associated

with the recognizable system HTR in (8.4). To this end, let us write a formal power series

representation of the transfer function TΣFM (z) in (8.10) explicitly as

TΣFM (z) = Tλ + Tg1z
g1 + · · ·+ Tgdz

gd + Tg1g1z
g1g1 + Tg1g2z

g1g2 + · · · (8.17)

Define TΣR(z) as

TΣR(z) =
[
T 1
ΣR

(z) · · · T d
ΣR

(z)
]
,
[
TΣFM (z)z−11 · · · TΣFM (z)z−1d

]

i.e., for each k = 1, . . . , d,

T k
ΣR(z) = TΣFM (z)z−1k

= Tgk + Tg1gkz
g1 + · · ·+ Tgdgkz

gd + Tg1g1gkz
g1g1 + · · ·

=
∑

v∈Fd

Tvgkz
v.

Thus,

TΣR(z) =
∑

v∈Fd

[
Tvg1 · · ·Tvgd

]
zv

,
∑

v∈Fd

TR
v z

v where TR
v =

[
Tvg1 · · · Tvgd

]
.

We then recover TΣFM (z) from TΣR(z) and Tλ via

TΣFM (z) = Tλ + T 1
ΣR(z) · z1 + · · ·+ T d

ΣR(z) · zd. (8.18)

Reall that the Hankel operator associated with TΣR(z) is a matrix HTR with rows and
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columns indexed by Fd, where each entry of HTR is determined by [HTR ]v,w = TR
vw. It is easy

to see that the Hankel matrix HTR is identical to the Hankel matrix HTFM of the ncfm model

since

[HTR ]v,w = TR
vw =

[
Tvwg1 · · · Tvwgd

]
=
[
[HTFM ]v,wg1 · · · [HTFM ]v,wgd

]
. (8.19)

Then the identification between HTR and HTFM is now clear, and hence the recognizable transfer

function TΣR(z) is realizable if and only if the ncfm transfer function TΣFM (z) is.

We have already seen that if TΣFM (z) has a ncfm realization, then the associated Hankel

operator HTFM has factorization HTFM = O · C where

C : `2(({λ} × Fd \ {λ}),U) 7→ H,
and O : H 7→ `2((Fd × {λ}),Y),

and hence rank(HTFM ) ≤ dimH <∞. In addition, if such a realization is minimal, say dimH =

n, then by Minimality Theorem 8.2 the system is controllable and observable. In other words,

the ncfm controllability matrix C is surjective and the ncfm observability matrix O is injective,

and this implies that rank(HTFM ) = dimH = n.

Conversely, if rank(HTFM ) = n <∞, then the identification (8.19) implies that rank(HTR)

is also equal to n. Then there exists a minimal recognizable realization {H,F1, . . . , Fd, G} such

that TR
v = HF vG for all v ∈ Fd with the dimension of the state-space H = n. To realize the

original system equations (8.6), G necessarily has the form (cf. (8.10))

G =
[
G1 · · · Gd

]
.

Thus the formal power series (8.18) can be represented as

TΣFM (z) = Tλ +
∑

w∈Fd

HFwG1z
w · z1 + · · ·+

∑

w∈Fd

HFwGdz
w · zd

= Tλ +
∑

w∈Fd

d∑

k=1

HFwGkz
wgk (8.20)

Then we set Ak = Fk, Bk = Gk, C = H,D = Tλ, and hence the minimal realization problem

of the ncfm model is solved. Furthermore, since HTFM = O · C and rank(HTFM ) = dimH = n

which is the smallest one among other representations, one is able to construct a minimal

realization {A1, . . . , Ad, B1, . . . , Bd, C,D} as a system ΣFM described by the ncfm model. By

Minimality Theorem 8.2, this also implies that the system ΣFM is controllable and observable

(O is injective and C is surjective).

The above discussion is summarized in the following Theorem.
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Theorem 8.3. Let T (z) =
∑

v∈Fd
Tvz

v be a formal power series with coefficients Tv ∈ L(U ,Y).
Then T (z) has a realization {A1, . . . , Ad, B1, . . . , Bd, C,D} as a ncfm model (i.e., T = TΣFM )

with state-space H if and only if the associated Hankel operator HT has finite rank. In this case,

the minimal possible dimension of the state-space H is equal to the rank of HT .

Alternatively, one may construct the state-space H, and the system matrices

{A1, . . . , Ad, B1, . . . , Bd, C,D}

directly from the experimental data (i.e., from the impulse response and the corresponding

Hankel operator) rather than finding a recognizable-system realization {H,F1, . . . , Fd, G}; this
procedure amounts to an adaptation of the procedure given by M. Fliess [Fli74] for the recog-

nizable series. To do so, let us define the state-space H as

H = `fin(({λ} × Fd \ {λ}),U)/ kerHT ,

where HT is constructed from coefficients Tv of the given formal power series
∑

v∈Fd
Tvz

v as in

(8.15), and define the operators Aj : H 7→
⊕d

1H, Bj : U 7→
⊕d

1H and C : H 7→ Y by:

Aj : [{u(λ, v)}v∈Fd\{λ}]H 7→ [{u(λ, g−1j v)}v∈gjFd]H
Bj : u 7→ [{δw̃,gju}w̃∈Fd\{λ}]H
C : [{u(λ, v)}v∈Fd\{λ}]H 7→ [HT · {u(λ, v)}v∈Fd\{λ}]λ,

where [ · ]H indicates the equivalence class modulo the kernel of HT , and δv,w is the noncommu-

tative Kronecker delta defined by

δv,w =




1 if v = w,

0 otherwise.

First we have to verify that these operators are well-defined. To show that Aj is well-defined,

by linearity it suffices to show:

{u(λ, v)}v∈Fd\{λ} ∈ kerHT ⇒ {u(λ, g−1j v)}v∈gjFd ∈ kerHT

For any fixed w ∈ Fd, we compute

[HT · {u(λ, g−1j v)}v∈gjFd ]w =
∑

v∈gjFd

[HT ]w,v · u(λ, g−1j v)

=
∑

v′∈Fd

[HT ]w,gjv′ · u(λ, v′)
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=
∑

v′∈Fd

[HT ]wgj ,v′ · u(λ, v′) = [HT · {u(λ, v′)}v′∈Fd ]wgj .

Since we assume that {u(λ, v)}v∈Fd\{λ} ∈ kerHT , it follows that [HT · {u(λ, v′)}v′∈Fd ]wgj = 0.

Thus, we have {u(λ, g−1j v)}v∈gjFd ∈ kerHT as required. Note that the well-definedness of Bj is

not an issue here since domain of Bj is not a space of equivalence class.

For the operator C, let {u(λ, v)}v∈Fd\{λ} ∈ kerHT . This implies that HT ·u(λ, v)v∈Fd\{λ} =
0, and in paricular, 0 = [HT · u(λ, v)v∈Fd\{λ}]λ := C · {u(λ, v)}v∈Fd\{λ} Hence, C is also well-

defined.

It is quite straightforward to show that the operators defined above with D = Tλ give a

minimal ncfm realization for TΣ(z), i.e.

D = Tλ, CAwBk = Twgk for all w ∈ Fd, k = 1, . . . , d.

To do so, suppose we are given u ∈ U and compute CAi1Bku as follows:

Ai1Bk · u = Ai1 · {δw̃,gku}w̃∈Fd\{λ} = {δw̃,gi1gku}w̃∈Fd\{λ}.

Thus, CAi1Bk · u = [HT · {δw̃,gi1gku}w̃∈Fd\{λ}]λ
=

∑

w̃∈Fd\{λ}

[HT ]λ,w̃ · δw̃,gi1gku

= [HT ]λ,gi1gk · u = Tgi1gk · u.

Since u is arbitrary, one can deduce that CAi1Bk = Tgi1gk . By induction, one can verify that

for any v ∈ Fd, CAvBk = Tvgk .

8.1.3 Minimal Realization for NCGR Models, ΣGR

This Subsection is devoted to solving the minimal realization problem of the i/s/o linear system

described by the ncgr model. The reader will see that such a problem can be solved (i.e., to get

a minimal ncgr realization) directly by a modification of the construction via Hankel matrices.

Let us first recall that the Future-time i/s/o linear system described by the ncgr model is

ΣGR =





x1(g1w, λ) =
∑d

k=1A1,kxk(w, λ) +B1u(w, λ)
...

...

xd(gdw, λ) =
∑d

k=1Ad,kxk(w, λ) +Bdu(w, λ)

y(w, λ) =
∑d

k=1Ckxk(w, λ) +Du(w, λ).

(8.21)
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with initial condition

xin(λ, λ) =
d∑

in−1,...,i1,k=1

Ain,in−1 · · ·Ai2,i1Ai1,kxk(λ, gingin−1 · · · gi1)

+
d∑

in−1,...,i1=1

Ain,in−1 · · ·Ai2,i1Bi1u(λ, gingin−1 · · · gi1)

+ · · ·+
d∑

in−1=1

Ain,in−1Bin−1u(λ, gingin−1) +Binu(λ, gin).

Suppose that the state at a time in the remote past is initialized to be zero and the system

is fed by an input sequence {u(w, v)} supported only in the past as in the ncfm case. Then the

output sequence is

colw∈Fd [y(w, λ)] = HTGR · colw∈Fd\{λ}[u(λ, v)], (8.22)

where HTGR denotes the ncgr Hankel operator given by the matrix with rows indexed by Fd
and columns indexed by Fd \ {λ}



C1B1 · · · CdBd C1A1,1B1 · · · C1A1,dBd C2A2,1B1 · · ·
C1A1,1B1 · · · C1A1,dBd C1A

2
1,1B1 · · · C1A1,1A1,dBd C1A1,2A2,1B1 · · ·

...
...

...
...

... · · ·
CdAd,1B1 · · · CdAd,dBd CdAd,1A1,1B1 · · · CdAd,1A1,dBd CdAd,2A2,1B1 · · ·
C1A

2
1,1B1 · · · C1A1,1A1,dBd C1A

3
1,1B1 · · · C1A

2
1,1A1,dBd C1A1,1A1,2A2,1B1 · · ·

...
...

...
...

... · · ·




The matrix entry of HTGR can be determined by

[HTGR ]gingin−1 ···gi1 ,gjmgjm−1
···gj1gk

= CinAin,in−1 · · ·Ai2,i1Ai1,jmAjm,jm−1 · · ·Aj2,j1Aj1,kBk.

Note that the transfer function of the ncgr model is

TΣGR(z) = D + C(I − Zd(z)A)−1Zd(z)B,

which can also be expressed in terms of ncfm system matrices Aj , Bj as

TΣGR(z) = D + C



∞∑

j=0

(
d∑

k=1

Akzk

)j

 ·

d∑

k=1

Bkzk

= D +
∑

w∈Fd

d∑

k=1

(CAwBk) z
wgk , (8.23)
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where Aj = PjA and Bj = PjB. (See (6.57) on page 133). One could observe that this Hankel

operator HTGR is identical to the Hankel operator HTFM if the ncgr system model in (8.21)

is viewed as (embedded into) an ncfm system model, where we set Ak = PkA and Bk = PkB.

Therefore, the method discussed in Subsection 8.1.2 produces a minimal ncfm realization of a

given formal power series; however, this ncfm realization may not have the special structure to

come from a ncgr realization. We here present a adapted procedure for construction a minimal

ncgr realization.

To do so, let us partition the Hankel matrix HTGR into the block row decomposition as

HTGR =
[
H1
TGR

H2
TGR

· · · Hd
TGR

]
,

where the column indices are partitioned up by writing Fd \ {λ} as the pairwise-disjoint union

of gk · Fd over k = 1, . . . , d. In this case, we have d Hankel matrices where for each fixed k, the

rows of Hk
TGR

are indexed by v ∈ Fd, whereas the columns are indexed by w = gkw
′ ∈ gk · Fd

(i.e., words beginning with gk on the left). More explicitly, the k-th Hankel matrix Hk
TGR

is

given by

Hk
TGR =




CkBk CkAk,1B1 · · · CkAk,dBd CkAk,1A1,1B1 · · ·
C1A1,kBk C1A1,kAk,1B1 · · · C1A1,kAk,dBd C1A1,kAk,1A1,1B1 · · ·

...
...

...
... · · ·

CdAd,kBk CdAd,kAk,1B1 · · · CdAd,kAk,dBd CdAd,kAk,1A1,1B1 · · ·
C1A1,1A1,kBk C1A1,1A1,kAk,1B1

...
... · · ·

...
...

...
...




where its matrix entries are completely determined by the ncgr system matrices as follows:

[Hk
TGR ]v,gkw =





CkBk if v = λ,w = λ,

CkAk,jm · · ·Aj2,j1Bj1 if v = λ,w = gjmgjm−1 · · · gj1
CinAin,in−1 · · ·Ai1,kBk if v = gingin−1 · · · gi1 , w = λ

CinAin,in−1 · · ·Ai1,kAk,jm · · ·Aj2,j1Bj1 if v = gingin−1 · · · gi1 , w = gjmgjm−1 · · · gj1 .

It is worth noting that each entry of Hk
TGR

can also be determined by coefficients Tv of a formal

power series as

for fixed k, [Hk
TGR ]v,gkw = Tvgkw. (8.24)
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It is easily to see that for each k, the Hankel matrix Hk
TGR

can be factored as

Hk
TGR =




Ck

C1A1,k

...

CdAd,k

C1A1,1A1,k

...




[
Bk Ak,1B1 · · · Ak,dBd Ak,1A1,1B1 · · ·

]

and recall that the block column matrix and the block row matrix, respectively in the above

expression are the observability matrix Ok and the controllability matrix Ck with respect to a

letter gk (see Chapter 7 for the discussion on controllability and observability issues). Thus we

have

Hk
TGR = Ok · Ck. (8.25)

In general, for each k = 1, . . . , d

rank(Hk
TGR) ≤ dim(Hk) <∞

but if the ncgr system is ncgr-controllable and ncgr-observable (i.e., Ck is surjective and Ok

is injective for each k = 1, . . . , d) and the state-space dimension for each k is dimHk = nk, then

rank(Hk
TGR

) = dimHk = nk.

Conversely, let T (z) =
∑

v∈Fd
Tvz

v be any formal power series and construct the corre-

sponding Hankel matrix Hk
T as in (8.24). We then define the state-space Hk by

Hk = `fin(({λ} × gkFd),U)/ kerHk
T , (8.26)

and define the operators Ai,j : Hj 7→ Hi, Bj : U 7→ Hj , and Ci : Hi 7→ Y by:

Ai,j : [{u(λ, v)}v∈gjFd]Hj 7→ [{u(λ, g−1i v)}v∈giFd]Hi
Bj : u 7→ [{δw̃,gju}w̃∈gjFd]Hj
Ci : [{u(λ, v)}v∈giFd]Hi 7→ [Hi

T · {u(λ, v)}v∈giFd ]λ.

As in the ncfm case, we have to verify that the operators Ai,j and Ci are well-defined. Note

that domain of Bi is not a space of equivalence class and hence the well-definedness is not an

issue here.

To verify that Ai,j is well-defined, let us assume that {u(λ, v)}v∈gjFd ∈ kerHj
T . Thus, we
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have

0 = [Hj
T · {u(λ, v)}v∈gjFd ]w =

∑

v∈gjFd

[Hj
T ]w,v · u(λ, v)

=
∑

v′∈Fd

[Hj
T ]w,gjv′ · u(λ, gjv′) (8.27)

The above expression is true for all w ∈ Fd. In particular, when w has the form w = w′gi for

some w′ ∈ Fd. Thus, it follows from (8.27) that

0 =
∑

v′∈Fd

[Hj
T ]w′gi,gjv′ · u(λ, gjv′)

=
∑

v′∈Fd

[Hi
T ]w′,gigjv′ · u(λ, gjv′)

=
∑

v∈giFd

[Hi
T ]w′,vu(λ, g

−1
i v) (here we set v = gigjv

′)

= [Hi
T · {u(λ, g−1i v)}v∈giFd ]w′

This implies that {u(λ, g−1i v)}v∈giFd ∈ kerHi
T . For well-definedness of Ci is trivial from the

definition.

Thus, these operators together with D = Tλ perform a minimal ncgr realization for TΣ(z)

as in the ncfm case. We should also note that dimH = rank(HTGR), say = nk <∞ for each k,

by definition in (8.26).

The above discussion is summarized in the following Theorem.

Theorem 8.4. Let T (z) =
∑

v∈Fd
Tvz

v be a formal power series with coefficients Tv ∈ L(U ,Y).
Then T (z) has a realization {[Ai,j ]

d
i,j=1, [Bj ]

d
j=1, [Ci]

d
i=1, D} as a ncgr model (i.e., T = TΣGR)

with state-space H = H1 ⊕ · · · ⊕ Hd if and only if for each k = 1, . . . , d, the associated Hankel

operators Hk
T has finite rank. In this case, the minimal possible dimension of the state-space Hk

in any ncgr realization for T (z) is equal to rank(Hk
T ).

Remark 27. C. Beck [Bec01] gave some partial results concerning minimal ncgr realizations

for a given formal power series by making connections between series of the form TΣGR and

recognizable series TΣR . N

8.2 Stability

This Section concerns the stability issue which plays an important role in the designing a stabi-

lizing linear controller. The system we are dealing with here is an i/s/o linear system described

by the Future-time ncgr model (6.4). If the system is fed by zero input sequence, we shall
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call such a system as an unforced system. First we introduce some notions of stability and then

define the so-called noncommutative d-variable Schur class which is analogous to the Schur class

in the commutative case. We end this Section with the development of the Lyapunov theory for

stability test.

Definition 42. A system is said to have finite `2-gain if for every input sequence {u(w, λ)} ∈
`2((Fd × {λ}),U), the system generates an output sequence {y(w, λ)} such that

‖y(w, λ)‖2`2((Fd×{λ},Y) <∞

when the initial and boundary conditions are bounded, i.e.

‖x(λ, λ)‖2 +
d∑

k=1

∑

w:w 6=gkw̃

‖xk(w, λ)‖2 <∞.

Definition 43. An unforced system is said to be exponentially stable provided that for zero

boundary condition, there exist K <∞ and r < 1 so that
∑

w:|w|=n ‖x(w, λ)‖2 ≤ Krn‖x(λ, λ)‖2
for all n.

Definition 44. An unforced system is said to be asymptotically stable provided that for zero

boundary condition, lim
n→∞

∑

w:|w|=n

‖x(w, λ)‖2 = 0.

Recall that for any word w of length m given by w = gjmgjm−1 · · · gj1 , the general solution

xj(gjw, λ) for the system (6.4) with zero boundary conditions and zero input sequence is given

by (see (6.47) on page 130):

xj(gjw, λ) = Aj,jmAjm,jm−1 · · ·Aj3,j2Aj2,j1

d∑

in=1

Aj1,inxin(λ, λ),

or in terms of the ncfm system matrices

x(gw, λ) =
d∑

k=1

Agkwx(λ, λ).

Thus the stability criteria in Definition 43 and Definition 44, respectively are equivalent to:

• An unforced system is said to be exponentially stable provided that for zero boundary

condition, there exist K < ∞ and r < 1 so that
∑

w:|w|=n ‖Awx(λ, λ)‖2 ≤ Krn‖x(λ, λ)‖2
for all n.

• An unforced system is said to be asymptotically stable provided that for zero boundary
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condition,

lim
n→∞

∑

w:|w|=n

‖Awx(λ, λ)‖2 = 0.

8.2.1 Noncommutative d-variable Schur Class

Let us first recall that the Future-time ncgr model is described by

ΣGR
f =




xk(gkw, λ) =

∑d
j=1Ak,jxj(w, λ) +Bku(w, λ), for k = 1, . . . , d

y(w, λ) =
∑d

j=1Cjxj(w, λ) +Du(w, λ),
(8.28)

together with the connecting operator

U =

[
A B

C D

]
=




A1,1 · · · A1,d B1

...
. . .

...
...

Ad,1 · · · Ad,d Bd

C1 · · · Cd D



:

[⊕d
i=1Hi

U

]
7→
[⊕d

i=1Hi

Y

]
.

Suppose now that the connecting operator U is contractive; i.e., ‖Uξ‖2 ≤ ‖ξ‖2 for all

ξ ∈
[
H
U

]
. Then from the system (8.28), we have the dissipative inequality over all trajectories

of the system (cf. (6.39) on page 127)

‖x(gw, λ)‖2 − ‖x(w, λ)‖2 ≤ ‖u(w, λ)‖2 − ‖y(w, λ)‖2 (8.29)

It is of interest to take the summation of both sides of (8.29) over all words w of length at most

n and this yields

∑

w:|w|≤n

(
‖x(gw, λ)‖2 − ‖x(w, λ)‖2

)
≤

∑

w:|w|≤n

(
‖u(w, λ)‖2 − ‖y(w, λ)‖2

)
,

which is equivalent to

∑

w:|w|=n

‖x(gw, λ)‖2 − ‖x(λ, λ)‖2 −
∑

w:1≤|w|≤n
w 6=gkw̃

d∑

k=1

‖xk(w, λ)‖2

≤
∑

w:|w|≤n

(
‖u(w, λ)‖2 − ‖y(w, λ)‖2

)
(8.30)

If now we assume that {u(w, λ)} ∈ `2((Fd×{λ},U) and that n be arbitrarily large, one can see
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that

‖y(w, λ)‖2`2((Fd×{λ},Y)

≤ ‖u(w, λ)‖2`2((Fd×{λ},U) + ‖x(λ, λ)‖
2 − lim

n→∞

∑

w:|w|=n

‖x(gw, λ)‖2 + lim
n→∞

d∑

k=1

∑

w:1≤|w|≤n
w 6=gkw̃

‖xk(w, λ)‖2

≤ ‖u(w, λ)‖2`2((Fd×{λ}),U) + ‖x(λ, λ)‖
2 + lim

n→∞

d∑

k=1

∑

w:1≤|w|≤n
w 6=gkw̃

‖xk(w, λ)‖2 (8.31)

If we assume in addition that the initial and boundary conditions are bounded in the sense

of Definition 42, then the system has finite `2-gain. Now if we suppose also that the boundary

terms are all zero, then (8.31) collapses to

‖y(w, λ)‖2`2((Fd×{λ},Y) ≤ ‖u(w, λ)‖
2
`2((Fd×{λ},U)

+ ‖x(λ, λ)‖2 (8.32)

This implies that for any contractive operator U if the system is asymptotically stable, then it

does also have finite `2-gain.

Let us now consider the dissipative system (i.e., a system associated with a contraction U)

given in (8.31). It is of interest when the initial states xk(λ, λ) = 0 and the boundary conditions

xk(w, λ) = 0 unless w = gkw̃ for all k ∈ Id. Then (8.31) collapses to

‖y(w, λ)‖2`2((Fd×{λ},Y) ≤ ‖u(w, λ)‖
2
`2((Fd×{λ},U)

. (8.33)

After taking the Z-transform (see Eq. (6.55) on page 133), it yields

‖y∧Tf (z, 0)‖2L2((Fd×{λ},Y) = ‖TΣf (z) ·u
∧Tf (z, 0)‖2L2((Fd×{λ},U) ≤ ‖u

∧Tf (z, 0)‖2L2((Fd×{λ},U) (8.34)

In analogy with the classical case, we denote Snc,d(U ,Y) the noncommutative, d-variable Schur

class:

Snc,d(U ,Y) =
{
T (z) =

∑

w∈Fd

Twz
w such that

MT : L
2((Fd × {λ},U) 7→ L2((Fd × {λ},Y) analytic and ‖MT ‖Op ≤ 1

}
(8.35)

Thus (8.34) implies that TΣf ∈ Snc,d.
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8.2.2 Lyapunov Theory

This Subsection presents the development of the so-called Lyapunov Theory for an i/s/o linear

system with evolution along the elements of a free semigroup which is represented by the Future-

time ncgr model. Let us begin by letting V : H → R+ be a quadratic Lyapunov function

candidate defined by

V (x) = 〈x, Px〉 for all x ∈ H (8.36)

where P is a given positive definite matrix. Note that the quadratic Lyapunov function V is

always positive as long as x 6= 0. Let w be a word of length n, i.e. |w| = n. Then

4V (x) , V (x(gw, λ))− V (x(w, λ))

= 〈x(gw, λ), Px(gw, λ)〉 − 〈x(w, λ), Px(w, λ)〉
= 〈Ax(w, λ), PAx(w, λ)〉 − 〈x(w, λ), Px(w, λ)〉
= 〈x(w, λ), (A>PA− P )x(w, λ)〉 (8.37)

Since V (x) was chosen to be positive definite, we require, for asymptotic stability, that 4V (x)

be negative definite. Therefore, we demand that

4V (x) = −〈x(w, λ), Qx(w, λ)〉, (8.38)

where,

Q , P −A>PA > 0 (8.39)

The equation (8.39) is called Lyapunov equation.

By taking summation of all possible words of length |w| = 0 to |w| = N on the right hand

side of (8.37), we get

N∑

w:|w|=0

〈x(w, λ), Qx(w, λ)〉 =
N∑

w:|w|=0

[V (x(w, λ))− V (x(gw, λ))]

= V (x(λ, λ))−
∑

w:|w|=N+1

V (x(w, λ))

≤ V (x(λ, λ)) <∞ (8.40)

Since the sequence of partial sums of the associated quadratic functions is bounded above by
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V (x(λ, λ)) and is increasing due to the positivity assumption on Q in (8.39), this implies that

lim
N→∞

N∑

w:|w|=0

〈x(w, λ), Qx(w, λ)〉 converges.

Indeed limN→∞
∑N

w:|w|=0〈x(w, λ), Qx(w, λ)〉 = 0 by the nth-term test. Since Q is (strictly)

positive definite by assumption (8.39), we have

〈x(w, λ), Qx(w, λ)〉 ≥ m‖x(w, λ)‖2, where m = inf
x:‖x‖=1

〈x(w, λ), Qx(w, λ)〉 > 0

and therefore, this implies

lim
n→∞

∑

w:|w|=n

‖x(w, λ)‖2 = 0,

i.e., the system is asymptotically stable. Hence, we have established the following Lemma.

Lemma 8.5. An i/s/o linear unforced system described by the ncgr model as in (8.28) is

asymptotically stable if for some positive definite Q, there exists a positive definite solution P

satisfying the Lyapunov equation (8.39).

Suppose now that the unforced system is asymptotically stable, i.e.

lim
n→∞

∑

w:|w|=n

‖x(w, λ)‖2 = lim
n→∞

∑

w:|w|=n

‖Awx(λ, λ)‖2 = 0 (8.41)

For any positive definite Q, consider the equation for M : M = Q + A>MA. Solve recursively

for M as follows:

M = Q+A>MA

= Q+
d∑

i=1

A>i M
d∑

j=1

A>j

= Q+
d∑

i=1

A>i

[
Q+

d∑

k=1

A>kM
d∑

`=1

A>`

]
d∑

j=1

A>j

= Q+
d∑

i=1

A>i Q
d∑

j=1

A>j +
d∑

i=1

d∑

k=1

(AkAi)
>M

d∑

`=1

d∑

j=1

(A`Al)

Or, = Q+
[
(Ag1)>Q(Ag1) + (Ag1)>Q(Ag2) + · · ·+ (Agd)>Q(Agd)

]

+
[
(Ag1g1)>Q(Ag1g1) + (Ag1g1)>Q(Ag1g2) + · · ·+ (Agdgd)>Q(Agdgd)

]
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+

d∑

i=1

d∑

k=1

d∑

m=1

(AmAkAi)
>M

d∑

n=1

d∑

`=1

d∑

j=1

(
AnA`Aj

)

...

= Q+
N∑

w:|w|=1

N∑

v:|v|=1

(Aw)>Q (Av) +
∑

w:|w|=N+1

∑

v:|v|=N+1

(Aw)>M (Av) (8.42)

Note that when N is large enough, the last term of (8.42) goes to zero due to the stability

condition (8.41). Thus, (8.42) collapses to

M = Q+
N∑

w:|w|=1

N∑

v:|v|=1

(Aw)>Q (Av)

Or, M ≥
N∑

w:|w|=1

N∑

v:|v|=1

(Aw)>Q (Av) (since Q > 0) (8.43)

Since the partial sums (8.43) of the associated quadratic functions are bounded above, the

limit

lim
N→∞

N∑

w:|w|=1

N∑

v:|v|=1

(Aw)>Q (Av) exists.

Hence, we shall take P to be

P = Q+

∞∑

w:|w|=1

∞∑

v:|v|=1

(Aw)>Q (Av) (8.44)

Obviously, P is well-defined and positive definite since Q is. Moreover, such a P satisfies the

Lyapunov equation (8.39), since

A>PA− P =

(
d∑

i=1

A>i

)
P




d∑

j=1

Aj


− P

=
d∑

i=1

A>i


Q+

∞∑

w:|w|=1

(Aw)>Q
∞∑

v:|v|=1

(Av)




d∑

j=1

Aj − P

=
d∑

i=1

A>i Q
d∑

j=1

Aj +
d∑

i=1

∞∑

w:|w|=1

(AwAi)
>Q

d∑

j=1

∞∑

v:|v|=1

(
AvAj

)
− P

=

∞∑

w:|w|=1

(Aw)>Q

∞∑

v:|v|=1

(Av)− P



Tanit Malakorn Chapter 8. Minimality Realization and Stability 183

= −Q (8.45)

Thus, from this analysis, we can conclude that if the system is asymptotically stable, then

for some positive definite matrix Q, there exists a positive definite matrix P satisfying the

Lyapunov equation. Moreover, such a P is unique. To see this, let us assume that P1 is another

solution of (8.39).

Then,

P = Q+
∞∑

w:|w|=1

(Aw)>Q
∞∑

v:|v|=1

(Av)

= [P1 −A>P1A] +
∞∑

w:|w|=1

(Aw)>
[
P1 −A>P1A

] ∞∑

v:|v|=1

(Av)

= P1 +
∞∑

w:|w|=1

(Aw)> P1

∞∑

v:|v|=1

(Av)−A>P1A−
∞∑

w:|w|=1

(Aw)>A>P1A
∞∑

v:|v|=1

(Av)

= P1 +
∞∑

w:|w|=1

(Aw)> P1

∞∑

v:|v|=1

(Av)−
∞∑

w:|w|=0

(Aw)>A>P1A
∞∑

v:|v|=0

(Av)

= P1 +

∞∑

w:|w|=1

(Aw)> P1

∞∑

v:|v|=1

(Av)−
∞∑

w:|w|=0

d∑

i=1

(AiA
w)> P1

∞∑

v:|v|=0

d∑

j=1

(
AjA

v
)

= P1 +

∞∑

w:|w|=1

(Aw)> P1

∞∑

v:|v|=1

(Av)−
∞∑

w:|w|=1

(Aw)> P1

∞∑

v:|v|=1

(Av) = P1 (8.46)

By this analysis combined with Lemma 8.5, we have proved the following Theorem.

Theorem 8.6 (Lyapunov Theorem for Noncommutative Roesser’s System). An i/s/o

linear unforced system described by the ncgr model is asymptotically stable if and only if for

some positive definite matrix Q, there exists a unique positive definite solution P of the Lyapunov

equation (8.39).

8.3 Conclusion

This Chapter establishes the realization theory for an i/s/o system described by the noncommu-

tative d-D linear models in a connection with the so-called recognizable system. Our contribution

here is to give the state-space interpretation of systems whose transfer function is expressed as a

formal power series with noncommuting d-indeterminants, and to generalize the work of C. Beck

in [Bec01] in systematic way. We also introduce various notions of stability and establish the

Lyapunov theory in terms of state-space coordinate.



Chapter 9

Conclusion and Open Problems

In Part 1, we consider an i/s/o linear system whose the “time axis” is an integer lattice, Zd, d > 1.

The thermal process, heat exchangers, gas absorption, and satellite photo analysis are typical

examples of this type of system. We present here two well-known linear models which are

commonly used in the multidimensional system literature, namely the Givone-Roesser (gr) and

the Fornasini-Marchesini (fm) models. These models are not completely independent; in fact,

one can identify one model with the other if certain assumptions are imposed on the fm model.

The application of the d-variable Z-transform to the linear system equations yields the transfer

function which is a rational function of d complex variables.

We then consider the so-called (output) feedback stabilizable problem for a given plant P (z),

where z = (z1, . . . , zd), in the connection with the model matching problem and the interpolation

problem. By assuming that P (z) admits a double coprime factorization (dcf), one can convert

the feedback stabilizable problem into a model matching problem via the Youla parameter, Q(z).

Let F (z) denote the performance function, which is affine in Q(z). Then, with the performance

function F (z) as the design parameter than Q(z), one has an interpolation problem for F (z).

One then solves an interpolation problem to get F (z), and then backsolves for Q(z) and finally

for K(z), a desired controller. For the internal stability issue, if the performance function F (z)

is stable and satisfies the appropriate interpolation conditions, then K(z) is internally stable.

Incorporation of a tolerance level on F (z) then leads to an npip type.

The procedure to solve the H∞ control problem via the interpolation approach is sum-

marized in Section 4.6. While this procedure does solve the problem, there are a number of

remaining issues which may be directions for future research. In addition to Remark 12 (see

page 74), let us mention:

1. While the existence of a dcf of a rational matrix-valued function in several complex

variables in general appears not to have been proven at the moment, it is conjectured

that such a dcf always does exist; the set of conditions in Proposition 4.6 is sufficient to

184
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guarantee the existence of such a dcf.

2. The case where the third coupled interpolation condition (4.21) appears (i.e., the case

where qu = sv for some pair of indices (u, v)), and the case when interpolating along the

zero variety of irreducible function with multiplicities ku or `v are more than one remain

mysterious.

3. The procedure in Section 4.6 is rather cumbersome and quite analogously to the situation

for the classical 1D H∞ problem in the early days of the development of the theory in the

1980s (see [Fra87]). What is missing is the formulation and solution of the interpolation

problem in terms of state-space coordinates (or some other practical choice of coordinates

which would streamline the computations). Despite the fact that much of the familiar

Hardy space function theory for the classical case fails for d > 1 (see e.g. [Rud69]), the

results here suggest that something should be possible.

4. At least to our knowledge, there is a lack of a reliable analysis on how to solve an infinite

lmi or an loi; some analysis of whether solutions of a sequence of approximating lmis

can be used to approximate a true solution of the infinite lmi would be helpful. Simple

numerical experiments on small-size id set done by the author suggest that one cannot

expect to find the solution of the full infinite lmi by approximating with solutions of finite

sub-lmis.

5. It would be of interest to remove the assumption that T2 and T3 are invertible, and to

handle the case of the general configuration of the standard H∞ problem (see Fig. 4.1).

In this connection, see Remark 13.

In Part 2, we examine linear systems with evolution along the elements of a free semigroup

Fd. In this case, the time-axis can be viewed as a homogeneous tree of order d with a root. We

establish the system of linear equations in the form of the so-called noncommutative Givone-

Roesser (ncgr) and noncommutative Fornasini-Marchesini (ncfm) models. As we have already

seen, these models have similar mathematical structures as the gr and fm in Part 1. The

application of the noncommutative d-variable Z-transform to the system of equations yields the

transfer function which can be expressed as a formal power series in d noncommuting variables.

Motivation for the study of such formal power series comes from the Beck-Doyle paper

[BD99] on the robust control for systems with structured uncertainty. We have seen that once

we have an i/o map from input u to output y given by

y = LFTu(U,∆)u = [D + C(I −∆A)−1∆B]u,

we can replace the uncertainty operator ∆ by the generalized system dynamics Z(z) where z is
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a d-tuple of noncommuting indeterminants, say z = (z1, . . . , zd), zizj 6= zjzi unless i = j. Thus,

we arrive at the transfer function of the ncfm system. If we assume in addition that ∆ has the

form

∆ =




δ1
. . .

δd


 ,

then we have the transfer function of the ncgr system. This gives a connection between the

robust control theory and the noncommutative d-D system theory. The role of formal power

series in analyzing linear time-invariant systems having time-varying structured uncertainties

was introduced in the work of Doyle, Zhou, and Beck [Bec01, BD99, ZDG96] in a more formal,

but less precise way.

In this Part, we study the “time-domain” properties of such systems such as reachability,

controllability, observability, all of which are given in Chapter 7. In Chapter 8, we consider

the minimality and the stability issues. The minimal realization problems for the ncfm and

ncgr are also stated and solved in the connection with the recognizable system. Beck [Bec01]

gave some partial results concerning minimal ncgr-realizations for a given formal power series;

however, she did not provide the system of equations explicitly. We also establish the Lyapunov

theory for the ncgr system.

The following is a list of remaining issues which may interest the reader and can be con-

sidered as topics for future research:

1. It is of interest to reformulate the results in this Part with the generalized system dynamics

Z(z) rather than the Zd(z) or Zr(z) (see Remark 19 on page 107), and this will give the

general results in connection with the robust control as mentioned in [Bec01, BD99].

2. Suppose we are given a formal power series T (z) =
∑

v∈Fd
Tvz

v. Then, one could replace

noncommuting variable z by uncertainty operator δ, and the question would be, how can

we construct a system realization {A,B,C,D} from T (δ) so that U =

[
A B

C D

]
is unitary.

This can be stated precisely as follows:

For a given formal power series T (z) =
∑

v∈Fd
Tvz

v, if ‖T (δ)‖ = ‖∑v∈Fd
Tv ⊗ δv‖ ≤ 1 for

all δ = (δ1, . . . , δd), where for each j, δj ∈ L(`2) such that ‖δj‖ < 1, then the conjecture is

that there exists a unitary operator U :

U :=

[
A B

C D

]
=




A1,1 · · · A1,d B1

...
. . .

...
...

Ad,1 · · · Ad,d Bd

C1 · · · Cd D



:




H1

...

Hd

U



7→




H1

...

Hd

Y




(9.1)
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so that T (z) = D + C(I − Zd(z)A)
−1Zd(z)B. If this conjecture is true, then the linear

fractional transformation (lft) model always exists for a given formal power series.

3. By using the result of the conjecture given above, one can prove the Bounded Real Lemma

for the noncommutative d-D linear system which is stated as follows:

Given a linear system which is ncgr-controllable/observable with the connecting operator

U :

U =

[
A B

C D

]
:

[⊕d
j=1Hj

U

]
7→
[⊕d

j=1Hj

Y

]

such that T (z) = D + C(I − Zd(z)A)−1Zd(z)B satisfies the norm constraint

‖T (δ)‖ ≤ 1 whenever

∥∥∥∥∥∥∥∥




δ1
. . .

δd




∥∥∥∥∥∥∥∥
≤ 1,

then there is a positive definite matrix X :=




X1

. . .

Xd


 > 0 so that

[
A∗ C∗

B∗ D∗

][
X 0

0 I

][
A B

C D

]
≤
[
X 0

0 I

]
(9.2)

4. Stability issue:

(a) Stability for the ncgr systems defined in Section 8.2.

(b) (I − A∆) is invertible in L(`2) for all ∆ ∈ B∆—∆’s are the time-varying structured

uncertainties with bounded norm (see e.g. [Bec01, BD99, ZDG96]).

(c) There is a structured similarity S so that SAS−1 is contractive—this is equivalent to:

There exists a positive definite Y in S (i.e., commuting with the structured block-

diagonal operators) so that Y −A∗Y A := Q is (strictly) positive definite.

Shamma [Sha94, Sha91], and Feintuch-Markus [FM00] showed the equivalent between the

statements (b) and (c). Our conjecture is that all statements above are equivalent.



Appendix A

Tensor Product

The tensor product notation gives a calculus which organizes everything and keeps everything

relatively simple. Thus, it is more convenient for analysis purposes to represent the block-

diagonal operators and the `2-space in the tensor product notation formally defined as follows:

Definition 45 (Algebraic Tensor Product [AM02]). Given two vector spaces E and F ,

the algebraic tensor product, denoted by E ⊗ F , is the set of finite linear combinations

{
n∑

i=1

ciei ⊗ fi | ci ∈ C, ei ∈ E, and fi ∈ F with n <∞
}

(A.1)

modulo the equivalence relations

(e1 + e2)⊗ f ∼ (e1 ⊗ f) + (e2 ⊗ f)
e⊗ (f1 + f2) ∼ (e⊗ f1) + (e⊗ f2)

c(e⊗ f) ∼ (ce)⊗ f
c(e⊗ f) ∼ e⊗ (cf),

A tensor is called an elementary tensor (or sometimes called a pure tensor) if it is of the form

e⊗ f , for e ∈ E and f ∈ F .

Note that an elementary tensor is a primitive, undefined object. Certain elements of E⊗F
are associated with pairs of elements, the first from E and the second from F . It should also be

noted that elements of the algebraic tensor product E ⊗ F do not have unique representations

as finite linear combinations of elementary tensors. Let H and K be two Hilbert spaces. If

H has an orthonormal basis {ei | i ∈ I} and K has an orthonormal basis {fj | j ∈ J}, then
{ei⊗ fj : (i, j) ∈ I×J} is an orthonormal basis of E⊗F . It follows from this fact that if H and

K are finite dimensional spaces, then dim(H ⊗ K) = dim(H) dim(K). We also need the notion

188
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of an operator acting on H⊗K which is defined as follows: Let A and B be operators on H and

K, respectively (i.e., A ∈ L(H), and B ∈ L(K)). We denote by A ⊗ B the operator defined on

elementary tensors by

(A⊗B) : (e⊗ f) 7→ (Ae)⊗ (Bf) (A.2)

and extended by linearity and continuity to all of E ⊗ F .

Remark 28. In the finite dimensional case, one can make the identification

L(E ⊗ F ) = L(E)⊗ L(F ).

This still is roughly true, however, in the infinite dimensional case, but one has to be careful as

to which topology is used to be close up finite linear combinations of elementary tensors. N

To demonstrate the application of the tensor product, let us consider the following concrete

example which is adopted from [Ode79, page 76–78]. Let E and F denote the Euclidean vector

spaces defined over the same field, say E = Rm and F = Rn. Now suppose that G = E ⊗ F =

Rm ⊗ Rn. Clearly, each element g ∈ G can be represented in the form

g =
m∑

i=1

n∑

j=1

ci,jei ⊗ fj ,

where ei ∈ Rm, fi ∈ Rn, and the scalars ci,j are regarded as components of g relative to the basis

ei ⊗ fj . Once a basis is established, the operators of vector addition and scalar multiplication

in G are particularly simple:

g1 + g2 = g3 =⇒ c3i,j = c1i,j + c2i,j

αg1 = g2 =⇒ c2i,j = αc1i,j

for i = 1, . . . ,m; j = 1, . . . , n.

Since dim(E) = m and dim(F ) = n, this implies that dim(G) = mn. To verify this, let us

assume that E = R3 = F together with the standard basis vectors, 11 = (1, 0, 0), 12 = (0, 1, 0),

and 13 = (0, 0, 1). Then the tensor product G = E ⊗ F has nine standard basis elements

11 ⊗ 11 11 ⊗ 12 11 ⊗ 13

12 ⊗ 11 12 ⊗ 12 12 ⊗ 13

13 ⊗ 11 13 ⊗ 12 13 ⊗ 13
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If e = (1, 2,−1) and f = (−1, 4,−2), then g = e⊗ f is given by

g =
3∑

i,j=1

ci,j1i1j ,

where

c = [ci,j ]
3
i,j=1 =



−1 4 −2
−2 8 −4
1 −4 2


 .

Similarly, let A = [ai,j ] and B = [bi,j ] be matrices of arbitrary sizes. Then their tensor

product is defined as the matrix given by

A⊗B =




Ab1,1 Ab1,2 · · · Ab1,n

Ab2,1 Ab2,2 · · · Ab2,n
...

...
...

Abm,1 Abm,2 · · · Abm,n



.

For instance, let B = I`2 , then

A⊗B = A⊗ I`2 = diag{A,A, . . . }.

Hence, one may write A as A⊗ I`2 .
Therefore, by using the tensor product notation, the system Σ in (5.15) can be expressed

as

Σ =





x = (IH ⊗ S) [(A⊗ I`2)x+ (B1 ⊗ I`2)w + (B2 ⊗ I`2)]u
z = (C1 ⊗ I`2)x+ (D1 ⊗ I`2)w + (D2 ⊗ I`2)u
y = (C2 ⊗ I`2)x+ (D3 ⊗ I`2)w + (D4 ⊗ I`2)u,

(A.3)

with w = (∆⊗ I`2)z.
Or in the vector-matrix form:



x

w

y


 =



IH ⊗ S 0 0

0 ∆⊗ I`2 0

0 0 IY⊗`2






A⊗ I`2 B1 ⊗ I`2 B2 ⊗ I`2
C1 ⊗ I`2 D1 ⊗ I`2 D2 ⊗ I`2
C2 ⊗ I`2 D3 ⊗ I`2 D4 ⊗ I`2






x

w

u


 .

By using the rows and columns permutation properly, one obtains the results as in Subsec-

tion 5.2.3 where each matrix entry ãi,j of an operator Ã is of the form ãi,j = ai,j ⊗ I`2 if

A = [ai,j ]
n
i,j=1 and ai,j ∈ C. The other operators B̃i, C̃i, D̃j are defined in the similar way.
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Consider a connecting operator U of the form

U =

[
A B

C D

]
:

[
H⊗ Cm

U

]
7→
[
H⊗ Cn

Y

]

and suppose that we are given a homogeneous operator pencil

L(z) =
d∑

j=1

Ljzj with Lj ∈ L(Cn,Cm).

The associated system is

Σ:

{
x(w) = (IH ⊗ L(σ∗))Ax(w) + (IH ⊗ L(σ∗))Bu(w)
y(w) = Cx(w) +Du(w)

(where σ∗ = (σ∗1, . . . , σ
∗
d) and σ

∗
jx(w) = x(g−1j w)) with associated transfer function equal to the

formal power series in d noncommuting variables z = (z1, . . . , zd) given by

T (z) = TΣ(z) = D + C(I − (IH ⊗ L(z))A)−1(IH ⊗ L(z))B (A.4)

=
∑

v∈Fd

Tvz
v (A.5)

where Tv ∈ L(U ,Y) (for v ∈ Fd) are given by

Tλ = D, Tvgj = CAvBj

where Av = Ain · · ·Ai1 if v = gin · · · gi1 and where

Aj := (IH ⊗ Lj)A, Bj := (IH ⊗ Lj)B.

The i/o operator associated with the system Σ and disturbance δ = (δ1, . . . , δd) is exactly

T (δ) = D ⊗ I`2 + (C ⊗ I`2)


I −

d∑

j=1

Aj ⊗ δj



−1


d∑

j=1

Bj ⊗ δj


 .

The theorem is:

Theorem A.1. T (δ) can also be expressed as

T (δ) =
∑

v∈Fd

Tv ⊗ δv.
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Proof. Use that (Aj ⊗ δj) · (Ak ⊗ δk) = AjAk ⊗ δjδk to see that




d∑

j=1

Aj ⊗ δj



n

=
∑

v : |v|=n

(A⊗ δ)v =
∑

v : |v|=n

Av ⊗ δv

and hence 
I −

d∑

j=1

Aj ⊗ δj



−1

=
∞∑

n=0




d∑

j=1

Aj ⊗ δj



n

=
∑

v∈Fd

Av ⊗ δv.

Use also that

(Av ⊗ δv)(Bj ⊗ δj) = AvBj ⊗ δvδj

to deduce that

T (δ) = D ⊗ I`2 + (C ⊗ I`2)


∑

v∈Fd

Av ⊗ δv





d∑

j=1

Bj ⊗ δj


 =

∑

v∈Fd

Tv ⊗ δv

as desired. ¥

For further discussion on the tensor product, the readers are referred to [AM02, Ma02,

Ode79, Rya02].



Appendix B

MATLAB Source Code

For a detailed description of all LMI Control Toolbox functions, readers should refer to [GNLC95].

%FILE: LMI_experiment.m

%

%Suppose that for given n-1 data points

%{alpha_1,beta_1,omega_1},...,{alpha_n-1,beta_n-1,omega_n-1},

%there exist P and Q > 0 which satisfy the Bidisk interpolation condition

%OMEGA = P.ALPHA + Q.BETA where "." is the Schur product (entry times entry).

%We want to know that if we add one more point {alpha_n,beta_n,omega_n},

%can we find newP and newQ such that

%1. newP and newQ > 0, and

%2. submatrix (1:N-1,1:N-1) of newP (resp. newQ) is P (resp. Q)

%

clear all;

%

%given the data "alpha", "beta", and "omega"

%

alpha_row = input(’given row vector of alpha = ’);

beta_row = input(’given row vector of beta = ’);

omega_row = input(’given row vector of omega = ’);

%

%Construct the matrices from the given data where alpha and beta are diagonal

%

alpha = diag(alpha_row); beta = diag(beta_row);

N = length(omega_row);

193
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for m=1:N

for n=1:N

omega(m,n) = 1-omega_row(m)*conj(omega_row(n));

A(m,n) = 1-alpha_row(m)*conj(alpha_row(n));

B(m,n) = 1-beta_row(m)*conj(beta_row(n));

end;

end;

%

%Form the real matrix where A + Bi ~ [A -B; B A]

%

ALPHA = [real(alpha) -imag(alpha);imag(alpha) real(alpha)];

BETA = [real(beta) -imag(beta); imag(beta) real(beta)];

OMEGA = [real(omega) -imag(omega); imag(omega) real(omega)];

ALPHAcon = [real(alpha) imag(alpha);-imag(alpha) real(alpha)];

BETAcon = [real(beta) imag(beta); -imag(beta) real(beta)];

%

% Using LMI CONTROL TOOLBOX

%

setlmis([]);

%

% declare P = [Re(p) -Im(p); Im(p) Re(p)]

%

[P1,nP1,sP1] = lmivar(1,[N,1]);

[P2,nP2,sP2] = lmivar(3,skewdec(N,nP1));

[P,nP,sP] = lmivar(3,[sP1 -sP2; sP2 sP1]);

%

[Q1,nQ1,sQ1] = lmivar(1,[N,1]);

[Q2,nQ2,sQ2] = lmivar(3,skewdec(N,nQ1));

[Q,nQ,sQ] = lmivar(3,[sQ1 -sQ2; sQ2 sQ1]);

%

LMI_P = newlmi;

lmiterm([-LMI_P 1 1 P],1,1); % LMI #1: P

%

LMI_Q = newlmi;

lmiterm([-LMI_Q 1 1 Q],1,1); % LMI #2: Q

%

LMI_OMEGA_POS = newlmi;
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lmiterm([-LMI_OMEGA_POS 1 1 0],OMEGA);

lmiterm([LMI_OMEGA_POS 1 1 P],1,1);

lmiterm([LMI_OMEGA_POS 1 1 P],-ALPHA,ALPHAcon);

lmiterm([LMI_OMEGA_POS 1 1 Q],1,1);

lmiterm([LMI_OMEGA_POS 1 1 Q],-BETA,BETAcon);

%

LMI_OMEGA_NEG = newlmi;

lmiterm([LMI_OMEGA_NEG 1 1 0],OMEGA);

lmiterm([-LMI_OMEGA_NEG 1 1 P],1,1);

lmiterm([-LMI_OMEGA_NEG 1 1 P],-ALPHA,ALPHAcon);

lmiterm([-LMI_OMEGA_NEG 1 1 Q],1,1);

lmiterm([-LMI_OMEGA_NEG 1 1 Q],-BETA,BETAcon);

%

lmisyst=getlmis;

%

[tmin,xfeas] = feasp(lmisyst);

Pf = dec2mat(lmisyst,xfeas,P);

Qf = dec2mat(lmisyst,xfeas,Q);

%

%Display the eigenvalues of Pf and Qf

%

eig_P = eig(Pf)

eig_Q = eig(Qf)

%

%Form the complex-valued matrices from the real matrices obtained by the

%LMI Toolbox

%

p = Pf(1:N,1:N) + i*Pf(N+1:2*N,1:N)

q = Qf(1:N,1:N) + i*Qf(N+1:2*N,1:N)

rhs = p.*A + q.*B;

fprintf(’the value of [P]*[alpha] + [Q]*[beta] is \n’); rhs

fprintf(’the data matrix (omega) is \n’); omega

%

%Suppose now that we add one more point, say {alpha_n,beta_n,omega_n}

%

alpha_n = input(’given one more point of alpha = ’);

beta_n = input(’given one more point of beta = ’);
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omega_n = input(’given one more point of omega = ’);

%

new_alpha = [alpha_row alpha_n]; new_beta = [beta_row beta_n];

new_omega = [omega_row omega_n];

ext_alpha = diag(new_alpha); ext_beta = diag(new_beta);

newN = N+1;

for m=1:newN

for n=1:newN

ext_omega(m,n) = 1-new_omega(m)*conj(new_omega(n));

ext_A(m,n) = 1-new_alpha(m)*conj(new_alpha(n));

ext_B(m,n) = 1-new_beta(m)*conj(new_beta(n));

end;

end;

%

%Form the real matrix where A + Bi ~ [A -B; B A]

%

ext_ALPHA = [real(ext_alpha) -imag(ext_alpha);imag(ext_alpha) real(ext_alpha)];

ext_BETA = [real(ext_beta) -imag(ext_beta); imag(ext_beta) real(ext_beta)];

ext_OMEGA = [real(ext_omega) -imag(ext_omega); imag(ext_omega) real(ext_omega)];

ext_ALPHAcon = [real(ext_alpha) imag(ext_alpha);-imag(ext_alpha) real(ext_alpha)];

ext_BETAcon = [real(ext_beta) imag(ext_beta); -imag(ext_beta) real(ext_beta)];

%

%we need to ensure that the left-top corner block-matrices (1:N-1,1:N-1) of

%the new reconstruct matrices are the same as those in the matrices P and Q

%that we already computed from the first step.

%Therefore, we need to impose few conditions here

%

Re_P = Pf(1:N,1:N); Im_P = Pf(N+1:2*N,1:N);

firstblock_P = [Re_P zeros(N,1); zeros(1,N+1)];

secondblock_P = [-Im_P zeros(N,1); zeros(1,N+1)];

thirdblock_P = [Im_P zeros(N,1);zeros(1,N+1)];

forthblock_P = firstblock_P;

ext_P = [firstblock_P secondblock_P; thirdblock_P forthblock_P];

%

Re_Q = Qf(1:N,1:N); Im_Q = Qf(N+1:2*N,1:N);

firstblock_Q = [Re_Q zeros(N,1); zeros(1,N+1)];

secondblock_Q = [-Im_Q zeros(N,1); zeros(1,N+1)];
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thirdblock_Q = [Im_Q zeros(N,1);zeros(1,N+1)];

forthblock_Q = firstblock_P;

ext_Q = [firstblock_Q secondblock_Q; thirdblock_Q forthblock_Q];

%

firstblock_M = [diag(ones(1,N)) zeros(N,1);zeros(1,N+1)];

secondblock_M = zeros(N+1,N+1);

thirdblock_M = secondblock_M;

forthblock_M = firstblock_M;

M = [firstblock_M secondblock_M; thirdblock_M forthblock_M];

%

% Using LMI CONTROL TOOLBOX

%

setlmis(lmisyst)

%

% declare P = [Re(p) -Im(p); Im(p) Re(p)]

%

[newP1,newnP1,newsP1] = lmivar(1,[newN,1]);

[newP2,newnP2,newsP2] = lmivar(3,skewdec(newN,newnP1));

[newP,newnP,newsP] = lmivar(3,[newsP1 -newsP2; newsP2 newsP1]);

%

[newQ1,newnQ1,newsQ1] = lmivar(1,[newN,1]);

[newQ2,newnQ2,newsQ2] = lmivar(3,skewdec(newN,newnQ1));

[newQ,newnQ,newsQ] = lmivar(3,[newsQ1 -newsQ2; newsQ2 newsQ1]);

%

LMI_newP = newlmi;

lmiterm([-LMI_newP 1 1 newP],1,1); % LMI #1: P

%

LMI_newQ = newlmi;

lmiterm([-LMI_newQ 1 1 newQ],1,1); % LMI #2: Q

%

LMI_OMEGA_POS = newlmi;

lmiterm([-LMI_OMEGA_POS 1 1 0],ext_OMEGA);

lmiterm([LMI_OMEGA_POS 1 1 newP],1,1);

lmiterm([LMI_OMEGA_POS 1 1 newP],-ext_ALPHA,ext_ALPHAcon);

lmiterm([LMI_OMEGA_POS 1 1 newQ],1,1);

lmiterm([LMI_OMEGA_POS 1 1 newQ],-ext_BETA,ext_BETAcon);

%
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LMI_OMEGA_NEG = newlmi;

lmiterm([LMI_OMEGA_NEG 1 1 0],ext_OMEGA);

lmiterm([-LMI_OMEGA_NEG 1 1 newP],1,1);

lmiterm([-LMI_OMEGA_NEG 1 1 newP],-ext_ALPHA,ext_ALPHAcon);

lmiterm([-LMI_OMEGA_NEG 1 1 newQ],1,1);

lmiterm([-LMI_OMEGA_NEG 1 1 newQ],-ext_BETA,ext_BETAcon);

%

LMI_ext_P_NEG = newlmi;

lmiterm([LMI_ext_P_NEG 1 1 0],ext_P);

lmiterm([-LMI_ext_P_NEG 1 1 newP],M,M);

%

LMI_ext_P_POS = newlmi;

lmiterm([-LMI_ext_P_POS 1 1 0],ext_P);

lmiterm([LMI_ext_P_POS 1 1 newP],M,M);

%

newlmisyst=getlmis;

%

[Tmin,newxfeas] = feasp(newlmisyst);

newPf = dec2mat(newlmisyst,newxfeas,newP);

newQf = dec2mat(newlmisyst,newxfeas,newQ);

%

%Display the eigenvalues of Pf and Qf

%

eig(newPf)

eig(newQf)

l = length(newPf);

%

%Form the complex-valued matrices from the real matrices obtained by the

%LMI Toolbox

%

new_p = newPf(1:l/2,1:l/2) + i*newPf(l/2 +1:l,1:l/2)

new_q = newQf(1:l/2,1:l/2) + i*newQf(l/2 +1:l,1:l/2)

rhs = new_p.*ext_A + new_q.*ext_B;

fprintf(’the value of [ext_P]*[ext_alpha] + [ext_Q]*[ext_beta] is \n’); rhs

pause;

fprintf(’the data matrix (ext_omega) is \n’); ext_omega
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[Hör73] L. Hörmander, An Introduction to Complex Analysis in Several Variables, North

Holland Publishing Co., Amsterdam, 1973.

[Kac85] T. Kaczorek, Two–Dimensional Linear Systems, LNCIS 68, Springer–Verlag, 1985,

ISBN 3–540–15086–2.

[Kac93] , Linear Control Systems: Volume 2, Research Studies Press, Ltd., England,

1993, ISBN 0–86380–127–7.

[Kal63] R. E. Kalman, Mathematical description of linear dynamical systems, SIAM J.

Contr. 1 (1963), 152–192.
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Sz.-Nagy-Foiaş lifting, 23

Weierstrass preparation, 13

time axis, 112

transfer function

classical

backward-time, 36

forward-time, 35

Fornasini-Marchesini, 47

Givone-Roesser, 41

i/s/o d-D

ncfm, 166

ncgr, Future-time, 133

ncgr, Past-time, 135

recognizable system, 162

tree

homogeneous, 109

level of, 109

path of, 109

uncertainty operator, 98

unimodular matrix, 60

unitary, 20

variety

polar, 16

zero, 14

von Neumann’s inequality, 24

word, 92

length of, 92

Z-transform, 35

noncommutative, 131



Vita

Tanit Malakorn was born in Bangkok, Thailand, on July 23, 1973. He received the Bachelor’s

degree (Hons.) in Control Engineering from King Mongkut’s Institute of Technology, Ladkra-

bang (kmitl), Thailand in 1995. Between 1995 and 1996, he was a Master student in the

department of Electrical Engineering at Chulalongkorn University. In 1996, he joined the de-

partment of Electrical and Computer Engineering, Naresuan University, Phitsanulok and in 1997

he was awarded a scholarship from the Ministry of University Affairs, Royal Thai Government

to further his education abroad. He received his Master’s degree in Electrical Engineering from

Virginia Polytechnic Institute and State University (vpi&su) in 1999, and is currently pursuing

a doctoral degree in the same field. He is a student member of ieee. His research interests

include H∞ control, multidimensional linear systems, and mathematical system theory.

211


