We saw in LLec 55.2] that if $(B_t)_{t\geq0}$ is a Brownian motion on \mathbb{R}^d and $T \geq 0$, then $S_t = B_{T+t} - B_T$ is a Brownian motion on \mathbb{R}^d , independent from It ⁼ J_{T}

- $\frac{1}{2}$
Prop: Let τ be an optional time, $\nu \in Prob(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$ s.t. $\mathbb{P}^{\nu}(\tau \leq \infty) > 0$,
	- and define $S_t := B_{\tau + t} B_{\tau}$ on $\{\tau < \infty\}$.
	- Then conditioned on $\{\tau<\infty\}$, $(S_t)_{t\geq o}$ is a Brownian motion on \mathbb{R}^d ,
		- independent from ¥.
	- T_{s} be precise: \forall F E $\mathbb{B}(\mathbb{C}(\mathfrak{c},\infty),\mathbb{R}^{d}),$ $\mathbb{C}(\mathfrak{c},\infty),\mathbb{R}^{d}))$
		- $E^{\nu}[F(S) | T<\infty]=E^{\circ}[F(\beta)]$
	- and $\forall A \in \mathcal{F}_\mathcal{I}^+$ $E^V[F(S)]1_A |\tau<\infty] = E^V[F(S)] \tau<\infty] P'(A |\tau<\infty)$

 $=(\beta - \beta_0)^0 00^0 t$

 $T: E^{\vee}[F(S)]_{A} | \tau \infty] = E^{\circ}[F(B)] E^{\vee}[1_{A} | \tau \infty] \quad \forall A \in \mathcal{F}_{T}^{+}$ Take $A=2$; slows $E^{\gamma}[F15] | TCO] = E^{\circ}[F(13)] - 1$

$E^{\nu}[F(S)1]_{A}|\tau C\rightarrow J=E^{\nu}[F(S)|\tau C\omega]E^{\nu}[1]_{A}|\tau C\rangle$ \vee

(conditionnel on T < 00).

Theorem : (Reflection Principle)

Theorem: (Reflection Principle)
Let B be a Brownian motion, and let I be an optional time adapted to its natural filtration . Then

$\tilde{B}_{t} := B_{t} - (B_{t} - B_{t} - D_{t})$, $t \ge 0$ is a Brownian motion

 $(Reflection Principle)$ $\tilde{B}_t = B_{t \wedge \tau} - (B_t - B_t \cdot \tau)$ is a Brownian motion.

- 17. It suffices to slow Blooms is a Brownian wotion for each T>0
	- i. Replacing I with INT if needed, Wlog assume I<00.
	- We i. Know that S_{ψ} = $B_{\psi\tau}$ B_{τ} is a Brownlan motion, indep. from F_{τ}
		-
		- . T is T_{t}^{+} -measurable ? [Lec. 56.3]
. B_{t}^{T} = $B_{t}r_{t}^{+}$ is T_{t}^{+} -measurable ? [Lec. 56.3]
- Thus S_i is independent from (τ, B^{τ}) .
-S $(\tau, B^{\tau}, S) \triangleq 2 \tau, B^{\tau}$.
- Now note that $S_{(t-T)+} = B_{(t-T)+} \tau^{-\beta} \tau^{-\sum_{l=0}^{T} g_{t-l}}$, $t \leq \tau$
	- $B_t^{\nu} + S_{t-\nu} B_t$ = $B_t B_t B_t$ $B_6^2-S_{(b-1)}=B_6$

