Theorem: (Strong Markov Property) Let S be a separable metric space. Let (SL, (Ft) +>0, IP) be a filtered propability space, and let (Qt) +>0 be a Markov transition semigroup of operators on 13/5,73(5)). Assume I multiplicative system M < Cb(S) s.t. 5 (M)=95(S) and QtM < M >t Let $(X_t)_{t\geq 0}$ be a time homogeneous Marker process with transition operators Q_t , and paths in $\Gamma = C(Q_0)$ or $\Gamma = RC(Q_0)$. Then for any FEB(T,C(T)), and any optional time 7:52> cgos), $\mathbb{E}\left[F(X_{\tau+})\mid \mathcal{F}_{\tau}^{+}\right] = \mathbb{E}^{\chi}\left[F(X_{\tau})\right]_{\chi z} \times_{\tau} \quad as \quad on \quad \{\tau < \infty\}.$

For the proof, we will make use of the already-proved special case, when t(s2) is Countable, and approximate t by such countable range stopping times:

 $T_n = \infty 1 - \infty + \sum_{k=1}^{\infty} \frac{k}{2^n} 1 \frac{k-1}{2^n} \leq T < \frac{k}{2^n}$

Pf. We showed that trult, It & In, and Etnzoojz Etzo) Yn.
B/c tn(52) is countable, we've proved that, \(\forall A \in Ft \in F \in B(T, C(T))\),
New, want to take $n \rightarrow \infty$
New, want to take now
Start with functions $F: \Gamma \to \mathbb{R}$ of the form $F(\omega) = f_1(\omega(t_1)) - f_k(\omega(t_k))$
for some $t_k > t_{k-1} > \cdots > t_1 \ge 0$. and $f_1, f_2, \cdots, f_k \in M$.
Using the way a Markov process's foldistributions are determined
by its transition operators [Lec 37.1]: E ² [F(X.)] =
Since fie M and QtM = M,
That is: x1=> \mathbb{T}(F(X)) is continuous.
Also, by assumption TERCLOS), so since that,
$\chi_{\tau_n} \rightarrow \chi_{\tau} a_i s_i$

Also, $\mp (X_{\tau_n+t_i}) = \prod_{i=1}^{k} f_i (X_{\tau_n+t_i})$ And since IIFIlos = IIfilos - IIfilos < 00 uniformly in n, it follows by the DCT that $\mathbb{E}\left[F(X_{\tau_n+}) | 1_{\tau < \infty} | A \right] \rightarrow \mathbb{E}\left[F(X_{\tau_n+}) | 1_{\tau < \infty} | A \right] \quad \text{as} \quad n \rightarrow \infty$ This proves the Strong Markov property for F of this special form. The remainder of the proof is an application of Dynkin's mult systems theorem. • Let $M = \{F \in C_b(\Pi) : F(\omega) = \prod_{i=1}^k f_i(\omega(t_i)) \}$ for some $f_i \in M$ and $0 \leq t_1 < t_2 < \cdots < t_k < \infty$? It is straightforward to check that IM is a mult-system.

. Let $\widehat{H} = \{F \in B(\Gamma) : A holds \}$ It is straightforward to check that $1 \in \widehat{H}$, and \widehat{H} is a linear subspace closed under bold convergence (by DCT).

We've shown that MEH. It follows by Dynkin that $B(\Gamma, \sigma(\widetilde{M})) \leq H$ Thus, to complete the proof, we just need to show that C(T) < 6(M), $C(\Gamma) = G(\pi_+ : t > 0)$ So it suffices to show that $\pi_t: \Gamma \to S$ is $\sigma(M)$ -measurable for each too. Claim: Ht 20 and Hfe B(S,B(S)), f. Tit: T > IR is 5 (M) - measyrable. Ly With this in hard, take f= 118 for B& 93(S) To prove the claim: Dynkin again! H= { f & B(5,B(5)): f= \(\pi_t\) is \(6(\text{M})\)-measurable} M = same M & Cb(S) from statement of theorem 1) In particular, 5 (M) = B(S) · Check easily that 16H, linear subspace, closed under bled convergence

Thus, we have shown that: $\forall F \in B(\Gamma, e(\Gamma)) \in \forall A \in \mathcal{F}_{\tau}$, $E[F(X_{\tau+}) 1_{\tau < \infty} \cdot 1_{A}] = E[E^{x}[F(X_{\tau})] |_{x=X_{\tau}} 1_{\tau < \infty} \cdot 1_{A}]$

 $E[F(X_{\tau+})]_{\tau<\infty}|F_{\tau}|$ $E[F(X_{\tau+})]_{x=X_{\tau}}|F_{\tau}|$ $E[X_{\tau})|_{x=X_{\tau}}|F_{\tau}|$ are two ru's in $B(\Omega,F_{\tau})$ $Salisfying E[Z_{\tau}]_{A}] = E[Z_{\tau}]_{A}| \forall A \in F_{\tau}^{+}.$