
Theorem : 1Strong Markov Property) Let s be a separable metric space .

Let CR
,
Itt)⇒o

,

P ) be a filtered propability space, and let %
be

a Markov transition semigroup of operators on Bls, Bls)) .

Assume 7 multiplicative system 1M C- Cbcs] s.t. 6AM ) =Bls) and Qom e- 1M¥
.

Let Ht) to be a time homogeneous Marker process with transition operates Qo ,
and paths in f = C [ gas) or f = RC Egos] .

Then for any FEBCF.ecF)) , and any optional time c- :S→ Gas] ,

F- 11=1×+1-718++1 = F-
"

[ FIX
.

) ) / xz Xo as on fees} .

For the proof , we will make use of the already - proved
special case , when to) is countable , and approximate
+ by such countable range stopping times :

in = as It -- es t &
,

Kzn 1) k¥ see kgn



Pf . We showed that Tutt
,
9-is tin

,
and {cineaste {test tn

.

B/c entry is countable
,
we've prayed that, A c- Fats Fon

,
1--6-1130

,
eat

,

El FIXout .) Be <• 1A ) = ELE " LFCX .) ) / x=Xtn It as AA ) .
Now

,

want to take n→• ]
.

deed to mstort to special F.
start with functions F :P → IR of the form Flw )=f , holt , )) -

-
- faith

for some tie> try . - - > bit , > e.
and f- ,

,
fz , - - , fr C- 1M

.

Using the way a Markov process 's f.d. distributions are determined
by its transition operators [ Lee 37.1 ) : Mf /g) = fg .

E
"

/ FIX .) ) = (Qt
,
Mf
,
Qt
,-4M£ -

-

- Mfa , Qtr-trifle) %)
Since fje 1M and QTIM C- 1M

,

GIM e- Cbcs)
That is : ✗↳ F-

"

IFCX ) ) is continuous
.

Also
,
by assumption F C- RC Lois )

,
so since e. be ,

✗ in →Xt a. s . i. E' LFCX .lt/x=xen#lE" (FED /xoxo
g- 5 .



Also
,

F Hint .) = 1¥fil ✗tutti⇒
,
# f- Nott:) = Fdot )

And since 111--11 of 11 f. Has - -11 fellas < as uniformly in n
,
it follows by the DCT that

F- [ FIXout .) Dees AA ) → F- [ Fl Xo + .) Decosta ] as n→ as

11 i. x (A)

ECE
"

[FIX .) ) /*on Iaas Is]→ ECE
"

[ FIX .) ) /exotically)

This proves the strong Marko property for F- of this special form .
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