

Before going into the proof, let's see how the Strong Marka Property applies to our favorite continuous time processes.

- Eq. Let (Xt) tro be a continuous time Markov chain
 - Suppose the Marka semigroup is operator norm continuous: limilat-Illop=0, (Equiv: the process has a bounded generator.)

 - By the Jump-Hold Description [Lec 42.1], the process has a right Continuous version. This RC process has the Strong Markov Property:

 $C_b(S) = B(S),$

For a concrete example : Paísson processes.

 $Q_{t}f(x) = \sum_{n=0}^{\infty} (\lambda t)^{n} e^{\lambda t} f(x+n) \qquad [Lec. 39-2]$

Eq. Brownian motion (Bf) to on \mathbb{R}^d . S = \mathbb{R}^d , $\mathcal{Q}_{bf} = f * \mathcal{X}_{t}$, $\mathcal{Y}_{t}(x) = (2\pi t)^{d/2} e^{-|x|^2/2t}$ [Lec. 38.1]

If $Z \stackrel{d}{=} N(0, Idxd)$, then $\nabla F Z \stackrel{d}{=} V_1(x)dx$ · f \$ \$ { (22) =

If xneRd, xn x, then for any fe Cb(Rd), $(Q_{t}f)(\lambda_{n}) =$

- Take M = Cb(IRd); Qt M SM. Sme Brownian paths are continuous, : (Bp) == has the Strong Markov Property -

 T_t is $\mathcal{B}(\mathcal{I}) \rightarrow \mathcal{B}(S)$ measurable, so

 $5(\pi_b, be[qt]) \leq B(\Omega_t).$

Conversely, ble west is continueur,

 $||w||_{\infty} =$

