
Recall the Strong Markov Property ( Lec 46.1 ] for discrete time homogeneous
Markov processes .

We restate it here in greater generality .
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( The path space structure
T' plays no role in this
countable range -t case .

We include it just for
the sequel .)

were going to extend the strong Markov property to general continuous t
lunder the right conditions on the Markov process) .

The approach will be to approximate any stopping time
by countable range stopping times : given c- ,
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To prove Tn is a stopping time : let k be the ! integer kids to ¥ .
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