

So, in general, $ELB_5B_1| = Srt$ $C_{0}\nu(B_{5}B_{7})$ bL E[B5]=0 \forall 530

Note: if $\{x_t\}_{t\in T}$ is any collection of random variables on a given
probability space, the function $\chi: T\times T \to \mathbb{R}$, $\chi(s, t) = Cov[X_s X_t]$ has a positivity property.

Sensi Def: A function x: TXT >IR is positive definite

iff for any finite subset \wedge = { $t_{1},$ -, t_{n} } \subseteq T, the matrix

CMij = X(ti,t;) is positive semidefinite.
In M= M⁷ & 3. M3 20 V3 61Rⁿ / V3:17 IR.

 $\rightarrow \gamma(s,t)=\chi(t,s)$ 6 $\sum_{s,t\in\Lambda}\gamma(s,t)\left\{s\right\}(t)>0$

Gaussian Processes

Recall [Lee 26.1] a random vector X & IR^d is called (jointly) Gaussion $C_{\mathcal{Z}}(3) = E[e^{i\frac{3}{2} \cdot \mathcal{Z}}] = e^{-\frac{1}{2} ||A||^{2}} = e^{-\frac{1}{2} \cdot C^{2}}$ if the characteristic function has the form $\varphi_{\mathbf{X}}(\xi) = e^{-\frac{1}{2}\xi \cdot C\xi} + \mu \cdot \xi$ μ = $E[X]$. for some A & Mdxd. Equivalently, by the Cramer-Wold device, X is Gaussian iff $\frac{3}{5}$ is a normal random variable $\forall \xi \in \mathbb{R}^d$.
Eg $\xi = \tilde{e}_k \Rightarrow X_k$ are romally distributed, $k \in \{1, -d\}$. It is not sufficient just to check that the component's of X are normally distributed. E_{9} . $X = M(o,1)$, $R = \frac{1}{2}\delta_{1} + \frac{1}{2}\delta_{-1}$, X, R independent. $Y = RX = M(o,1)$ $X = -X$ $[\begin{array}{c} \mathbb{E}[\mathit{f}(x)] = [\mathit{F}[\mathit{f}(RX)] = \mathit{E}[\mathit{f}(RX) | \mathcal{RM}] | P(\mathit{R}^2)] + \mathit{E}[\mathit{f}(\mathit{RX}) | \mathcal{M} \mathcal{M}] | P(\mathit{R}^2)] \\ = \mathit{E}[\mathit{f}(X)] \geq \chi^{\frac{d}{2}Y} \cdot \frac{\mathit{f}(X)}{Z} \end{array}$ $But (XY)$ is not jointly Gaussian. [HW]

 N de: if $T : \mathbb{R}^d \to \mathbb{R}^d$ is an invertible linear transformation, and if 19
Y = T(X) is a Gaussian random vector, ansformation, 3.50
 3.7 } • T $=$ $($ \top \sim ' $\begin{array}{ccc} \mathcal{N} & \mathcal{N} & \mathcal{N} & \mathcal{N} \\ \mathcal{N} & \mathcal{N} & \mathcal{N} & \mathcal{N} & \mathcal{N} \end{array}$ is normally distributed.

In particular: permuting the entries preserves joint Gaussianness.

 $Def: A$ stochastic process $(X_t)_{t\in T}$: $(S, \mathcal{F}, P) \rightarrow R$ is called a Gaussian Process

if, for any finite collection of times $t_{1},...,t_{n}\in T$, $(X_{t_{1},-},X_{t_{n}})$ is a (jointly) Gaussian random vector .

Prop: Brownian motion is a Gaussian process.

 $PF.$ Let \circ st, $\leq t_1 \leq t_2$. $\leq t_n$. (suffice.)

 $\left| \begin{array}{cc} \frac{\partial I}{\partial x} & \frac{\partial I}{\partial y} \end{array} \right|$

 $\sqrt{1}$

 L et $T(x,y_2)$ $(1, 2)$ = $(1, 2)$, $x_1, 2$, $x_2, x_3, x_1, x_2, x_3, x$ $-2\lambda_{n}-\chi_{n-1}$

 $invarg$ $T\tilde{U}_{y}$ - $y_{y}y_{y} = 2y_{y}y_{y} + 4y_{y}y_{y} + 4y_{y}y_{y} - 4y_{y}y_{y}$ $-y_1 + -4y_n$ $T(B_{t_{1},-},B_{t_{1}})=(B_{t_{1}}-B_{0},B_{t_{2}}-B_{t_{1}},$ $-$; $B_{t_{n}}-B_{t_{n-1}}$)

 t_1 t_2 t_2 \bigcirc

 6242

 $t -$

 h_{1}

 $]$) $/$

 $\mathbb{P}) \rightarrow \mathbb{R}$ with

Cor: If $(X_t)_{t\in L_0,\infty}$ is a continuous Generalian process with then X is a Brewnian motion. Of. By the uniqueness result of the last theorem, X and B.
have the same finite-dimensional distributions.

