Let (X_{t}) tero, I be a continuous -path process in a metric space S.

 $(X_t)_{t\in [0,1]}:(\Omega, \mathbb{F}, \mathbb{P}) \rightarrow (S, \mathbb{P}_{0}(s))$

 $(t \mapsto \chi_{\pm}(\omega))_{t \in [0,1]}$ |
| ec C $(C0, 11, 5)$

Thanks to Kolmogorov, we know such things exist .

Last with a process (Yt)tergis satisfying the Kolmogorov Criteria; $select$ a version $(Y_t)_{t \in Co,11}$ that is a.s. continuous

The law of such a process is therefore

^a probability measure on path spoke

 $P_X(E) = P\{w \in \Omega : (b \mapsto X_t(w))_{b \in [c,1]} G E\}$ $\frac{1}{\sqrt{2}}$

 \longleftrightarrow $E \subseteq C(C,11,5)$

what s -field should we take?

Def: The Cylinder 6-Field C = $C(10,11,5)$ is the s -field generated by the projections $\pi_t : C(t_0) \cup S) \rightarrow S : \pi_t(\omega) = \omega(t)$.

 $\overline{\Gamma}$ $g.$ If $n \in \mathbb{N}$, BE $\mathfrak{P}_0(S^n)$, and t_1 , $t, t \in [0, 1]$

The path space is a metric space in its own right.

 d_{∞} : $C(C_0115)^2 \rightarrow Co.00$

 d_{∞} (ω, η) :=

This is a complete metric (even if ds is not), and

is separable iff ^S is separable .

Lemma: The processes $\widetilde{X}^{p}, \widetilde{X}^{q}$ are indistinguishable on supposed.

Def: The Wiener measure WF is the law of Brownian Motion :

 $W_T^2 \in Prob(C(C_0T], \mathbb{R}^d), C(C_1T], \mathbb{R}^d)$

 $W^{x}(E) = P((t \mapsto B_{t})_{t \in [0,T]} \in E | B_{e} > x)$

This measure was originally constructed by d. Wiener @ MIT > in ¹⁹²³ Iago ²⁹) , almost ¹⁵ years before Kolmogorov and his school set probability theory on rigorous footing , using ideas / really engineered by Wiener .

None of the tools we've used this year existed.

Wiener more directly constructed this measure on

path space, using the Daniel integral ^I introduced

⁴ years earlier) . From ^a modern viewpoint, Wiener

defined the process through its (random) Fourier series ,

which he masterfully showed is C^{α} $(\alpha < \frac{1}{2})$ with

delicate convergence arguments .