Simple stock market model :

^A stock evolves in time, worth Xn per share at time n . You (investor) buy ^U shares of the stock at times , and sell them at time t > s, How much profit / loss did you incur?

$U \cdot (X_{t} - X_{5})$

We could accomplish the same transaction buying and selling ^U shares at each time step. Or we can vary the amount we buy /sell per step.

 \mathbb{D} Let $(U_n)_{n=1}^{\infty}$ and $(X_n)_{n=\infty}^{\infty}$ be \mathbb{R} -sequences. For $n \geq 1$,

 \bigcap In (U, X) := $\sum_{j=1}^{n} U_{j} (X_{j} - X_{j-1}) =$ $\sum_{j=1}^{J}U_{j}\Delta X_{j}$ -

Your profit / less (buying Uj shares at time j - ^l and

selling them at time j) up to time n .

Discrete) " stochastic Integral "

- what kind of process is Zn= In CU ,X) ?
- $Key point: Let $f_n = \sigma(X_gX_g)$$ - - $-\chi_n$). As U_j is the # shares bought at time j-1, we must have u_j \mathfrak{F}_{j-1} - measurable .

is predictable .)

Pf. Note that Znti ⁼

 $I.$ $E[Z_{n+1} | T_n] =$

>

 $(\mathcal{R}) E[I_n(u,\chi)] = 0$ Then (Xn)nzo is a martingale

 Pf . As in the previous proof, $E[T_{n+1}(u,x)]f_n]=F_n(u,x)+u_{n+1}E[x_{nn}-x_n|f_n]$ Take expectations:

 \cdot In the = 0 case of (\circledast)

 $take$ U_5 =

 $\frac{1}{2}$ $\frac{1}{2}$

. In the \ge / \le 0 case of (\divideontimes) , fix n and BEJ, and

Let (Xn)nzo be an adapted process, and let TE Nufoot be a stopping time

The stopped process $(x_n^-)_{n\geq0}$ is defined by

- N otice: $|X_n^{\tau}| = |X_{\tau \wedge n}|$
- $Cor: IFX_{n}\in L^{1} \forall n, then X_{n}^{T}\in L^{1} \forall n$
- Theorem: (optional Stopping Theorem)
-
- Let $(x_n)_{n>0}$ be a
Let τ be a stopping time. Then $(x_n^{\tau})_{n\ge0}$ is also
a martingale.

Ion your [Hw] you'll explore how to use this to compute statistics of some stopping times .)

The boundearness assumption is often dealt

Now, recall how to condition E[175] from (Lec 45.3]:

$IFY6L^{1}, and Yn = E[Y|F_{n}], then E[Y|F_{s}]=$

 $\frac{1}{2} \mathbb{E}[X_{\tau} | \mathcal{F}_{\tau}] =$

The boundedness condition cannot be dropped

We'll later see under what conditions optional
Sampling holds for unbounded stopping times.

