Simple stock market model :

^A stock evolves in time, worth Xn per share at time n . You (investor) buy ^U shares of the stock at times , and sell them at time t > s, How much profit / loss did you incur?

 $\overline{\mathcal{U}}$. (χ_t) $-X_{5}$ = U $((x_{t}-x_{t-1})+(x_{t-1})$ X_{b} $2)$ + - - + (X_{5+1}) $-\lambda_{5})$

We could accomplish the same transaction buying and selling ^U shares at each time step. Or we can vary the amount we buy /sell per step.

 \mathbb{D} Let $(U_n)_{n=1}^{\infty}$ and $(X_n)_{n=\infty}^{\infty}$ be \mathbb{R} -sequences. For $n \geq 1$,

 \bigcap In (U, X) := $\sum_{j=1}^{n} U_{j} (X_{j} - X_{j-1}) =$ $\sum_{j=1}^{J}U_{j}\Delta X_{j}$ -

Your profit / less (buying Uj shares at time j - ^l and

selling them at time j) up to time n .

Discrete) " stochastic Integral "

what if we want to buy/sell not at fixed times s< t, but at times
determined by the 1stock) process? $G\leq L$ Eg. $G=1$ st time $X\leq k$

 $Take: U_{j} = 1 - \epsilon j$ of $T = 1 - \epsilon j$. The $x = 310$. $Take: U_j = 1600 sT = 1600 J(j)$

 $\left(\frac{1}{3}\right)^{15}$ (u) $\left(\frac{1}{3}\right)^{15}$ (u) $\left(\frac{1}{3}\right)^{15}$ (u) $\left(\frac{1}{3}\right)^{15}$ (u) $\left(\frac{1}{3}\right)^{15}$ $is \infty$ is \mathcal{F} of \mathcal{F} shopping trings.

Then $U_j I_{j\leq n} = \int_M (\sigma \wedge r_j \sigma \wedge r_I U_j)$ $\overline{}$ $So I_n(U, X) =$ $\sum_{i=1}^{n}$ $\mu_{\sigma \wedge n}$ $\langle y_{j} - x_{j-1} \rangle = \chi_{\sigma \wedge n} - \chi_{\sigma \wedge n}$. : (at least formally), lime $I_n(u,x) = X_0 - X_0 \ge 5 . If $(X_n)_{n\geq 0}$ and $(U_n)_{n\geq 1}$ are stochastic precesses, what kind of process is Zn= In CU ,X) ? $Key point: Let $f_n = \sigma(X_gX_g)$$ - - $-\chi_n$). As U_j is the # shares bought at time j-1, we must have u_j \mathfrak{F}_{j-1} - measurable .

Is predictable.)

Stopped Processes

Let $(X_n)_{n\geq o}$ be an adapted process, and let $\tau e \mathbb{N}$ ufoot be a stopping time The stopped process $(x_n^{\tau})_{n\geq0}$ is defined by $X_{o} + Z_{n} = X_{n}^{c} = X_{n}^{r}N_{c} \Leftrightarrow$ sn Notice: $|\chi_n^T| = |\chi_{\tau \wedge n}| = |\sum_{k=0}^n \mu_{\{\tau \ge k\}} \chi_k| \le \sum_{k=0}^n \mu_{\{\tau \ge k\}} |\chi_k| \le \sum_{k=0}^n |X_k|.$ \mathcal{V} Car: If $X_n \in L^{\perp}$ $\forall n$, then X_n of Y_n Theorem: (optional Stopping Theorem)
Let (Xn)n=0 be a 1sub/supor) martingale

Let τ be a stopping time. Then $(\chi_n^{\tau})_{n \geq 0}$ is also

a (sub/super) martingale.

 P_f . $U_n = \mathbb{1}_{n \leq t} = 1 - \mathbb{1}_{t \leq n} = 1 - \mathbb{1}_{t \leq n-1}$ is predictable. \therefore $Z_n = I_n(U, X)_0$ is a (sub/supon) martingale. $\sum_{j=1}^{n} u_{j} (x_{j} - x_{j}) \geq \sum_{j=1}^{n} x_{j} \leq C (x_{j} - x_{j-1}) = \sum_{j=1}^{n} (x_{j} - x_{j-1}) = x_{n} - x_{0}$

with by taking TnN , then letting $N \rightarrow \infty$.

