
There are several ways to produce lsub/ super) martingales
from other martingales (or other processes ) .
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We've seen a number of Markov chains that are
also martingales .

That's not general : even if a Markov
chain 's skate space is SIR , it's usually not a martingale .

Bud some functions of it are .
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A careful computation , and argument, then shows
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We will soon see : this provides some very effective
tools to calculate expectations land higher moments )
of some stopping times
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