
We've seen [ Lec 44.2 ] that any irreducible , finite state Markov

chain ☒ non> o is positive recurrent :
and Hon> o has a unique invariant
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These weights have a precise meaning .

Theorem : ( Ergodic theorem) Let Vj / N ) be the number of times
(Xn) n > o visits j in the first N steps .

Vj IN) = §zD×n=j .
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It's not hard to see that if qnii.jo % vj Hi , then v is invariant .
The Ergodic theorem is a kind of converse ; but it does not imply
Indeed

,
that kind of pointwise convergence is just not true in general .
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and the chain is positive recurrent with
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But
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a. 1 .

The chain is periodic .



To prove the Ergodic theorem, we use the strong Markov property .

Def .

Let • ¥ be the nth excursion time to state j :

• inf {nai : Xn=j } The time it takes to

• : = inf { n > 1 : } return to j after
the previous visit .

Lemma : Relative to Pi for any i
,
{ •¥ }n% are independent, ,
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Law pi 16¥) = Lawpjltj ) ti , Hn 32 .
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Let t = in f- { n>TY
"
: Xn=j } , where I =o .

II. t is the nth passage time to j . stopping time .

Note that
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Since Xo =j , and since TY is a stepping time , by the strong Markov property :
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of Ergodic theorem : By SLLN :
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4- ( N ) = §
.

1xn=j = # visits to j during first N steps .
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