

random 5-field!

 $F_{\tau} := \left\{ E \subseteq \Omega : \left\{ \tau = n \right\} \cap E \subseteq F_n \ \forall n \leq \infty \right\},$ $\left\{ \tau \leq r \right\}$ ($\tau \leq r \leq r$) Prop: If τ is a stopping time, then \mathcal{F}_{τ} is α σ -field, and τ is \mathcal{F}_{τ} -measurable.
Moreover, if σ is τ are stopping times, then \mathcal{F}_{σ} is \mathcal{F}_{τ} -measurable. $\begin{array}{lll}\n\frac{\partial P}{\partial t} & \Omega \cap \{\tau=\eta\} = \{\tau=\eta\} \cup \mathcal{F}_n \ \ \forall n \ \text{ so } \Omega \in \mathcal{F}_n \\
\text{If} & E \in \mathcal{F}_n, \ E^c \cap \{\tau=\eta\} = \{\tau=\eta\} \setminus E = \{\tau=\eta\} \ (E \cap \{\tau=\eta\}) \circ \sigma \} \\
\frac{\partial}{\partial t} & \frac{\partial}{\partial t} \in \mathcal{F}_n, \ \{\tau=\eta\} \cap \bigcap_{k=1}^{\infty} E_k \\
\frac{\partial}{\partial t} & \frac{\partial}{\partial t} \in \mathcal{$ $= 2$ $(1 - \frac{1}{2})$ $(1 - \frac{$ Now, $\{T=n\}\cap\{T=\nu\}=\begin{cases} p & k=n \\ \{\tau=n\} & k=m \end{cases}$ of $\{n\}$. $\int \mathbb{C} = k$ of $\frac{1}{L}$ $\forall k$. \in is F m ess. Finally, if $\begin{array}{c} 16 \leq T \text{ and } E \in \mathcal{F}_{6}$, $E \cap \{T \leq n\} \\ \text{8.2cm} \{T \leq n\} \subseteq \{G \leq n\} \quad \downarrow \quad E \in \{F \cap \{G \leq n\} \} \cap \{D \leq n\} \cup \{F_{n} \} \\ \text{8.2cm} \{T \leq n\} \subseteq \{G \leq n\} \quad \downarrow \quad E \in \mathcal{F}_{6} \quad \text{9.2cm} \end{array}$

What does For-measurability mean?

Prop: Let τ be a stopping time on $(s_{-}f_{\tau}(f_{n})_{n\in\mathbb{N}})$ and let $Z:\Omega\rightarrow\mathbb{R}$ TFAE: 1. 2 is Fr-measurable.

> 2.1 1 $\{\tau$ \in $\gamma\}$ 2 is 9 π -measurable \forall n \in \mathbb{N} \cup $\{\infty\}$ $3. 1\sqrt{2}-n1^{2}$ is $9 - max\pi$ able $1/n \in \mathbb{N}$ uzoof

4. 2 = Yr for some adapted IR-valued stochastic process infinitions.

 Pf . (1 = 2) Since Z is \mathcal{F}_{τ} -measurable, $\{z \in B\} \cap \{\tau \le n\}$ (\mathcal{F}_{τ}) $\forall n$, $B \in \mathcal{B}(R)$ $-Sposeo4B. \{1|_{fCSP}2eB\} = \{zeB3A}8Cen\} eF.$ $(1.10TOH)$ $\{1155m\}$ $2=0$ $\}$ $=$ $\{220\}$ $\}$ $\{0.5m\}$ \in $9n$ $\frac{2}{3}$ $\frac{1}{2}$ (9503 $\frac{3}{2}$ 15 $\frac{3}{2}$ mlss.

 (233) $152772 = 1507$

 $(3 \Rightarrow 4)$ Define $Y_n = 1$ $\{v = n\}$?, adapted.

 $Y_{\tau}(\omega) = \underline{11}_{\xi\omega} \cdot \overline{\tau\omega} - \overline{\tau\omega} \cdot \overline{\zeta}(\omega) - \overline{\zeta}(\omega).$

$(4 \Rightarrow 1)$ we have left to prove that if $Y_n: \Omega \rightarrow \mathbb{R}$ is adapted (including Y_{∞}),
then Y_{∞} is \mathcal{F}_{∞} -measurable. To that end, note

 $Y_{\tau} = \sum_{k \leq \infty} 1 \xi_{\tau-k} Y_{k}$: suffices to slow $1 \xi_{\tau-k} Y_{k}$ is $T_{\tau-m}$ vas.

 $\%$, need to show that if W is \mathcal{T}_k -measurable, then $1_{\{q\leq k\}}\vee$ is \mathcal{F}_q -meas. Suffires to prove this in the special case $w = 1$ E for any $E c F_K$ by Dynkin.

 $W1_{87228} = 121$

So we need only chick that $E \cap P2243670$ $(En\overline{12}w) \cap \overline{10}w] = \begin{cases} \phi & k \neq n \\ En\overline{12}w & k=n \end{cases}$ (From V_n

Cor: If $(X_n)_{n\in\mathbb{N}}$ is an adapted process in (S, B) and I is a finite stopping time, then X_{τ} is Fr(B - meas. $PF. \forall BEB, X_{\tau}(B) = (1_{B}0X_{\tau})^{\prime}(1)^{\prime}CF$ $Y_n = 9B^n$ X_n
 \rightarrow $R \cdot \text{clapkln}$.

