Let $(X_t)_{t\in I}$ be a Markov process with (homogeneous) transition semigranp (gt)tet. If the initial distribution Law (x_0) is μ , then for $t > 0$,

 $Law(X_t)$

Def. A law μ is called invariant or stationary if

(By the Markov property: if μ is an invariant law and Law(Xt.

for some t of, then Law (μ_t) . $\forall t \geq t_0$.)

In the discrete time setting, we only need to check the 1-step transition:

 $Law(X_{n+1})$ (cly) = $\int Law(X_n)$ (d) $\int q(x)dy$

)=µ

If the state space is discrete , this becomes a linear

algebra question :

Note: the existence of an invariant distribution is not guaranteed in infinite state spaces . Eg . Simple random walk on \mathbb{Z} $q(i,j) = \frac{1}{2}1j_{i}i_{1}$ \overline{t} IF μ satisfies μ - $\sum_{\substack{\cdot \}} M(i) G(i,\cdot)$ i . F A $, B \in \mathbb{R}$ s.t. $\mu(j) = A + Bj$. . Since $\mu(j) \geq 0$ tje Z, • Sm (e) mus † satisfy $\sum \mu(j) = 1$, $j \in \mathbb{Z}$ In fact, the random walk does have an inv ariant measure $\mu(j) = 1 \quad \forall j$ and it is unique up to positive multiple . But this

Marka chain does not have an invariant

probability distribution .

 $\frac{1}{2} \prod_{j=1}^{n}$

Prop: Let (Xn)new be a finite state irreducible Markov chain.
Then there is a unique invariant probability distribution μ :

Pf. By first-step analysis

 $E^{i}[\tau_{j}] = \sum_{i} q(i,k) E^{k}[\tau_{j}(i,X)]$

 $M_i =$

 $= 1 + \sum_{k \neq j} q(i,k) E^{k}[\tau_{j}]$

". if u is an invariant distribution, then Vi

 $\sum_i \mu_i E^i[\tau_j] = \sum_i \mu_i + \sum_i \mu_i \sum_{k \neq j} q(i,k) E^k[\tau_j]$

we've shown that if μ is an invariant probability distribution, then

 M_{i} . E^{i} T_{ν} = 1.

We already proved that an invariant distribution exists ; i

Cor: In the finite state irreducible setting, the unique invariant distribution is strictly positive .

. this is it . N

Observation: In [Lec. 44.1] we proved that $e < \mathbb{E}^i[\tau_i] < \infty$ $\forall i$ (in the finite state irreducible case) ; we now have the additional fact:

.

A similar result holds for infinite chains: every irreducible , recurrent chain possesses ^a unique Cup to scale) invariant measure , that is strictly positive .

