
Let lxttet be a Marker process with homogeneous) transition semigroup lgtltet .

If the initial distribution Law (Xo) is m , then for too ,
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Def. A law µ is called invariant or stationary if

( By the Markov property : if µ is an invariant law and Law( Xt
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In the discrete - time setting ,
we only need to check the l -step transition :
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Let's focus on the finite state space, discrete - time setting , S -- fi
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We need a probability vector : v; so, § Vj -- t .
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Prep : Any finite state Marker chain has an invariant distribution .

Pf. We saw on the last slide that the transition matrix P possesses
a vector y te et

. wi P - E . Define v. by g. ÷ I g- I
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(This is a version of the Perron - Frobenius theorem .
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Note : the existence of an invariant distribution is not guaranteed
in infinite state spaces .

Eg . Simple random walk on B gli, j ) = { Dj .- r" t { Dj .- i. , = 91J ,
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In fact, the random walk does have an

invariant measure me jet Yj
and it is unique up to positive multiple .

But this

Markov chain does not have an invariant

probability distribution .



Prep : Let Ixion be a finite state
,

irreducible Marker chain
.

Then there is a unique invariant probability distribution µ :
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Pf . By first - step analysis
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We've shown that if µ is an invariant probability distribution , then

Mi - E
"

Cti l = I .

We already proved that an invariant distribution exists ; i . this is it . N

Cor : In the finite state irreducible setting , the unique invariant
distribution is strictly positive .

.

Observation : In ( Lee . 44.11 we proved that es E' Iti Koo fi
( in the finite state irreducible case) ; we now have the additional fact :

§ Etat = I .

A similar result holds for infinite chains : every
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,
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( Tides) -- f ti chain

possesses a unique Cup to scale ) invariant measure ,
that is strictly positive .



Note : the equation Eic = It ↳ qli.no#kltjl
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This can be used to compute expected passage times ,
with linear algebra . *
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See [Driver, § 22.9.21 for many worked examples .


