(Biesed) Random Walks on Z

Fix pe (0,1). Consider the Markov chains on Z with transition kernel

 Leb $B \subseteq \mathbb{Z}$. We can use first-step analysis

to understand TB and LB = XTB.

 $u(x) = E^{x}[h(X_{T_{B}}):T_{B}<\infty]$ $h=1, u(x)=P^{x}(T_{B}<\infty)$

We know $u = h$ on B , and $u = Qu$ on B^c

 $u(x) = \sum_{y} \frac{0}{4} (x, y) u(y) = pu(x+1) + (1-p)u(x-1)$

3-term recursion $p u(x+1) - u(x) + (1-p) u(x-1) = 0$ $x \notin B$ cher polynomial: $p\lambda^2 - \lambda + (1-p) = 0$
rels: $\lambda = 1$, $\lambda = \lambda_p = \frac{1-p}{p}$.

 $g(x,y) = p1y=x+1 + (1-p)1y=x-1$.

(Simple random walk is the case $p=\frac{1}{2}$.)

We can construct this process explicitly: $X_n = \frac{1}{2}e^{i\frac{1}{2}(\frac{1}{2}+\frac{2}{3}+\frac{1}{2}+\frac{2}{3}+\frac{1}{3}+\frac{1}{2}+\frac{2}{3}+\cdots+\frac{2}{3}m)}$

General solution: for r¢B, $\begin{cases} p \neq \frac{1}{2} & u(x) = \alpha + \beta \lambda_p^2 & \lambda_p^2 = \beta \ p = \frac{1}{2} & u(x) = \alpha + \beta \geq 0 \end{cases}$ or some Symmetry: $q(-x-y) = p 1 |x-y-z+1} + (1-p) 1 |x-y-z-1}$ = $p1184 = x-17 + (1-p184 = x+17$ Ie for the associated Marker chain (Xn)new, (Xn)new $\overline{15}$ the "same" chain with $p \Leftrightarrow 1-p$. WLOG take $p \in (\frac{1}{2}, 1)$.
absady studied $p = \frac{1}{2}$ $B = 5b$ We'd like to determine α, β . So functions & B, h.
We'll consider the case $B = 2a, b}$ with $a < b$ As we'll see, there's a nice relationship between Trapp and Ta, Tb.

= $E^{*}[h(X_{T_{3}c_{3}b_{3}^{2}}) : T_{3}c_{3}b_{3}^{2}<0$
where $h(b)^{2}1, h(c)=0$.

Gembler's Ruin

You play a game against the House; the probability of the House winning is $p > \frac{1}{2}$

Xn= Idonse's fortune (your bsses) gfter n plays.

Your initial fortune is \$2 (x < 0 as we're viewing from the House perspective).
You play repeatedly (winning or lasing \$1 each play) until you go broke Xn=0

 $P(Y_{enwin}$ fb, nover goig broke) = $P^{x}(T_{b} < T_{o})$

 $Eg-16|=2|x|$ (Want to deuble your fortune) $\frac{1-(1/\lambda p)^{2}}{1-(1/\lambda p)^{2}}$ $\frac{12|2|09}{0.56}$

 $=\frac{1}{1+(V_{\lambda p})}x_1 < \lambda_p^{|\chi|}$ What about $\int vst \frac{1}{b}$?
 $\int v^2(1-b\cos\theta) e^{-\frac{1}{2}t}$ $\int \frac{1}{t}tV_{\lambda p}e^{-\frac{1}{2}t}$

 $\lambda_p = 0.89$

or you wire \$b $X_n = b < x < 0$.

What about $b > 2c$? Here $p^{x}(T_{b} < \infty) = 1$. But is $E^{x}[T_{b}] < \infty$?

A similar ist stop analysis slows that

