
In a discrete homogeneous) time , countable state space Marker chain ,
a state i is called absorbing if gli,if I .

§ flip's and pigs > o → bi- gu;D tjti .

In general , if there's any loop , gci.it > o, the Markov ch in
is called lazy . Assuming no absorbing States , we can define a kernel
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Prop : ( Jump - Hold ) Let nex be a time homogeneous
Markov chain with l - step transition.

Kernel g .
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We now develop a similar description of any operator norm continuous )

homogeneous continuous time Markov chain .

Theorem : Let Ht) o
be a Markov chain with bounded generator A
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Set sa -- Jn- Jr . . .
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Pf. We previously shewed that
,
if Honey is a Market chain with t- step

transition operator P -- It Is A (where X 's # Allop
=

soup ai ) , then

Xt can be realized as Yat .
c-
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Let fondue , be the jump times of the
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" lazy " chain Hn ) nex . By the discrete Jump - Hold proposition ,
Zn : - Ton is a Markov chain with transition kernel

pili, if o , and for it j ,
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-
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This proves part t .



For 2
,

let on -- Ta-Tai
.

Fix states ie ti
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By the discrete Jump - Hold proposition , relative to Pl - IB)
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Note that Tr -- q t -
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Similarly : Jk = (Kth jump time of Xt ) = T, tTat -
-
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where Te ane the jump times of Nf . They are ed Exp40 ,
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This Jump - Held description applies to all continuous homogeneous
time Markov chains that are operator norm continuous

,
it

. inf qui, is → I as 640 ,
that have no absorbing states .

However
,

in many interesting examples , 11 Qt - I Hop to as tbo .

/
This is equivalent to having
a bounded generator ①

,
= etA

It is perfectly possible for at to be a Markov semigroup
( of bounded operators ) of the form at -- et

A
,
where

It is not bounded .

We will explore this mere in later lectures .


