
Under the continuity condition Hat- Ihop→o ,
(Qt) tao has a bounded generator A .

In the countable ) discrete setting , Qt has matrix qt , and we showed that

Afc is = § ali, jofljl , where ali , ji = ddt 9ili.jo/t=o .
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Now
,
if Htt>o is a Markov chain with transition kernels left! ,

we have
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The ali
, j ) are the transition rates of the process .
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More precisely dat PlXt IX. -- l'll⇐ = aci.jo

For this reason
,
this is called the bounded rates case

.



The generator matrix a completely describes the evolution of the process .

But how ?

First : rescaling a produces a new generator : '

ga for some I > o
Let p = It } a

If I > { Halles =

, pci, is = I t 's Ali, i )

and § pci.jo =

Thus
, p is a Marker matrix : it is the t - step transition operator

for some discrete time Marker chain Wnew on the same state space .
space .

Theorem : Let Hon ex be a Markov chain with t - step
transition matrix p

-

- It ¥ a
.

Let Nt ) to be a Poisson

process with intensity X lakes
, independent from nex .

Then Xt - Y, is a Markov process with generator
A whose matrix is a .



Theorem : Let A be a bounded generator on Bls) ( for a discrete countable
state space S ), with matrix a .

Fix some 131ha Hos .

Let Hn) n ex be a

Markov chain with t - step transition operator P = It * A .

Let Nt ) t > o
be a Poisson process with intensity X , independent from dinner .

Then Xt = Y, is a Markov process with generator A E N RI) .
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et A = ⇐ Platts- Nsa) P"
Now Pl Nt -- n) = Platts - Ns .-D= Ett Ant? .

We can now compute all f. d. distributions of txt) t > o :
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Note : we showed explicitly that the f. d. distributions of Xt .- Tat match
those of a Markov process with transition semigroup et"

.

Thus Ht)↳ o is a Markov process

If we want to be a little more explicit about the filtration ,
we could state the result as follows .

Theorem : Let crit
,
{ In} ne.

,

P ) be a filtered probability space , and let
Hn)no. x be an adapted time - homogeneous Markov chain
with t - step transition operator P .

Let Nt ) o
be a Poisson process with intens

. X

independent from Fos =
. Define a new

filtration Gt SF by
B tGt iff

Then no>o is a filtration , XE Yu , is adapted
to it
,
and Xt is a time homogeneous Marker process
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to Go with transition operators at = OH l P
- I )
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(Driver,Thm 22.34 ]


