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Thus
,
if I get too are Markov transition kernel mass functions

on a discrete state space S , satisfying
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then the transition semigroup (att>o has a bounded generator A .

Question : what can we say about A ?
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This suggests that A has a matrix a
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If S is infinite
,
this takes some work to prove .



First question : does A even have a matrix ?

You might think this must always be true : that every ( bounded ) linear operator
T : 1B ( s) → Bls)

has a matrix . Following the finite - dimensional case
,
we would expand
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So we would expect that T has matrix oligo =

But if f is not simple , there's no way to extend this :
even if Holles - es

,
we can't check if Tf lie § Oli,pflp.

Basic Problem :

Fact : F bounded operators on Bls) that have no matrix .



Prep : Let Milner be bounded operators on BCS) , each given by a matrix on :
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Now , Mn) ne is convergent, hence Cauchy .
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i. Tn -Tm has matrix a- Am
,
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i. By the triangle inequality , Holles ses ,
so it defines a bounded operator
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Since H T -Tn Ihop → o , it follows that



Cor : Under the continuity condition hat- Ihop→o as tho
,

the semigroup has generater A with matrix a
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We proved last lecture that 11 A - Qo÷ Hop → e as tho .

Take any bn be
,

i
. By our proposition , A has matrix
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( Exactly the same as the proof in ( Lee . 39.21
.)


