

Thus, if I gt to are Markov transition kernel mass functions

on ^a discrete state space ^S , satisfying

$llim_{t\downarrow 1}$ inf $q_t(i,i) = 1$

then the transition semigroup $(Q_t)_{t\ge0}$ has a bounded generator A.

Question : what can we say about ^A ?

 $Af(i) = d\frac{1}{dt}\big|_{t=c^+} Q_t f'(i)$

This suggests that ^A has ^a matrix a

 $g\dot{v}$ en by $a(i,j) = \frac{d}{dt} q_t(i,j) |_{t=0^+}$

If ^S is infinite , this takes some work to prove .

First question : does ^A even have ^a matrix ?

 $+$

 $\prod_{i=1}^{n}$

You might think this must always be true : that every (bounded) linear operator

$T: B(s) \rightarrow B(s)$

If f is a simple function, so $f(j)$ = $\overline{=}$ ^o for all but finitely many Jes ,

So we would expect that T has matrix $\Theta(i,j)$ =

But if f is not simple, there's no way to extend this:

 PV en if $\|\theta\|_\infty < \infty$, we can't check if $Tf(i)=\sum_{j}\theta(i,j)f(j)$.

has a matrix . Following the finite - dimensional case , we would expand

Basic Problem :

Fact : ^F bounded operators on Bls) that have no matrix .

 $\frac{1}{\pi}T_{n}-T_{m}$ has matrix $\theta_{n}-\theta_{m}$,
 $\|\theta_{n}-\theta_{m}\|_{\infty} = \|T_{n}-T_{m}\|_{op}$

 $\left\{\begin{matrix} \mathbf{S}_{u} & \mathbf{S}_{v} & \mathbf{S$

 $\frac{1}{i}$ For each i $\sum_{i} |\Theta_{n}(i,j) - \Theta(i,j)| = \sum_{i} \frac{l_{i}}{m} \frac{1}{m} \Theta_{n}(i,j) - \Theta_{m}(i,j)$

As this is true for all i, baking sup

. By the triangle inequality, 110 llos <00, so it defines a bounded operator

 $\int f'(u) = \sum_{i} \theta(i,j) f(j)$

But then $\|\hat{T}-T_{n}\|_{op} = \|0 - \theta_{n}\|_{op}$

 $Sime II-Tn1lep \rightarrow Q$, it follows that

 $Cor: Under the continuity condition $\|Q_t\text{-}\Pi|_{op}\to O$ as the$

the semigroup has generater ^A with matrix ^a

 $Cl(i, \r) =$ $\frac{d}{dt}\bigg|_{t=0}$ $q_t(i,j)$.

 PF . We proved last lecture that $||A - \Omega_b - I||_{op} \to Q$ as tho.

Take any ϕ, ψ, o

 $\begin{array}{c|c}\n\hline\n\end{array}$ By our proposition , ^A has matrix

 $Cor: \alpha(i,j) \geq o$ for $i \neq j$, and $\sum_{i \in S} a(i,j)$ O V ies

(Exactly the same as the proof in [Lec. 39.2].)

