Theorem: Let (Qt)t=0 be Marksv transition operators over (S, B) Suppose $t\mapsto Q_t$ is operator norm continuous ϖ $t=0$: $\lim_{t\downarrow 0} \|\mathcal{Q}_t - \mathcal{I}\|_{op} = 0$ Then $t \mapsto Q_t$ is operator norm differentiable on $c_5 \infty$)
Let $A = A Q_t |_{t = 0^+}$. Then $||A||_{op} < \infty$, and $Q_t = e^{tA} = \sum_{n=0}^{\infty} \frac{t^n}{n!} A^n$ (which converges unif. in op norm). In particular, Q_t satisfies the Kolmogorov forward and backward ODEs: $\frac{\partial l}{\partial t^2} Q_t = Q_t A = A Q_t, Q_o = I.$ Eg. For a Poisson process $S = N$, $q_t(i,j) = e^{\lambda t} \frac{(\lambda t)^{j-i}}{(j-i)!} 1_{j \ge i}$
 \therefore $||q_{t}-1||_{\infty} = \sup_{i} \sum_{i=1}^{j} |q_{t}(i,j) - \delta_{ij}|$
 $2(|-e^{-\lambda t})$ $|e^{-\lambda t} - 1| + \sum_{j \ge i} e^{-\lambda t} \frac{(\lambda t)^{j-1}}{(j-i)!}$ $\Rightarrow_{0} cos b\psi 0$

Thus, to show $A = \frac{d}{dt} Q_t |_{t=0^+}$ exists it suffices to show that $t \mapsto Q_b$ is (right) diff ble at some $t \geq 0$. To prove this , we employ ^a trick due to Lars Goarding .

Garding's trick: For Ezo, define an operator B_{ϵ} on $B(S,B)$ by

By the Mean Value Theorem for integrals, this equals $\int_{0}^{35}e^{5x}ds$

 \leq 11 - Q_{s} //op

 $\sqrt{2}$

$In summany: if $||Q_t - I||_{op} \rightarrow o$ as $t \vee c$, then$

- $t \mapsto Q_t$ is operator norm continuous en $L_g \gg 1$
- $A = \lim_{t \to \infty} \frac{Q_t I}{b}$ exists and is bounded on $B(S, B)$, and $b \mapsto Q_t f$ is diff-ble on (o, ∞) , satisfying

 $\frac{6}{10}$

.

A

- $\frac{d}{dt}Q_t = AQ_t = Q_t A$, $Q_o = I$.
- $In Sturm
or$ This first - order ODE has ^a unique solution : $\rho,^{\ddag A}$ $\sum_{n=0}$ \overline{M}

 $:$ \equiv

- which converges ^L locally uniformly in t) in operator norm , because A is bounded .
- It is generally k_{∞} strong to expect $|Q_t|$ - $I||_{op} \rightarrow O$ and for ^A to be bounded (or even defined everywhere) But these conditions do make sense for discrete state spaces .

