A Marker process (taking values in a regular Berel space (S, B)) comes with transition operators Qs,t on B(S, B), satisfying the Chapman-Kolmogorov equations:

This is analogous to saying: a sequence of 11'd random variables comes with a sequence of joint laws une Prob(sh, mon) satisfying

un & Mm = Mn+m

In [Lectures 16.1, 16.2] we considered the reverse question: given "Gnsistent" measures un

can we actually find a sequence of iid random variables where the joint law of the first n is Mn?

The answer was yes, and we constructed the field variables on the probability space S^N via Kolmogorov's Extension Theorem.

Constructing Markov Processes

Let (S, B) be a standard Borel space

Suppose $v \in Prob(S,B)$, and $\{Qs,t\}s \leq t \in t$ are Markey transition operators (i.e., probability kernels over $(S,B)^2$ satisfying the Chapman-Kolmogorov eq's)

We're going to Construct a Markov process $(X_t)_{t\in T}$ on some probability space (S_2,F,P) s.t. $Law_p(X_s)=\nu$ and the transition operators of X. are the given $\{Q_s,t\}$.

We'll do this by taking $\Omega = S'$ We construct X_t as the coordinate process

 $\chi_{t}(\omega) =$

Thus, we need to define a 6-field on Stand a probability measure P on that 6-field s.t. the coordinate process has the right initial distribution and transition operators.

Let (5,95) be a measurable space, and Tany set ST = { w: T -> S} is the product For tet, the projection $p_t: S^T \rightarrow S$ is the map

Define the product 5-field $95^{\circ}:=$ We want to construct a measure P: Bol > [9] from information about its finite-dimensional marginals: For $\Lambda \in T$ finite, let $M_{\Lambda} \in Prob(S^{\Lambda}, \mathcal{B}^{\otimes \Lambda})$ Want PEProb (ST, BOT) s.t. TIMP = MA What if 1,1's Toverlap? There must be some consistency. Need: NEA = Thy # Mx = Mx

Theorem: (Kolmogorov's (Extended) Extension Theorem)

Let (S,B) be a standard Borel Space, Tany set.

For each finite subset NET, let MA & Prob(S^, 730^), and suppose $\forall \lambda' \subseteq \lambda$, $\pi_{\lambda'}^* \mu_{\Lambda} = \mu_{\Lambda'}$. Then 3 PE Prob(ST, MOT) s.t. TXP = MA VAST finite. Pf. Define an algebra A = 35T by $A = \bigcup_{S \in T} F(\pi_{\Lambda})$ Define P: A > Co11 by P(A) = This is well-defined:

 $\pi_{\Lambda}^{-1}(B) = \pi_{\Lambda'}^{-1}(B') \Rightarrow \Lambda' \subseteq \Lambda, B = B' \times S^{\Lambda \setminus \Lambda'}, \ldots, \mu_{\Lambda'}(B') = \pi_{\Lambda'}^{*} \mu_{\Lambda}(B')$

Thus $P(\pi_{\Lambda}(B)) = \mu_{\Lambda}(B)$ defines Pon $A = \bigcup \sigma(\pi_{\Lambda})$.

It's also a finitely additive measure: if $A_{i,-}, A_{n} \in A$ disjoint $A_{i} = \pi_{A_{i}}(B_{i})$

:. P(A,12--- L) An)

We've constructed a finitely-additive P on A, and it (by design) has the "right" finite-dimensional marginals.

Now, all we have to do is show P is countably additive on A.

Let Anc A, And D.

Lo An = $\mathcal{D}_{\Lambda_n}^{-1}(B_n)$ for some finite $\Lambda_n \leq T$, $B_n \in \mathcal{B}^{\otimes \Lambda_n}$ Set L:= $\mathcal{Q}_n \Lambda_n$

Use the [Lecture 16.2] version of the Kolmogorov Extension Theorem!
The Same Consistency Conditions implies

71 PL6 Probl SL, B&L) S.L. TX PL = MA YACL finite.

Thus, $P(A_n) = \mu_{\Lambda_n}(B_n)$

Theorem: Let ve Prob(8,3) and let Qs, tissetet be Markov transition operators an (5°33)2. Then there exists a unique probability measure PreProb(ST, B) St. Xt(w) = w(t) is a Markov process on (ST, Bo), Pr) with transition operators {Qs,t}ssbet and Xo = V

Pf. Idea: match the required f.d. distributions:

Lawp (Xto, Xto, -, Xto) (dxo-dxot) = V(dxo) TT q to t in t (xio, dxo)

So define, for t = t = t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t < t

By Kolmogorov, we just need to show consistency of these μ_{Λ} . To avoid a notational nightware, let's just consistency of these μ_{Λ} . $\Lambda = \{c = t_0 < t_1 < t_2\} = \Lambda' = \{c = t_0 < t_1 < t_2\}$: $\pi_{\Lambda}^* \mu_{\Lambda} (B_0 \times B_2)$

Following this calculation, we see that the Chapman-Kolmogora equations imply consistency, giving us our measure P' by Kolmogorov's Extension.

So, we have a process X_t with the right f.d. distributions, and i. the right transition operators. It remains to show X_t has the Markov property

Fix $0 = t_0 < t_1 < \cdots < t_{n-1} = s < t = t_n$. Let $h \in B(s^n, B^{on})$, $g \in B(s, B)$. $E^{V}[h(X_{t_0}, -, X_{t_{n-1}})g(X_{t_n})] = \int_{S^{n+1}} h(x_0, -, x_{n-1})g(x_n) V(dx_0) \prod_{i=1}^{n} q_{t_{i-1}} t_i(x_{i-1}, t_i(x_{i-1}, dx_i))$

That is: if $Y = h(Xk_0, -, Xk_{n-1})$ for any $k_0 < k_1 < -, < k_{n-1} = S$, then $\mathbb{E}^{\mathcal{V}}[g(Xk)Y] = \mathbb{E}^{\mathcal{V}}[g(Xk)Y] = \mathbb{E}^{\mathcal{V}}[g(Xk_0, -, Xk_0)]$.

By Dynkins, this: holds $Y \neq S = S(S_0, F_S^{\times})$. $\mathbb{E}[g(Xk_0)|F_S^{\times}] = S(S_0, F_S^{\times})$.