Introduction le Stochastic Processes

 (S_{J},F,P) (S,M)

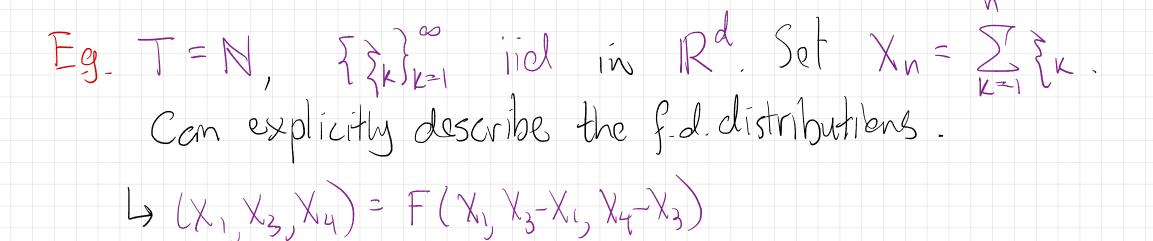
T & ordered set (with minimal element) T=N, T=[e,co), [a,b]

A stochastic process is a collection {Xtstet

of random variables X_t = (S, F) > (SB).

The minimal information we'd like to have about a stochastic process is its finite-dimensional distributions:

For each finite set AST, the measures Lawp(XE)ter (Prob(S, B))



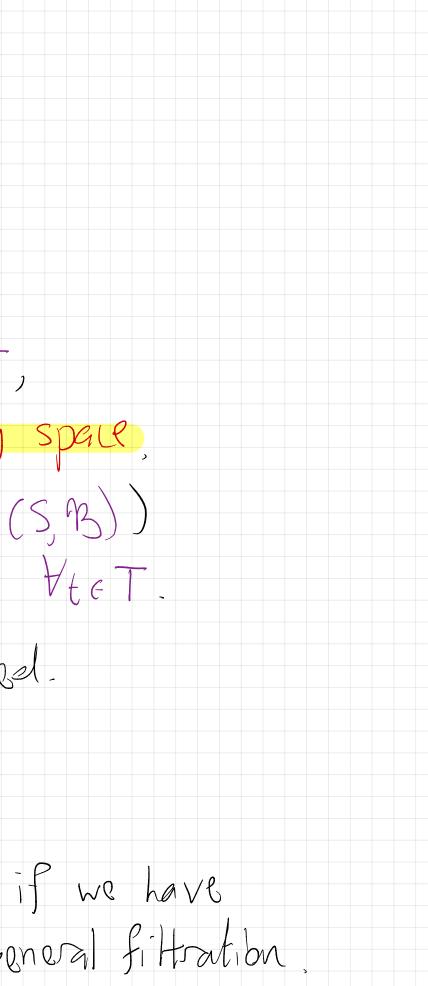
As we saw in [Lecture 34.2], it is often important

to understand 5(X1, X2, --, Xn) as n varies.

Def: A collection $(F_t)_{t\in T}$ of σ -fields is called a filtration if $F_s \subseteq F_t$ when set in T.

If $(\Sigma, \mathcal{F}, \mathcal{P})$ is a probability space, and $\mathcal{F}_t \leq \mathcal{F}$ viet, then $(\Sigma, \mathcal{F}, (\mathcal{F}_t)_{t\in T}, \mathcal{P})$ is called a filtered probability space. A stochastic process $(X_t)_{t\in T}$ (with $X_t = (\Sigma, \mathcal{F}) \rightarrow (S, \mathcal{B})$) is called adapted if X_t is $\mathcal{F}_t / \mathcal{B}$ - measurable $\forall t \in T$. Eq. If we set $\mathcal{F}_t = \mathcal{T}(X_t)$ then X_t is clearly adapted.

Usually we can safely take this as the filtration. But if we have more than one process ground, we may need a more general filtration



Eq. $\{\xi_{l}\}_{l=1}^{\infty}$ iid, $X_{n} = \xi_{l} + \dots + \xi_{n}$. $F_{n} = \sigma(X_{l}, \dots, X_{n})$.

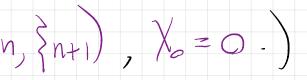
 $\mathbb{E}[g(X_n)|\mathcal{F}_k] = \mathbb{E}[g(X_k+\tilde{k}_{k+1}+\tilde{k}_n)|\sigma(X_{1,-1},X_k)]$

This process satisfies the Markov property. (Indeed, it fits the "random dynamics" model: Xn+1 = f(Xn, {n+1}), Xo=0.)

In the special case (on IRd) that the law of zi is

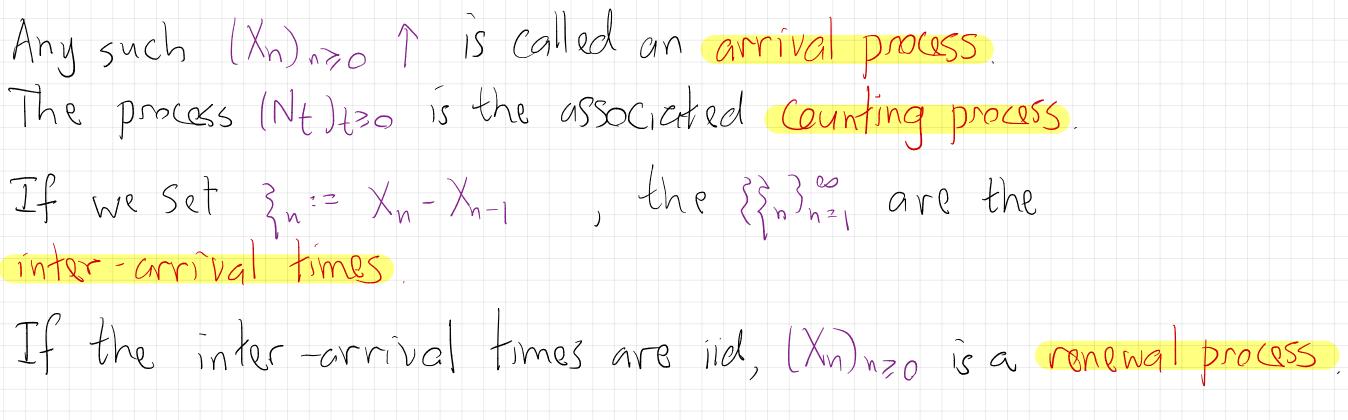
 $P(\frac{2}{1} = \pm e_j) = \frac{1}{2d} \quad |\leq j \leq d$

we call this stochastic process simple random walk.



F.g. Suppose (X), is a non-decreasing process

Define $N_t = \sum_{n=1}^{\infty} I_{(3,t]}(X_n)$



The most important example of the counting process associated to) a renewal process is the Poisson process, which we'll study next time