Conditional Probability

Given a probability space (s, f, P) , and BE f with $P(B) \geq 0$, we can form

the new probability measure $P_B: F \rightarrow [0,1]$ $P[A|B] =$ $=$ $\mathbb{P}_{\mathcal{B}}(\mathbb{A})$ $\frac{1}{2}$ $APB = AB$.

Intuition : we have observed event ^a has occurred ; how does that affect the " posterior probability " of other events ?

 $p \cap \infty$ \Rightarrow $P(A)$ $P_{B} (A) \Leftarrow$ posterior.

We can combine different conditional measures P_B ve can combine different conditional measures P
especially if the events B; form a partition of C.

Question: 90% of coins are fair. 9% are biased to come up heads ¹⁴ are biased to come up heads 80% . You find a coins on the street. You toss it, and it comes up heads. How likely is it that this Gino is heavily biased ?

 $P(B_3 | H)$ \neq $P(H|B_3)$ = 80%

Eg . According to Forbes Magazine , as of April 10,2019, there are 2208 billionaires in the world.
I 1964 of them are men.

 $P(M|B) = \frac{1964}{2208} = 89%$ $\neq P(B|M)$

Bayes' Rule (A relationship between $P(A|B)$ and $P(B|A))$ Let B, B₂, B_h partition the sample space. Then for any
event A with $P(A) > 0$, $P(B_k|A) = P(B_kA)/P(A)$ $P(A|B_k)P(B_k)$ $= P(A|B_k) P(B_k)$ $\sum P(A|B_j)P(B_j)$ $\mathbb{P}(\mathsf{A})$ $j=1$ E_{q} (Coins) $P(C_{80}H)$ $= \frac{\mathbb{P}(C_{so}H)}{\mathbb{P}(H)} = \frac{\mathbb{P}(H1C_{so})\mathbb{P}(C_{so})}{\mathbb{P}(H)}$ $(504)(190)$ = $P(H|C_{80})P(C_{9})$
 (190) = $P(H|C_{80})P(C_{50})+P(H|C_{60})P(C_{6})+P(H|C_{6})$ \approx 1.56%

Epidemiological Confusion

An HIV test is 99% accurate. (1% false positives, 1% false negatives) 0.33% of US residents have HIV .

If you test positive, what is the probability you have HIV ?

 $(a) 99\%$ T = {positive test} $(p|T|H^c)$ =1% = $p(T^c|H)$

(b) 1% H= {have HTV } $P(H) = 0.33y61 - P$ $= 0.33/6$ |-(b) 1% $H = \{\text{have } HIV\}$ $P(H) = 0.33y_0 + P(T|H)$
(c) 25% $S = H \cup H^c$

 $(d) 0.33^{d}$

(e) There is not enough information to answer.

 $P(H|T) = \frac{P(HT)}{P(T)} = \frac{P(T|H)P(H)}{P(T|H)P(H) + P(T|H')P(H')}$

 $p = (0.99)(0.0033)$ = 24, 69% $\frac{6}{9}(9.9033) + (9.9119.67%)$

The Monty Hall Problem

At the climax of ^a gameshow , you are shown ³ doors . The host tells you that, behind one of them is ^a valuable prize la car), while the other two hide nothing of value (goats).

You choose one. The host then opens one of the two doors you did not choose, revealing a goat! He then asks you if you want to stick with your original choice, or switch to the other closed door .

should switch ? ? you

$$
\begin{array}{ll}\n(a) & \forall e 5. \\
(b) & \mathsf{N} \circ.\n\end{array}
$$

⑨ Doesn't matter.

The Monty Hall Problem

- Let's decide to call the door you chose originlly #1.
.: Monty will open #2 or #3. We'll focus our analysis on #2 $P(B_1) = P(B_2) = P(B_3) = \frac{1}{3}$ $B_i = \{ the car is behind door $\# i \}.$$ $A = \{$ Monty opens door #2} $P(A|B_2) = O$
- We want to know $P(B_3|A)$ $P(A|B_3) = 1$

