Probability Metrics

we've seen the total variation metriz on Prob(S,B)

 $d_{TV}(\mu, \nu) = \sup_{B \in \mathcal{B}} |\mu(B) - \nu(B)|$

This is an example of a (dual) probability metriz:

 $d(\mu, \nu) = \frac{s_{\mu}p}{he_{H}} \int \frac{f_{\mu}d\mu - hd\nu}{he_{H}}$ Always a pseudo-metric; genuine metric if H is sufficiently rich.

Eg. Kolmogorov metric: dkol(M,V) = Sup [F,H)-F,(H) (en Prob(R,B(12)))

The Wasserstein distance controls the Kolmogorov distance - at least when one of the measures has a bounded density. Prop: If dv=pdx and p≤c<∞, then for any ME Prob(IR, B(IR)), $d_{kol}(\mu,\nu) \leq 2\sqrt{Cd_{W_{l}}(\mu,\nu)}$ Pf. Fix tER, Ero, and define two Continuous approximations to legel 6-2 t t+2 $\Psi_{-} \leq 1_{(-co,t)} \leq \Psi_{+}$ $:= \int \mathbb{1}_{(-\infty,t)} d\mu - \int \mathbb{1}_{(-\infty,t)} d\nu$

µ(-cs,t] - V(-co,t]

 $\leq \int \Psi_{t} d\mu - \int \Psi_{t} d\nu + \int (\Psi_{t} - 1_{(-\infty,t)}) d\nu$

Now use 4_ to prove the reverse ineq. for V(-co,t]- M(-co,t].

 $\frac{1}{4c} \frac{3up}{2} \left[\mu(-\infty, t] - \nu(-\infty, t] - \nu(-\infty, t] \right] \leq 2\int C dw_1(\mu, \nu)$

As usual, we apply a metric on measures to random variables by $d(X,Y) = d(\mu_X,\mu_Y)$.

Cor: If Z= N(0,1), then for any random

variable X,

 $d_{k_0}(X,Z) \leq 2 \int d_{W_1}(X,Z)$

One of our goals is to prove (a version of) the: Berry-Esseen Theorem: Let $\{X_n\}_{n=1}^{\infty}$ be i.d. L³ random variables, with $E[X_j]=0$, $E[X_j]=1$, $E[X_j]=0^3$. Let $S_n = X_1 + \dots + X_n$. If $Z \stackrel{d}{=} \mathcal{N}(o_1)$, then $d_{kol}\left(S_{n}, Z\right) \leq C \frac{Q^{2}}{\sqrt{n}}$