
Here's an example application of the

Lindberg - Feller I Liapunov CLT .
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net is a standard triangular array .

Does it satisfy the Lindberg condition ?



Prop : The Liapunev condition holds :
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by the Lindberg - Feller CLT ,
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This isn't just a contrived example ,



Random Permutations

Sn -- permutation group on n letters .

Asn = n !
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Suppose we sample a permutation uniformly at random from Sn .
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What can we say about
the random variable

Cn = # cycles



Feller coupling
Given a sequence hh
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construct a random permutation it as
follows .
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The permutation produced is random Lun less Xp I t ) ,
but the number of cycles is determined : you close an old

cycle and start a new one when Xn - it , =L , so Cn =
-

Theorem : ( Feller, 1945)

If IX , .> Xn) are independent Bernoulli ran dem variables

with PIX
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then the above procedure produces a

uniformly random permutation .


