
We saw several examples of characteristic functions
last time :
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If µE Prob( Rd ,Burd ) has a density dm = edh
Wrt Lebesgue measure , we denote it -- f .

I.e
.

if ee Lt ( Rd,BURD ), X ) ,

ERE feit
"

ecxsdsc .

Lemma : I Riemann - Lebesgue) If et Lt , f e Ce ; it . → o es ly → es .

Bf. Step l : Assume ee CTURd ) .

Then for lsjsd ,

it- Elp - fpdecxsij.tl
"

da

¥4 ..
F
- fed 3¥ .

one'T 'd,

integration by parts

i
- kill Epl Sfpd / ¥

,
.IN/doo-- Mj - co .

- CE
,

1311001 s VMi+→MT : = µ < as }
let'll sing, → o



Step 2 : For general eel'llRd ,H ,

approximate by CT functions . (Driver,Thm 17.291
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Step 3 : combine
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