

- * Only works on a compact interval
- * Only works for bounded functions
- * Is not robust under many limits
 - (only finitely additive)
- * Fails for many simple functions.

Eg. f = 1 R on [9,b]

what's the problem?

The Riemann-Stielties integral is designed for functions well-adapted to an interval partition of the domain. I.e. works best if

f (s,t) is a nice union of intervals ¥s<t

(like continuous functions.)

Theorem: [11.5] A bounded function $f: Ea, b] \rightarrow ||Z|$ is Riemann integrable ($F(x) = \lambda$, i.e. $MF = \lambda$ Lebesgue measure)

iff {xela,b1: f is discontinuous at x}

