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Defects :

* Only works on a eempact interval
* Only works for bounded functions
* Is not robust under many limits

Conly finitely additive)
* Fails for many simple functions .
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what's the problem ?
The Riemann - stieltpes integral is designed
for functions well - adapted to an interval partition
of the domain . Ie

.

works best if

f " Cst ) is a nice union of intervals Vsat

( like continuous functions . ) Da oscillates fast on all scales
.

Theorem : I ii.51 A bounded function f : Ca,bl → IR is

Riemann integrable ( Fox) = x , i.e . Mis
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iff I { see La , bi : f is discontinuous at a } = 0 .
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What's the Fix ?
-
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Partition the range , not the domain .

The resulting approximation will be flat - not necessarily
on intervals

,
but on measurable sets

.

And we knew
how to measure these !


