Randem Variables: Motivation
Experiments"
Eg. Toss a fair coin o N times.

Eg. Throw a dart at a board of radius R.

Each experiment has an outcome
The set of all possible outcomes is the sample space Ω.
"Probability" is a measure of the likelihood of a set of outcomes $=$ an event $E \subseteq \Omega$.
$(\Omega, \mathcal{F}, \mathbb{P})$ probability space.
\uparrow
Outcomes are elements w $\omega \in \Omega$.
Events are subsets of Ω, in \mathcal{F}
A random variable is a function $X: \Omega \rightarrow S$
(Probably should call them "random functions" \uparrow
but the very old "variable" terminology has "state space".
stuck since used by Laplace in the early $19^{\text {th }}$ usually \mathbb{R}; could be \mathbb{C}
Century.) (could be \mathbb{R}^{d}; then usually call X a "random vector")
Need to be able to calculate probabilities of events like

$$
\{x \leq 1\}
$$

Def: A function $X: \Omega \rightarrow \mathbb{R}$ is a random variable if $\{x \leqslant t\} \in \mathcal{F}$ for all $t \in \mathbb{R}$.

CDFs (Again)
$X: \Omega \rightarrow \mathbb{R}$ randem variable on $(\Omega, \mathcal{F}, \mathbb{P})$.
Define $\quad F_{x}: \mathbb{R} \rightarrow \mathbb{R}: F_{x}(t)=\mathbb{P}(x \leqslant t)$
Proposition: F_{x} is non-decreasing, right-continuous, and

$$
\lim _{t \rightarrow-\infty} F_{x}(t)=0, \quad \lim _{t \rightarrow+\infty} F_{x}(t)=1
$$

Pf
$\therefore F_{x}$ is the CDF of a unique Berel probability measure
μ_{x} on \mathbb{R}
The probability distribution of X.
Often μ_{x} is all well really know about X.
And more often, we wont even know μ_{x}, but will only have some limited clues about it.
(Great) Expectations
Eg. Finite sample space $\Omega=\left\{\omega_{1}, \omega_{2}, \ldots, \omega_{N}\right\}$
(May as well have $\mathcal{F}=2^{\Omega}$.)
Then $\mathbb{P}(E)=\sum_{\omega \in E} \mathbb{P}(\{\omega\})=$
If $X: \Omega \rightarrow \mathbb{R}$ is a random variable,

$$
F_{X}(t)=\mathbb{P}(x \leq t)=
$$

Can we get a "snapshot" number that tells us something about this distribution?
\rightarrow Weighted average: $\mathbb{E}(X):=$
Eg. Toss a fair coin 3 times; $X=\#$ Heads.

$$
\Omega=\{\text { HAH, HIT, NTH, THU, HIT, THT, TTH, TTT\} ~ }
$$

$$
\mathbb{E}(X)=\sum_{\omega \in \Omega} X(\omega) \mathbb{P}(\{\omega\}) \quad(\nVdash)
$$

Makes perfect sense if Ω is finite. Also okay if Ω is countable, But wort help us if $\mathbb{P}(\{\omega\})=0$ for all $\omega \in \Omega$.

Undergraduate Probability Approach:

$$
\sum_{\omega} X(\omega) P(\{\omega\})=
$$

Problems: Many.
We will develop the right generalization of ($*$) to work in any probability space: the Lebesgue Integral

$$
\mathbb{E}(X)=\int_{\Omega} x d \mathbb{P}
$$

