Randem Variables: Motivation

E.g. Throw a dart at a board of redius R.

· Each experiment has an outcome. · The set of all possible outcomes is the sample space Ω .

Probability is a measure of the likelihood of a set of outcomes = on event $E \leq \Sigma$.

(SZ, J, P) probability space. "maccessible"

Outanes are elements wess. Events are subsets of s, in J.

A random variable is a function X:52-> S (Probably should call them "random functions" but the very old "variable" terminology has stuck since used by Laplace in the early 19th Century.)

Need to be able to calculate probabilities of events like

Def: A function X: SL > R is a random variable if {X < t} & F for all telR.

"state space" usually IR; could be C (could be Rd; then usually call X a "random vector") $\{\chi \leq 1\} = \{\psi \in \Omega : \chi(\psi) \leq 1\}$

. Fx is the CDF of a

unique Borel probability measure

MX on IR

The probability distribution of X

Often Mx is all we'll really know about X. And more often, we won't even know Mx, but will only have some limited clues about it.

 $\chi \longrightarrow F_{\chi} \longrightarrow \mu_{\chi}$

(Great) Expectations

- Eg. Finite sample space SI = { w, wz, --, wn } (May as well have $F=2^{2}$) Then $P(E) = \sum_{w \in E} P(s_w s) = \sum_{w \in S} 1_{w \in E} P(s_w s) = 1_{A} (w) = 1_{O} f_{w \notin A}$
 - If X: SL-> R is a random variable,
- $F_{X}(t) = P(X \leq t) = P(\{w \in \Omega : X \mid w\} \leq t\}) = \sum_{w \in S^{2}} I_{X \mid w} \leq t P(\{w\})$
- Can we get a "snapshot" number that tells us <u>something</u> about this distribution?
 - La weighted average: E(X) = Z X(w) P(Zw)
- Eg. Toss a fair coin 3 times; X = # Heads.
 - SZ= { HWH, HHT, HTH, THH, HTT, THT, TTH, TTT} $P = \frac{1}{\rho}$

X=32221100

 $F(X) = \frac{1}{8}(3+3\cdot2+3\cdot1+0)$

 $=\frac{3}{2}=1.5$

 $E(X) = \sum_{w \in SL} X(w) P(\{w\}) (A)$ Makes perfect sense if Ω is finite. Also dray if Ω is countable. But won't help us if $P(\{w\}) = 0$ for all $w \in \Omega$.

we will develop the right generalization of (*) to work in any probability space: the Lebesgue Integral

 $E(X) = \int X dP$.