Randem Variables: Motivation
Experiments"
Outcomes
Meas women's
Eg. Tass a fair coin N times.
(H) H H

TH

$$
\begin{gathered}
x=\text { \#heads } \\
x=3 \\
x \leqslant 3, x \geqslant 2
\end{gathered}
$$

Eg. Throw a dart at a board of radius R.

Each experiment has an outcome The set of all possible outcomes is the

$$
x: \Omega \rightarrow \mathbb{R}
$$ sample space Ω.

"Probability" is a measwe of the likelihood of a set of outcomes $=$ an event $E \subseteq \Omega$.
"random variables"
$(\Omega, \mathcal{F}, \mathbb{P})$ probability space. "inaccessible"
\uparrow
Outcomes are elements w $\omega \in \Omega$.
Events are subsets of Ω, in \mathcal{F}
A random variable is a function $X: \Omega \rightarrow S$
(Probably should call them "random functions" i
but the very old "variable" terminology has "state space"
stuck since used by Laplace in the early $19^{\text {th }}$ usually \mathbb{R}; could be \mathbb{C} Century.) (could be \mathbb{R}^{d}; then usually call X a "random vector")
Need to be able to calculate probabilities of events like

$$
\{x \leqslant 1\}=\{\omega \in \Omega: x(w) \leqslant 1\}
$$

Def: A function $X: \Omega \rightarrow \mathbb{R}$ is a random variable if $\{x \leqslant t\} \in \mathcal{F}$ for all $t \in \mathbb{R}$.

CDFs (Again)
$X: \Omega \rightarrow \mathbb{R}$ random variable on $(\Omega, \mathcal{F}, \mathbb{P})$
Define $\quad F_{x}: \mathbb{R} \rightarrow \mathbb{R}: F_{x}(t)=\mathbb{P}(X \leqslant t)=\mathbb{P}\{\omega \in \Omega: X(\omega) \leqslant t\}$
Proposition: F_{x} is non-decreasing, right-continuous, and

$$
\lim _{t \rightarrow-\infty} F_{x}(t)=0, \quad \lim _{t \rightarrow+\infty} F_{x}(t)=1 .
$$

Pf. If $s \leqslant t \quad\{x \leqslant s\} \subseteq\{x \leqslant t\}$

$$
F_{x}(s)=\mathbb{P}(X \leqslant s) \leqslant \mathbb{P}(X \leq t)=F_{x}(t)
$$

- If $t_{n} \downarrow t, \quad\left\{x \leq t_{n}\right\} \downarrow\{x \leq t\}=\bigcap_{n=1}^{\infty}\left\{X \leq t_{n}\right\}$

$$
\therefore \mathbb{P}\left(x \leqslant t_{n}\right) \downarrow \mathbb{P}(x \leq t)={ }_{F}^{n-1}(t)
$$

$F_{x}^{\prime \prime}\left(l_{r}\right)$

- If $b_{n} \downarrow-c,\left\{X \leq t_{n}\right\} \downarrow \varnothing \quad F_{x}\left(t_{n}\right)=\mathbb{P}\left(X \leqslant b_{n}\right) \downarrow C$ If $t_{n} \uparrow \infty, \quad\left\{X \leqslant t_{n}\right\} \uparrow \Omega \quad F_{X}\left(t_{r}\right)=P\left(X \leq f_{r}\right) \uparrow \mathbb{P}(\Omega)=1$.
$\therefore F_{x}$ is the CDF of a unique Berel probability measure
μ_{x} on \mathbb{R}
The probability distribution of X.
Often μ_{x} is all well really know about X.
And more often, we wont even know μ_{x}, but will only have some limited clues about it.

$$
x \leadsto F_{x} \leadsto \mu_{x}
$$

(Great) Expectations
Eg. Finite sample space $\Omega=\left\{\omega_{1}, \omega_{2}, \ldots, \omega_{N}\right\}$
(May as well have $\mathcal{F}=2^{\Omega}$.)
Then $\mathbb{P}(E)=\sum_{\omega \in E} \mathbb{P}(\{\omega\})=\sum_{\omega \in \Omega} 1_{\omega \in E} \mathbb{P}(\{\omega\}) \quad 1_{A}(\omega)=\left\{\begin{array}{l}1, f_{\omega \in A} \\ 0, f \omega \notin A\end{array}\right.$
If $X: \Omega \rightarrow \mathbb{R}$ is a random variable,

$$
\begin{aligned}
& X: \Omega \rightarrow \mathbb{R} \text { is a random variable, } \\
& F_{X}(t)=\mathbb{P}(X \leqslant t)=\mathbb{P}(\{\omega \in \Omega: X(\omega) \leqslant t\})=\sum_{\omega \in \Omega} \mathbb{X}_{X(\omega) \leqslant t} \mathbb{P}(\{\omega t)
\end{aligned}
$$

Can we get a "snapshot" number that tells us something about this distribution?
\rightarrow weighted average: $\mathbb{E}(X):=\sum_{\omega \in \Omega} X(\omega) \mathbb{P}(\{\omega\})$
Eg. Toss a fair coin 3 times; $X=\#$ Heads. \forall $\Omega=\left\{\begin{array}{l}\text { HAIL, bHT }, ~ H T H, ~ T h H H, ~ H T T, ~ T H T, ~ T T H, ~ T T T ~\end{array}\right\}$

$$
\begin{aligned}
\forall_{\mathbb{E}}(X) & =\frac{1}{8}(3+3 \cdot 2+3 \cdot 1+0) \\
& =\frac{3}{2}=1.5
\end{aligned}
$$

$$
\mathbb{E}(X)=\sum_{\omega \in \Omega} X(\omega) \mathbb{P}(\{\omega\}) \quad(\nVdash)
$$

Makes perfect sense if Ω is finite. Also okay if Ω is countable, But wort help us if $\mathbb{P}(\{\omega\})=0$ for all $\omega \in \Omega$.

Undergraduate Probability Approach:

$$
\begin{aligned}
& \sum_{\omega} X(\omega) \mathbb{P}(\{\omega\})=\sum_{t} \sum_{\omega: X(\omega)=t} X(\omega) \mathbb{P}(\{\omega\})=\sum_{t} t \sum_{X(\omega)=t} \mathbb{P}(\{\omega\})=\sum_{t} t \mathbb{P}(X=t) \\
& \text { end an } \int \text { arab of } \rho \text { in the "Gontmears" } \\
& \text { settrig. }
\end{aligned}
$$

Problems: Many. $\mathbb{E}(X+Y)=\mathbb{E}(X)+\mathbb{E}(Y)$.
We will develop the right generalization of (*) to work in any probability space: the Lebesgue Integral

$$
\mathbb{E}(X)=\int_{\Omega} X d \mathbb{P}
$$

