Lebesgue Measure ($\$ 6.6$ in Driver)
The Radon measure on \mathbb{R} satisfying

$$
\lambda((a, b))=b-a, \quad-\infty<a<b<c
$$

is called Lebesgue measure. It is the most important measure on \mathbb{R}.
Notice: if $\tau \in \mathbb{R}, J=(a, b] \in c_{l s}$, then

$$
\begin{array}{rlrl}
& \lambda(J+\tau)= & \\
\Rightarrow & & \lambda(A+\tau)= & \\
\text { for } A \in B_{c I}(\mathbb{R}) \\
\Rightarrow & \lambda^{*}(E+\tau)= & & \text { for all } E \leq \mathbb{R} \text { [HWy] }
\end{array}
$$

Theorem: λ is the unique translation invariant Bare measure s.t. $\lambda\left(\left(e_{1} 1\right)\right)=1$; if μ is another translation invariant Borel measure, then $\mu=$

Pf. Since λ^{*} is translation invariant, $\lambda=\lambda^{*} \operatorname{log(\mathbb {R})}$ is too, and $\lambda((0,1])=1-0=1$.
For the converse:

By similar reasoning: if $\gamma \in \mathbb{R}, B \in B(\mathbb{R})$,

$$
\lambda(\beta \cdot B)=
$$

Pf.

Null Sets ($\$ 6.10$ in Driver)
In a measure space $(\Omega, \mathcal{F}, \mu)$, a measurable set $N \in \mathcal{F}$ is a mullet if $\mu(N)=0$
Eg. If $\mu=\delta_{x_{0}}$, any set not containing x_{0} is null.
Lebesgue null sets:

- If $x \subset \mathbb{R}$ is countable, then $\lambda(x)=0$.
- There are lots of uncountable nullsets, too!

Problem: most subsets of the Cantor set are not Borel sets.
That is: there are many sets $N \in B(\mathbb{R})$ of Lebesgue measure 0 that contain non-Borel sets $\Lambda \subseteq N$. This can sometimes cause technical problems.
Definition: A measure space $(\Omega, \mathcal{F}, \mu)$ is called (null) complete if, for every $N \in F$ with $\mu(N)=0$, every subset $\Lambda \leqslant N$ is in \mathcal{F} (ard $\therefore \mu(\Lambda)=0)$.

Theorem: For any measure space (Ω, F, μ), there is an extension $\mathcal{F} \supseteq \mathcal{F},\left.\tilde{\mu}\right|_{\mathcal{F}}=\mu$, st. $(\Omega, \tilde{F}, \tilde{\mu})$ is

Pf. The most obvious thing actually works:

$$
\begin{aligned}
& \tilde{\mathcal{F}}=\{A \cup \Lambda: A \in \mathcal{F}, \Lambda \subseteq \Omega, \exists N \in \mathcal{F} \text { s.t. } \mu(N)=0 \text { \& } \Lambda \subseteq N\} \\
& \tilde{\mu}(A \cup \Lambda):=\mu(A) .
\end{aligned}
$$

- \tilde{F} is a σ. field containing \mathcal{F} :

$$
\begin{aligned}
& \tilde{F}=\{A \cup \Lambda: A \in \mathcal{F}, \Lambda \subseteq \Omega, \exists N \in \mathcal{F} \text { st. } \mu(N)=0 \text { \& } \Lambda \subseteq N\} \\
& \tilde{\mu}(A \cup \Lambda):=\mu(A) .
\end{aligned}
$$

- $\tilde{\mu}$ is well-defined:
- $\hat{\mu}$ is a measure.
. $(\Omega, \tilde{F}, \tilde{\mu})$ is (null) complete (by construction).

The Lebesgue 6-Field.
often, when one speaks of Lebesgue measure, one implies a particular large σ-field:

$$
\begin{aligned}
& M=\left\{E \subseteq \mathbb{R}: \forall A \subseteq \mathbb{R} \quad \lambda^{*}(A)=\lambda^{*}(A \subset E)+\lambda^{*}\left(A \cap E^{c}\right)\right\} \\
& \mapsto O B(\mathbb{R}) \nsubseteq M
\end{aligned}
$$

$\rightarrow \mathcal{M}$ is null complete (and bigger than $\tilde{B}(\mathbb{R})$)
we will nevers use this M. For us, Lebesgue measure is a Borel measure; worst case, we may need to complete the Bore σ.field in some applications.
BTW, fun fact:
In a finite (pre)measure space (Ω, A, μ),
$M_{\mu}=\bar{A}$ (the closure in the pseudo -metric d_{μ})
[Driver, Prop. 7.11]

