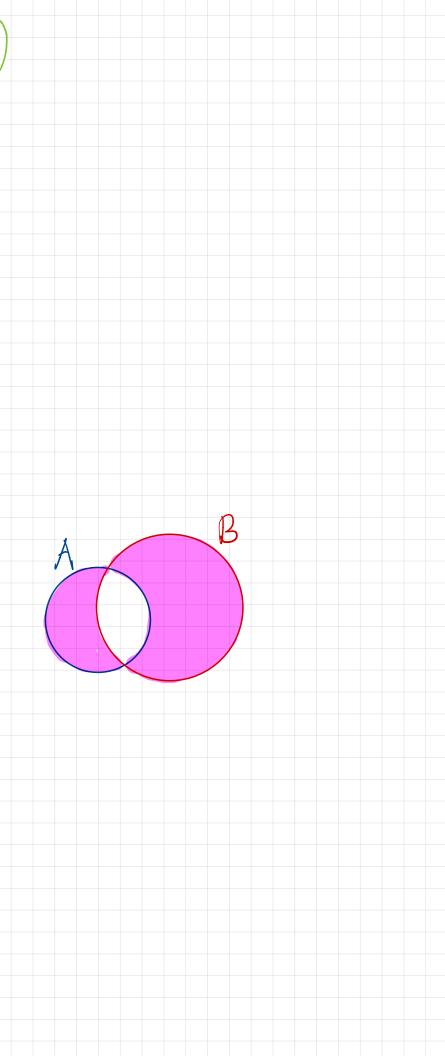
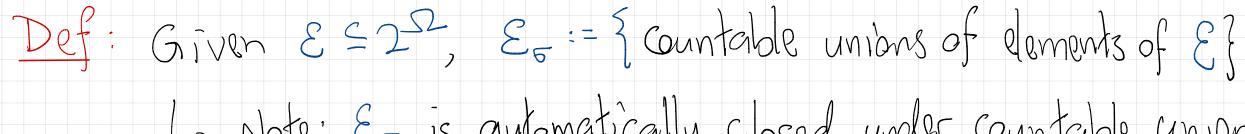
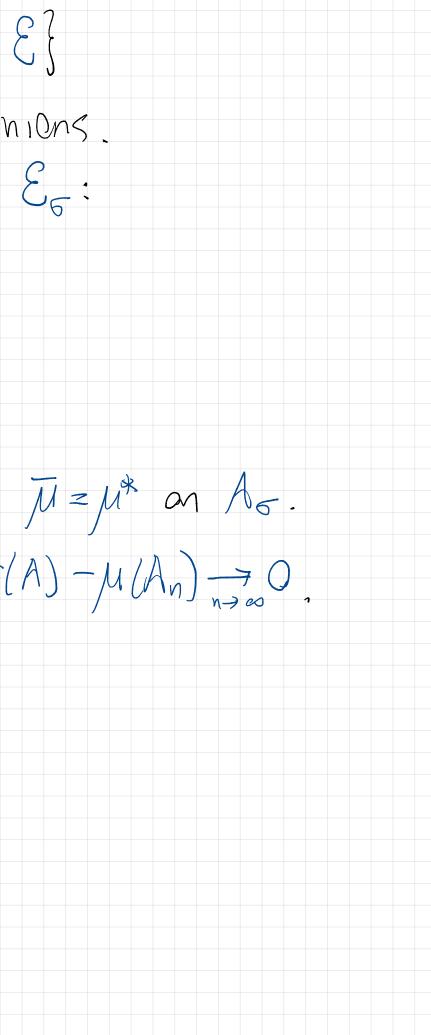
Outer Pseudo-Metriz Closure (§6.2 in Driver) • (Ω, A, μ) finite premeasure space. • $\mu^{*}(E) = \inf \{2, 2, \mu(A;) : A; GA, E \leq \bigcup A; \}$ $\forall E \in 2^{2}$ $-d_{\mu}(E,F) = \mu^{*}(E \Delta F)$ Theorem: The closure A of A in the pseudometric spale (2¹, dy) is a 5-field. Now, we've proved that $\mu^{*}|_{A} = \mu$. So, for A, BEA, $q_{\mu}(AB)$ Prop: μ extends to a unique Lip-1 function $\overline{\mu}: \mathcal{A} \to \mathcal{L}_{\mathcal{O}} \mu(\mathcal{D})$].





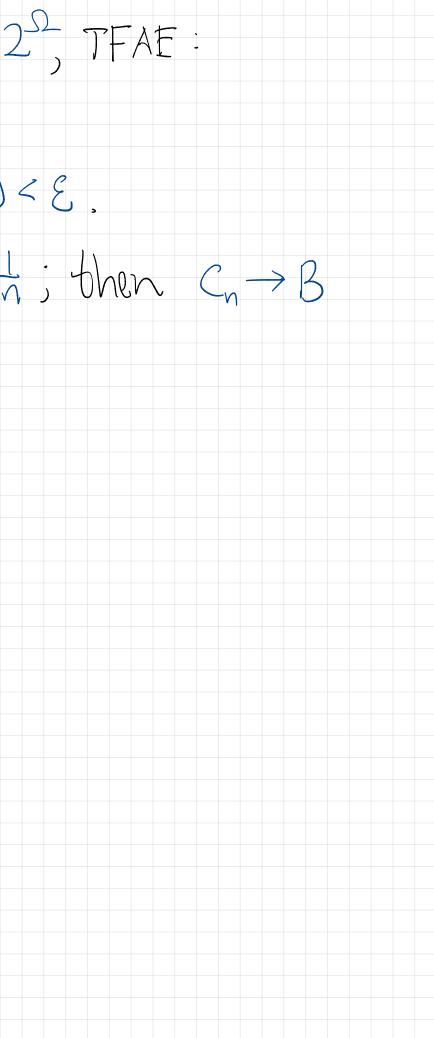
La Note: Et is automatically closed under countable unions. If E is absed under finite intersections, so is Et:

Restatement of Lemma (from last time): If $(S_{-}A,\mu)$ is a finite premeasure space, then $A_{\sigma} = \overline{A}$, and $\overline{\mu} = \mu^{*}$ on A_{σ} . Pf. we showed that if $A \ni A_{n} \uparrow A$ then $d_{\mu}(A_{n},A) = \mu^{*}(A) - \mu(A_{n}) \xrightarrow{\rightarrow} 0$.



Prop: Let (SZ, A, M) be a finite premeasure space. For BE2, TFAE:

- (1) $B \in \overline{A}$. (2) $Y \in \mathcal{P}O$, $\exists C \in A_5$ s.t. $B \in C$ and $\mu^*(C \setminus B) = o|_{\mu}(BC) < \varepsilon$.
- Pf. (2) ⇒ (1): Select a sequence $C_n \in A_5$ s.t. $d_{\mu}(B, C_n) < \frac{1}{n}$; then $C_n \rightarrow B$ and so B ∈ A_5
 - $(1) \Longrightarrow (2):$



Cor: Let 12, A, M) be a finite preneasure space. Then $\mu^* = \mu$ on \overline{A} . PF. Let BGA. $\mu(B) =$

Theorem: If (Ω, Λ, μ) is a finite preneasure space, then $\mu: \Lambda \to [2, \mu(\Omega)]$ is a measure.

PF- We will show that $\bar{\mu}$ is finitely-additive on \bar{A} . Once we've done that: we've shown $\bar{\mu}$ is a finitelyadditive measure on the 5-field \bar{A} , and \therefore it is Countably super-additive. But by the prev. Corollary, $\bar{\mu} = \mu^*$ on \bar{A} , and μ^* is countably subadditive.

