Measure Extension Theorem

(SL, A, M) premeasure space

Want to extend μ to a measure $\mu:\sigma(A) \rightarrow logod$ I.e. Find a σ -field $f \ge \sigma(A)$ and a measure μ on f s.t. $\mu|_{A} \ge \mu$.

Theorem: (Fréchet, 1924)

Every promeasure extends to a measure. The extension is unique if μ , and \therefore $\overline{\mu}$, is $\overline{\sigma}$ -finite.

 $(Nen-)Uniqueness of Extensions Eg. (\Omega, A, \mu) = (R, B_{(J, \infty)})$

Carathéodory's Extension Let SL be a set and E=2 st. \$, SEE Let $p: \mathcal{E} \to [o, \infty]$ s.t. $p(\phi) = 0$. Define p*: 22 > Eges] as follows: $\rho^*(A) =$ Theorem: If E is a field and p is a premeasure, then pt is a measure.

Proposition: Fix $p: \mathcal{E} \subseteq 2^{\mathcal{D}} \rightarrow \mathcal{L}_{0} = 0$. $(p, \mathcal{L} \in \mathcal{E}, p(p) = 0)$ $1 \cdot p^{\varphi}(\phi) = 0$ 2. p^* is monotone: $A \leq B \Rightarrow p^*(A) \leq p^*(B)$. 3. p^* is countably subadditive: $p^*(\bigcup_{n=1}^{\infty} A_n) \leq \sum_{n=1}^{\infty} p^*(A_n)$.

 $Pf. \quad p^*(A) = \inf_{j=1}^{\infty} f_{z_j}^2 f(E_j) : E_j \in \mathcal{E}, A \subseteq \bigcup_{j=1}^{\infty} E_j^2$

is an outer measure if:

 $1, 09(\phi) = 0$

2. Qu'is monotone: $A \leq B \Rightarrow QU(A) \leq QU(B)$.

3. 29 is countably subadditive: $\mathcal{Q}(\bigcup_{n=1}^{\infty}A_n) \leq \sum_{n=1}^{\infty}\mathcal{Q}(A_n)$.

Thus, Carathéodory's extension p^* of a set function $p: 2^{2} \rightarrow [0\infty]$ (relative to $2^{2} \geq \geq \geq p, 2$) is an outer measure.

We can use it (in theory) to distinguish finitelyadditive measures from premeasures.

• If $\chi^* = \chi$ on A, then χ is a premeasure. Ly let $A_n \in A$ s.t. $A = \bigsqcup_{n=1}^{\infty} A_n$. Then

 $\chi(A) = \chi^*(A)$