Homework 9

Available	Monday, November 30	Due	Monday, December 7

Turn in the homework by 9:00pm on Gradescope. Late homework will not be accepted.

1. In this exercise, you will show that moment factorization is equivalent to independence for bounded random variables. To make notation easier, you'll do it for two random variables; the same proof idea works for arbitrary collections. Let X and Y be Borel random variables satisfying $|X| \leq M$ and $|Y| \leq M$ a.s. for some $M<\infty$. Assume that

$$
\mathbb{E}\left[X^{n} Y^{m}\right]=\mathbb{E}\left[X^{n}\right] \mathbb{E}\left[Y^{m}\right], \quad \forall n, m \in \mathbb{N}
$$

(a) Show that $\mathbb{E}[p(X) q(Y)]=\mathbb{E}[p(X)] \mathbb{E}[q(Y)]$ for all polynomials p and q.
(b) Let \mathbb{M} denote the set of functions $f \in C_{c}(\mathbb{R})$ with the property that f is equal to a polynomial on $[-M, M]$. Prove that \mathbb{M} is a multiplicative system, and prove that $\sigma(\mathbb{M})=\mathcal{B}(\mathbb{R})$.
(c) fix a polynomial q, and let \mathbb{H}_{q} denote the set of all $f \in \mathbb{B}(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ with the property that $\mathbb{E}[f(X) q(Y)]=\mathbb{E}[f(X)] \mathbb{E}[q(Y)]$. Show that \mathbb{H}_{q} contains all bounded Borel functions.

The remainder of the proof involves repeating the same steps, this time holding $f \in$ $\mathbb{B}(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ fixed and showing that the set of g for which $\mathbb{E}[f(X) g(Y)]=\mathbb{E}[f(X)] \mathbb{E}[g(Y)]$ includes all bounded Borel functions, therefore showing that X and Y are independent.
2. Let μ_{1}, \ldots, μ_{d} be Borel probability measures on \mathbb{R}, and let λ denote the Lebesgue measure on \mathbb{R}. Suppose that $\mu_{j} \ll \lambda$ for $j \in[d]$. Show that $\mu=\mu_{1} \otimes \cdots \otimes \mu_{d}$ is absolutely continuous with respect to λ^{d} (the Lebesgue measure on \mathbb{R}^{d}), and that

$$
\frac{d \mu}{d \lambda^{n}}=\frac{d \mu_{1}}{d \lambda} \otimes \cdots \otimes \frac{d \mu_{d}}{d \lambda}
$$

3. (Driver, Exercise 13.1) Let ν_{n} be probability measures on the cubes $\left([0,1]^{n}, \mathcal{B}\left([0,1]^{n}\right)\right)$, satisfying the consistency condition

$$
\nu_{n+1}(A \times[0,1])=\nu_{n}(A), \quad \forall n \in \mathbb{N}, A \in \mathcal{B}\left([0,1]^{n}\right)
$$

Show that $P\left(A \times[0,1]^{\mathbb{N}}\right):=\nu_{n}(A)$ defines a well-defined, finitely-additive measure P on the algebra $\mathcal{A}=\bigcup_{n \in \mathbb{N}}\left\{A \times[0,1]^{\mathbb{N}}: A \in \mathcal{B}\left([0,1]^{n}\right)\right\}$.
4. Let $\Omega=(0,1)$, equipped with the Borel σ-field $\mathcal{B}=\mathcal{B}(0,1)$, and the Lebesgue measure λ (which is a probability measure on $(0,1)$). Let $X_{n}(\omega)=n^{\text {th }}$ binary digit of ω; i.e.

$$
X_{n}(\omega)= \begin{cases}1 & \text { if }\left\lfloor 2^{n} \omega\right\rfloor \text { is odd } \\ 0 & \text { if }\left\lfloor 2^{n} \omega\right\rfloor \text { is even }\end{cases}
$$

Prove that $\left\{X_{n}\right\}_{n=1}^{\infty}$ is an i.i.d. sequence of Bernoulli random variables on $(\Omega, \mathcal{B}, \lambda)$.
5. Suppose $\left\{X_{n}\right\}_{n=1}^{\infty}$ are independent. Show that $\mathbb{P}\left(\limsup X_{n}>1\right)$ is either 0 or 1 .

