Homework 7

Available	Monday, November 16	Due	Monday, November 23

Turn in the homework by 9:00pm on Gradescope. Late homework will not be accepted.

1. (Driver, Exercise 10.5) Suppose $f, g: \mathbb{R} \rightarrow \mathbb{R}$ are C^{1} functions, for which all three functions $f^{\prime} g, f g^{\prime}$, and $f g$ are in $L^{1}(\mathbb{R}, \mathcal{B}, \lambda)$. Prove the integration by parts formula:

$$
\int_{\mathbb{R}} f^{\prime} g d \lambda=-\int_{\mathbb{R}} f g^{\prime} d \lambda
$$

[Hint: Let $\psi \in \mathbb{C}^{1}(\mathbb{R})$ be a non-negative function with $\psi(x)=1$ when $|x| \leq 1, \psi(x)=0$ when $|x| \geq 2$, and $0 \leq \psi(x) \leq 1$ for all $x \in \mathbb{R}$. Set $\psi_{n}(x)=\psi(x / n)$. Use ordinary calculus to prove the above formula applied to the functions $f \psi_{n}$ and $g \psi_{n}$, then use the DCT to prove the result in general.]
2. Let X_{n} be a sequence of random variables, and let $a_{n} \in \mathbb{R}$ be a convergent sequence with $\lim _{n \rightarrow \infty} a_{n}=a$. If $X_{n}-a_{n} \rightarrow_{\mathbb{P}} 0$, prove that $X_{n} \rightarrow_{\mathbb{P}} a$.
3. For $X, Y \in L^{0}(\Omega, \mathcal{F}, \mathbb{P})$, define

$$
d(X, Y):=\mathbb{E}[\min \{|X-Y|, 1\}]
$$

(a) Prove that d is a metric on L^{0}.
(b) Let $X_{n}, X \in L^{0}$. Show that $X_{n} \rightarrow_{\mathbb{P}} X$ if and only if $d\left(X_{n}, X\right) \rightarrow 0$. [Hint: break up the integral over $\left\{\left|X_{n}-X\right| \geq \epsilon\right\}$ and its complement.]
4. (Driver, Exercise 12.4) Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, and let $X, Y: \Omega \rightarrow \mathbb{R}$ be random variables with the property that

$$
\mathbb{E}[f(X) g(Y)]=\mathbb{E}[f(X) g(X)]
$$

for all bounded measurable functions f, g. Show that $\mathbb{P}(X=Y)=1$. [Hint: Show that if \mathbb{H} is the collection of all bounded measurable functions $h: \mathbb{R}^{2} \rightarrow \mathbb{R}$ for which $\mathbb{E}[h(X, Y)]=\mathbb{E}[h(X, X)]$, then in fact \mathbb{H} contains all bounded measurable functions, including $h(x, y)=\mathbb{1}_{\{x=y\}}$.]
5. (Driver, Exercise 12.5) Let (Ω, \mathcal{F}, P) be a probability space, and let $\mathcal{A} \subset \mathcal{F}$ be an algebra such that $\sigma(\mathcal{A})=\mathcal{F}$. An \mathcal{A}-simple function is a simple function φ for which $\varphi^{-1}\{t\} \in$ \mathcal{A} for every $t \in \mathbb{R}$. Prove that, for any bounded random variable X, and any $\epsilon>0$, there is an \mathcal{A}-simple function φ with $\mathbb{E}[|X-\varphi|]<\epsilon$.

