Math 280A: Fall 2020 Homework 7 Available | Monday, November 16 || Due | Monday, November 23

Turn in the homework by 9:00pm on Gradescope. Late homework will not be accepted.

1. (Driver, Exercise 10.5) Suppose $f, g: \mathbb{R} \to \mathbb{R}$ are C^1 functions, for which all three functions f'g, fg', and fg are in $L^1(\mathbb{R}, \mathcal{B}, \lambda)$. Prove the *integration by parts* formula:

$$\int_{\mathbb{R}} f'g \, d\lambda = -\int_{\mathbb{R}} fg' \, d\lambda.$$

[*Hint*: Let $\psi \in \mathbb{C}^1(\mathbb{R})$ be a non-negative function with $\psi(x) = 1$ when $|x| \le 1$, $\psi(x) = 0$ when $|x| \ge 2$, and $0 \le \psi(x) \le 1$ for all $x \in \mathbb{R}$. Set $\psi_n(x) = \psi(x/n)$. Use ordinary calculus to prove the above formula applied to the functions $f\psi_n$ and $g\psi_n$, then use the DCT to prove the result in general.]

- **2.** Let X_n be a sequence of random variables, and let $a_n \in \mathbb{R}$ be a convergent sequence with $\lim_{n\to\infty} a_n = a$. If $X_n a_n \to_{\mathbb{P}} 0$, prove that $X_n \to_{\mathbb{P}} a$.
- **3.** For $X, Y \in L^0(\Omega, \mathcal{F}, \mathbb{P})$, define

$$d(X, Y) := \mathbb{E}[\min\{|X - Y|, 1\}].$$

- (a) Prove that d is a metric on L^0 .
- (b) Let $X_n, X \in L^0$. Show that $X_n \to_{\mathbb{P}} X$ if and only if $d(X_n, X) \to 0$. [*Hint*: break up the integral over $\{|X_n X| \ge \epsilon\}$ and its complement.]
- **4.** (Driver, Exercise 12.4) Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, and let $X, Y \colon \Omega \to \mathbb{R}$ be random variables with the property that

$$\mathbb{E}[f(X)g(Y)] = \mathbb{E}[f(X)g(X)]$$

for all bounded measurable functions f, g. Show that $\mathbb{P}(X = Y) = 1$. [*Hint*: Show that if \mathbb{H} is the collection of all bounded measurable functions $h: \mathbb{R}^2 \to \mathbb{R}$ for which $\mathbb{E}[h(X,Y)] = \mathbb{E}[h(X,X)]$, then in fact \mathbb{H} contains *all* bounded measurable functions, including $h(x,y) = \mathbb{1}_{\{x=y\}}$.]

5. (Driver, Exercise 12.5) Let (Ω, \mathcal{F}, P) be a probability space, and let $\mathcal{A} \subset \mathcal{F}$ be an algebra such that $\sigma(\mathcal{A}) = \mathcal{F}$. An \mathcal{A} -simple function is a simple function φ for which $\varphi^{-1}{t} \in \mathcal{A}$ for every $t \in \mathbb{R}$. Prove that, for any bounded random variable X, and any $\epsilon > 0$, there is an \mathcal{A} -simple function φ with $\mathbb{E}[|X - \varphi|] < \epsilon$.