Math 280A: Fall 2020 Homework 6

Available Monday, November 9 Due Monday, November 16

Turn in the homework by 9:00pm on Gradescope. Late homework will not be accepted.

1. Let $(\Omega, \mathcal{F}, \mu)$ be a measure space, and let $\varrho_1, \varrho_2 \colon \Omega \to [0, \infty)$ be in $L^1(\Omega, \mathcal{F}, \mu)$. Suppose that, for all $A \in \mathcal{F}$,

$$\int_A \varrho_1 \, d\mu = \int_A \varrho_2 \, d\mu.$$

Prove that $\rho_1 = \rho_2$ a.s.[μ]. [*Hint*: Use Problem 4(c) from HW5, with the function $f = \rho_1 - \rho_2$.]

- (Dirver, Exercise 10.7) Let (Ω, F, μ) be a measure space, and let (S, B) be a measurable space. Let X: Ω → S be a measurable function, and let ν = X_{*}μ, i.e. ν is the measure on (S, B) defined by ν(A) = μ(X⁻¹(A)).
 - (a) Show that

$$\int_{S} g \, d\nu = \int_{\Omega} (g \circ X) \, d\mu \tag{(*)}$$

for all measurable functions $g: S \to [0, \infty]$. [*Hint*: prove it first for simple functions g, and then for non-negative measurable functions g with an appropriate convergence theorem.]

- (b) Show that a measurable function $g: S \to \mathbb{R}$ is in $L^1(S, \mathcal{B}, \nu)$ if and only if $g \circ X \in L^1(\Omega, \mathcal{F}, \mu)$, and that in this case, Equation (*) still holds for g.
- **3.** Let *X* be a standard normal random variable: $X \stackrel{d}{=} \mathcal{N}(0,1)$. Let $f \in C^1(\mathbb{R})$, with the property that Xf(X), f'(X), and f(X) are all integrable random variables. Prove that

$$\mathbb{E}[Xf(X)] = \mathbb{E}[f'(X)].$$

[*Fun fact*: this property actually characterizes the standard normal distribution $\mathcal{N}(0, 1)$.]

- **4.** Let $X \in L^1(\Omega, \mathcal{F}, \mathbb{P})$ be a random variable. Prove that, for any $\epsilon > 0$, there is a *simple* random variable $Y \in L^1(\Omega, \mathcal{F}, \mathbb{P})$ such that $\mathbb{E}[|X Y|] < \epsilon$.
- **5.** Let $X \in L^2(\Omega, \mathcal{F}, \mathbb{P})$ be a non-negative random variable. Show that

$$\mathbb{P}(X > 0) \ge \frac{(\mathbb{E}[X])^2}{\mathbb{E}[X^2]}.$$

[*Hint*: Apply the Cauchy–Schwarz Inequality to $X \mathbb{1}_{X>0}$.]