Math 280A: Fall 2020 Homework 4

Available | Monday, October 26 | Due | Monday, November 2

Turn in the homework by 9:00pm on Gradescope. Late homework will not be accepted.

- **1.** Let (Ω, \mathcal{F}) be a measurable space, and let $Y_1, \ldots, Y_n \colon \Omega \to \mathbb{R}$ be $\mathcal{F}/\mathcal{B}(\mathbb{R})$ -measurable functions. Let A_1, \ldots, A_n be disjoint events in \mathcal{F} that partition $\Omega \colon \Omega = \bigsqcup_{j=1}^n A_j$. Define a function $X \colon \Omega \to \mathbb{R}$ by $X(\omega) = Y_j(\omega)$ if $\omega \in A_j$. Prove that X is $\mathcal{F}/\mathcal{B}(\mathbb{R})$ -measurable.
- **2.** Let Ω be a set, and let $X_1, \ldots, X_d \colon \Omega \to \mathbb{R}$ be functions. Recall that the σ -field generated by X_1, \ldots, X_d , denoted $\mathcal{F} = \sigma(X_1, \ldots, X_d)$, is the smallest σ -field over Ω with respect to which X_1, \ldots, X_d are Borel measurable (i.e. X_j is $\mathcal{F}/\mathcal{B}(\mathbb{R})$ -measurable for $1 \le j \le d$). Let $\mathbf{X} = (X_1, \ldots, X_d)$ be the \mathbb{R}^d -valued function whose components are the X_j . Prove that

$$\sigma(X_1,\ldots,X_d) = \mathbf{X}^* \mathcal{B}(\mathbb{R}^d) = \{ \mathbf{X}^{-1}(B) \colon B \in \mathcal{B}(\mathbb{R}^d) \}.$$

3. Let $(\Omega, \mathcal{F}, \mu)$ be a measure space. Let $\beta_1, \ldots, \beta_m \in \mathbb{R}$ and let $B_1, \ldots, B_m \in \mathcal{F}$, not *necessarily disjoint*. Show that the function $g = \sum_{j=1}^m \beta_j \mathbb{1}_{B_j}$ is a simple measurable function, and that

$$\int g \, d\mu = \sum_{j=1}^m \beta_j \, \mu(B_j).$$

- **4.** (Exercise 5.6 in Driver) Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. Let $d_{\mu}(A, B) = \mathbb{P}(A \triangle B)$ for all $A, B \in \mathcal{F}$.
 - (a) Show that $d_{\mu}(A, B) = \mathbb{E}\left[|\mathbb{1}_A \mathbb{1}_B|\right]$.
 - (b) Use part (a) to give another proof that d_{μ} satisfies the triangle inequality.
- **5.** (Exercise 5.12 in Driver) Let $F, G: [0,1] \to \mathbb{R}$ be two non-decreasing functions with F(0) = G(0) and F(1) = G(1), and suppose that $\{x \in [0,1]: F(x) \neq G(x)\}$ is countable. Prove that, as Riemann–Stieltjes integrals,

$$\int_0^1 f \, d\mu_F = \int_0^1 f \, d\mu_G, \qquad \text{for all continuous functions} \ f: [0,1] \to \mathbb{R}$$

On the other hand, under the above circumstances, show that the finitely-additive measures μ_F and μ_G are equal iff F = G. (They are only countably-additive measures if *F* and *G* are right-continuous.)