Homework 4

Available	Monday, October 26	Due	Monday, November 2

Turn in the homework by 9:00pm on Gradescope. Late homework will not be accepted.

1. Let (Ω, \mathcal{F}) be a measurable space, and let $Y_{1}, \ldots, Y_{n}: \Omega \rightarrow \mathbb{R}$ be $\mathcal{F} / \mathcal{B}(\mathbb{R})$-measurable functions. Let A_{1}, \ldots, A_{n} be disjoint events in \mathcal{F} that partition Ω : $\Omega=\bigsqcup_{j=1}^{n} A_{j}$. Define a function $X: \Omega \rightarrow \mathbb{R}$ by $X(\omega)=Y_{j}(\omega)$ if $\omega \in A_{j}$. Prove that X is $\mathcal{F} / \mathcal{B}(\mathbb{R})$-measurable.
2. Let Ω be a set, and let $X_{1}, \ldots, X_{d}: \Omega \rightarrow \mathbb{R}$ be functions. Recall that the σ-field generated by X_{1}, \ldots, X_{d}, denoted $\mathcal{F}=\sigma\left(X_{1}, \ldots, X_{d}\right)$, is the smallest σ-field over Ω with respect to which X_{1}, \ldots, X_{d} are Borel measurable (i.e. X_{j} is $\mathcal{F} / \mathcal{B}(\mathbb{R})$-measurable for $1 \leq j \leq d$). Let $\mathbf{X}=\left(X_{1}, \ldots, X_{d}\right)$ be the \mathbb{R}^{d}-valued function whose components are the X_{j}. Prove that

$$
\sigma\left(X_{1}, \ldots, X_{d}\right)=\mathbf{X}^{*} \mathcal{B}\left(\mathbb{R}^{d}\right)=\left\{\mathbf{X}^{-1}(B): B \in \mathcal{B}\left(\mathbb{R}^{d}\right)\right\}
$$

3. Let $(\Omega, \mathcal{F}, \mu)$ be a measure space. Let $\beta_{1}, \ldots, \beta_{m} \in \mathbb{R}$ and let $B_{1}, \ldots, B_{m} \in \mathcal{F}$, not necessarily disjoint. Show that the function $g=\sum_{j=1}^{m} \beta_{j} \mathbb{1}_{B_{j}}$ is a simple measurable function, and that

$$
\int g d \mu=\sum_{j=1}^{m} \beta_{j} \mu\left(B_{j}\right)
$$

4. (Exercise 5.6 in Driver) Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. Let $d_{\mu}(A, B)=\mathbb{P}(A \triangle B)$ for all $A, B \in \mathcal{F}$.
(a) Show that $d_{\mu}(A, B)=\mathbb{E}\left[\left|\mathbb{1}_{A}-\mathbb{1}_{B}\right|\right]$.
(b) Use part (a) to give another proof that d_{μ} satisfies the triangle inequality.
5. (Exercise 5.12 in Driver) Let $F, G:[0,1] \rightarrow \mathbb{R}$ be two non-decreasing functions with $F(0)=G(0)$ and $F(1)=G(1)$, and suppose that $\{x \in[0,1]: F(x) \neq G(x)\}$ is countable. Prove that, as Riemann-Stieltjes integrals,

$$
\int_{0}^{1} f d \mu_{F}=\int_{0}^{1} f d \mu_{G}, \quad \text { for all continuous functions } f:[0,1] \rightarrow \mathbb{R}
$$

On the other hand, under the above circumstances, show that the finitely-additive measures μ_{F} and μ_{G} are equal iff $F=G$. (They are only countably-additive measures if F and G are right-continuous.)

