Math 280A: Fall 2020 Homework 3

AvailableMonday, October 19DueMonday, October 26

Turn in the homework by 9:00pm on Gradescope. Late homework will not be accepted.

1. (Exercise 2.13 in Driver) Let (X, d) be a pseudo-metric space. Let $V \subseteq X$ be a nonempty subset, and suppose $f: V \to \mathbb{R}$ is a Lipschitz function: there is a constant $K \in (0, \infty)$ such that

 $|f(x) - f(y)| \le K d(x, y), \qquad \forall x, y \in V.$

Prove that there is a unique extension \overline{f} of f to \overline{V} that is also Lipschitz (with the same constant K).

- **2.** Let λ denote the Lebesgue pre-measure on the "Borel field" $\mathcal{B}_{(]}(\mathbb{R})$, and let λ^* denote its Carathéodory outer measure on $2^{\mathbb{R}}$. Prove that λ^* is translation-invariant: $\lambda^*(V + \tau) = \lambda^*(V)$ for all $\tau \in \mathbb{R}$. Conclude that λ^* is *not* a measure: it cannot be countably additive over disjoint subsets of $2^{\mathbb{R}}$.
- **3.** Fix a real number $\gamma \neq 0$.
 - (a) If $B \in \mathcal{B}(\mathbb{R})$ is a Borel set, show that $\gamma \cdot B = \{\gamma x \colon x \in B\}$ is a Borel set. [*Hint*: First prove this for half-open intervals *B*, then use [Driver, Lemma 9.3].]
 - **(b)** Let μ be a Borel measure on \mathbb{R} . Define $\nu : \mathcal{B}(\mathbb{R}) \to [0, \infty]$ by

$$\nu(B) = \frac{1}{|\gamma|} \mu(\gamma \cdot B).$$

Prove that ν is a Borel measure.

- (c) If μ is translation-invariant, prove that ν is also translation invariant.
- **4.** On \mathbb{R}^2 , consider the set of all "half-open rectangles":

$$\mathcal{R} = \{ (a_1, b_1] \times (a_2, b_2] : -\infty \le a_j \le b_j \le \infty, \ j = 1, 2 \}.$$

- (a) Show that \mathcal{R} is a semi-algebra.
- (b) Show that $\sigma(\mathcal{R}) = \mathcal{B}(\mathbb{R}^2)$, the full Borel σ -field on the plane, generated by all open balls. [*Hint*: show that every open ball in \mathbb{R}^2 is in \mathcal{R}_{σ} .]
- **5.** (Exercise 9.1 in Driver) Let (Ω, \mathcal{F}) and (S, \mathcal{B}) be measurable spaces, and let $f : \Omega \to S$ be a function. Show that

$$f^*\mathcal{B} := \{f^{-1}(B) \colon B \in \mathcal{B}\} \subseteq 2^{\Omega}$$
$$f_*\mathcal{F} := \{E \subseteq S \colon f^{-1}(E) \in \mathcal{F}\} \subseteq 2^S$$

are σ -fields.