Math 280A: Fall 2020
Homework 2

Available \quad Monday, October 12 ||c|l| Due \quad Monday, October 19

Turn in the homework by 9:00pm on Gradescope. Late homework will not be accepted.

1. Let $\Omega=\{1,2,3,4\}$, and set $\mathcal{S}=\{\varnothing,\{1\},\{2\},\{3,4\}, \Omega\}$.
(a) Prove that \mathcal{S} is a semi-algebra.
(b) Define $\chi: \mathcal{S} \rightarrow \mathbb{R}$ as follows:

$$
\chi(\varnothing)=0, \chi(\{1\})=\chi(\{2\})=\chi(\{3,4\})=1, \chi(\Omega)=4 .
$$

Show that χ is "pairwise" additive: $\chi(A \sqcup B)=\chi(A)+\chi(B)$ whenever A, B, and $A \sqcup B$ are all in \mathcal{S}. Show also that χ is not additive over all finite disjoint unions.
(This shows it is important, when dealing with semi-algebras and other classes not closed under finite union, to spell out the full statement of "finite additivity" in all proofs.)
2. (Exercise 4.12 in Driver) Let Ω_{1} and Ω_{2} be sets, and let $\mathcal{A}_{1} \subseteq 2^{\Omega_{1}}$ and $\mathcal{A}_{2} \subseteq 2^{\Omega_{2}}$ be semi-algebras. Show that

$$
\mathcal{S}=\mathcal{A}_{1} \times \mathcal{A}_{2}=\left\{A_{1} \times A_{2}: A_{1} \in \mathcal{A}_{1}, A_{2} \in \mathcal{A}_{2}\right\} \subset 2^{\Omega_{1} \times \Omega_{2}}
$$

is a semi-algebra.
3. (Exercise 4.3 in Driver) Let $A_{n}, B_{n} \subseteq \Omega$ for $n \in \mathbb{N}$. Show that

$$
\left(\bigcup_{n=1}^{\infty} A_{n}\right) \backslash\left(\bigcup_{n=1}^{\infty} B_{n}\right) \subseteq \bigcup_{n=1}^{\infty}\left(A_{n} \backslash B_{n}\right) .
$$

Use this to show that

$$
\left(\bigcup_{n=1}^{\infty} A_{n}\right) \triangle\left(\bigcup_{n=1}^{\infty} B_{n}\right) \subseteq \bigcup_{n=1}^{\infty}\left(A_{n} \triangle B_{n}\right) .
$$

4. (Exercise 4.4 in Driver) Let $A, B, C \subseteq \Omega$. Recall that the symmetric difference of sets is $A \triangle B=\left(A \cap B^{c}\right) \cup\left(B \cap A^{c}\right)$.
(a) Show that $A \cap C^{c} \subseteq\left(A \cap B^{c}\right) \cup\left(B \cap C^{c}\right)$.
(b) Use part (a) to show that

$$
A \triangle C \subseteq(A \triangle B) \cup(B \triangle C) .
$$

(c) Now, let $v: 2^{\Omega} \rightarrow[0, \infty)$ be an outer measure. Show that the function $d: 2^{\Omega} \times 2^{\Omega} \rightarrow$ $[0, \infty)$ defined by $d(A, B)=v(A \triangle B)$ satisfies the triangle inequality:

$$
d(A, C) \leq d(A, B)+d(B, C)
$$

5. Let \mathcal{A} be a field over Ω, and let \mathbb{P} be a probability measure on $(\Omega, \sigma(\mathcal{A}))$. Let $B \in \sigma(\mathcal{A})$. Prove that for any $\epsilon>0$, there is a set $A \in \mathcal{A}$ such that $\mathbb{P}(A \triangle B)<\epsilon$. I.e. \mathcal{A} is "dense" in $\sigma(\mathcal{A})$. [Hint: show that the collection of all sets B satisfying this property is a σ-field.]
