Math 280A: Fall 2020 Homework 2

Available Monday, October 12 Due Monday, October 19

Turn in the homework by 9:00pm on Gradescope. Late homework will not be accepted.

- **1.** Let $\Omega = \{1, 2, 3, 4\}$, and set $S = \{\emptyset, \{1\}, \{2\}, \{3, 4\}, \Omega\}$.
 - (a) Prove that S is a semi-algebra.
 - **(b)** Define $\chi : S \to \mathbb{R}$ as follows:

$$\chi(\varnothing) = 0, \chi(\{1\}) = \chi(\{2\}) = \chi(\{3,4\}) = 1, \chi(\Omega) = 4.$$

Show that χ is "pairwise" additive: $\chi(A \sqcup B) = \chi(A) + \chi(B)$ whenever *A*, *B*, and $A \sqcup B$ are all in *S*. Show also that χ is *not* additive over all finite disjoint unions.

(This shows it is important, when dealing with semi-algebras and other classes not closed under finite union, to spell out the full statement of "finite additivity" in all proofs.)

2. (Exercise 4.12 in Driver) Let Ω_1 and Ω_2 be sets, and let $\mathcal{A}_1 \subseteq 2^{\Omega_1}$ and $\mathcal{A}_2 \subseteq 2^{\Omega_2}$ be semi-algebras. Show that

$$\mathcal{S} = \mathcal{A}_1 \times \mathcal{A}_2 = \{A_1 \times A_2 \colon A_1 \in \mathcal{A}_1, A_2 \in \mathcal{A}_2\} \subset 2^{\Omega_1 \times \Omega_2}$$

is a semi-algebra.

3. (Exercise 4.3 in Driver) Let $A_n, B_n \subseteq \Omega$ for $n \in \mathbb{N}$. Show that

$$\left(\bigcup_{n=1}^{\infty} A_n\right) \setminus \left(\bigcup_{n=1}^{\infty} B_n\right) \subseteq \bigcup_{n=1}^{\infty} (A_n \setminus B_n).$$

Use this to show that

$$\left(\bigcup_{n=1}^{\infty} A_n\right) \bigtriangleup \left(\bigcup_{n=1}^{\infty} B_n\right) \subseteq \bigcup_{n=1}^{\infty} (A_n \bigtriangleup B_n).$$

- **4.** (Exercise 4.4 in Driver) Let $A, B, C \subseteq \Omega$. Recall that the **symmetric difference** of sets is $A \triangle B = (A \cap B^c) \cup (B \cap A^c)$.
 - (a) Show that $A \cap C^c \subseteq (A \cap B^c) \cup (B \cap C^c)$.
 - (b) Use part (a) to show that

$$A \triangle C \subseteq (A \triangle B) \cup (B \triangle C).$$

(c) Now, let $v: 2^{\Omega} \to [0, \infty)$ be an outer measure. Show that the function $d: 2^{\Omega} \times 2^{\Omega} \to [0, \infty)$ defined by $d(A, B) = v(A \triangle B)$ satisfies the **triangle inequality**:

$$d(A,C) \le d(A,B) + d(B,C).$$

5. Let \mathcal{A} be a field over Ω , and let \mathbb{P} be a probability measure on $(\Omega, \sigma(\mathcal{A}))$. Let $B \in \sigma(\mathcal{A})$. Prove that for any $\epsilon > 0$, there is a set $A \in \mathcal{A}$ such that $\mathbb{P}(A \triangle B) < \epsilon$. I.e. \mathcal{A} is "dense" in $\sigma(\mathcal{A})$. [*Hint*: show that the collection of all sets B satisfying this property is a σ -field.]