The Law of Large Numbers: Revisited
Recall the weak Law of Large Numbers: (Lee 12.2)
Let $\left\{X_{n}\right\}_{n=1}^{\infty}$ be uncorrelated L^{2} random variables
and suppose that $\mathbb{E}\left[X_{n}\right]=\alpha \quad \forall n, \mathbb{E}\left[X_{n}^{2}\right]=s^{2} \quad \forall n$.
Set $S_{n}=X_{1}+\cdots+X_{n}$. Then

$$
\frac{S_{n}}{n} \rightarrow p \alpha
$$

The proof was a simple application of Chebyshev's inequality.
There are at least two ways we could improve the result:

1. Weaken the hypothesis that $X_{n} 6 L^{2}$.
2. Strengthen the convergence from $\rightarrow p$.

Cut-Offs
Let x be any random variable.
Let $M<\infty$. Then
$X \|_{|X| \leq M}$ is bounded
\uparrow

$$
\sigma(x) \text { - measurable }
$$

Only trouble: $\operatorname{Cov}(X, Y)=0 \nRightarrow \operatorname{Cov}\left(X\left\|_{|X| S M}, Y\right\|_{Y \mid K M}\right)=0$.
Solution: trade up. Replace the weak uncorrelated assumption with a stronger (and natural) independence assumption.
\therefore We can replace X_{n} with $X_{n} \|_{\left|X_{n}\right|} \leqslant M_{n}$ at the expense of assuming full independence.
The idea will then be to "remove" the cut-off.
This approach does work (with some work!) and we're going to follow it to prove:
Theorem: (Kolmegorov's Strong Law of Large Numbers)
Let $\left\{X_{n}\right\}_{n=1}^{\infty}$ be ind L^{1} random variables with $\mathbb{E}\left[X_{n}\right]=\alpha$.
Let $S_{n}=x_{1}+\cdots+x_{n}$. Then

$$
\frac{S_{n}}{n} \rightarrow \alpha \text { ass. }
$$

If $X_{n} \notin L^{1}$ but $X_{n}^{-} \in L^{\perp}$ (so " $\mathbb{E}\left[X_{n}\right]=+\infty$ "), then $\frac{S_{n}}{n} \rightarrow+\infty$ ass. pf.

Tail Equivalence
Def Two sequences $\left\{X_{n}\right\}_{n=1}^{\infty},\left\{X_{n}^{\prime}\right\}_{n=1}^{\infty}$ on a common probability space are called tail equivalent if

$$
\sum_{n=1}^{\infty} \mathbb{P}\left(X_{n} \neq X_{n}^{\prime}\right)<\infty
$$

By the Bersl-Cantelli Lemma (I), setting $A_{n}=\left\{X_{n} \neq X_{n}^{\prime}\right\}$, we have $\mathbb{P}\left(A_{n} i_{0}\right)=0$.
Ie. \exists null set N sit. $\forall \omega \in N^{c}$,

Cor: If $\left\{X_{n}\right\}_{n=1}^{\infty},\left\{X_{n}^{\prime}\right\}_{n=1}^{\infty}$ are tail equivalent, and $b_{n} \uparrow \infty$, if $\exists r . v . X$ s.t.
$\lim _{n \rightarrow \infty} \frac{1}{b_{n}} \sum_{j=1}^{n} X_{j}^{\prime}=X$ as., then $\lim _{n \rightarrow \infty} \frac{1}{b_{n}} \sum_{j=1}^{n} X_{j}=X$ ass.

Wed like to find a sequence of cut-offs $X_{n}^{\prime}=X_{n} \|_{\left|x_{n}\right| \leqslant M_{n}}$ so that $\left\{x_{n}\right\}_{n=1}^{\infty},\left\{X_{n}^{\prime}\right\}_{n=1}^{\infty}$ are tail equivalent. To that end, we have:
Lemma: If $x \in L^{1}$ and $\varepsilon>0$, then

$$
\sum_{n=1}^{\infty} \mathbb{P}(|X| \geqslant n \varepsilon) \leqslant \frac{1}{\varepsilon} \mathbb{E}[|X|]
$$

Pf.

Cor If $\left\{X_{n}\right\}_{n=2}^{\infty}$ are (i)id and L^{1}, they are tail equivalent to $X_{n}^{\prime}=X_{n} \Delta\left|x_{n}\right| \leqslant n$. Pf.

Thus, in order to prove the SLLN, it suffices to prove:
If $\left\{X_{n}\right\}_{n=1}^{\infty}$ is an ind sequence of L^{\prime} random variables with $\mathbb{E}\left[X_{n}\right]=\alpha$, and

$$
S_{n}^{\prime}=\sum_{k=1}^{n} x_{k} \|\left|x_{k}\right| \leqslant k
$$

then $\frac{S_{n}^{\prime}}{n} \rightarrow \alpha$ ass.
Advantages:
Disadvantages:

