The Law of Large Numbers: Revisited

Recall the Weak Law of Large Numbers: (Lec 122) Let Exis, be uncorrelated L² random variables

and suppose that $E[X_n] = \alpha \forall n$, $E[X_n^2] = s^2 \forall n$ Set $S_n = X_1 + \cdots + X_n$. Then $\frac{S_n}{n} \rightarrow p \alpha$

The proof was a simple application of Chebyshev's inequality.

There are at least two ways we could improve the result:

1. Weaken the hypothesis that XnGL2.

2. Strengthen the Convergence from ->p

Cut-Offs Let X be any random variable. Let M<∞. Then

X1|XI≤M is bounded

5(X) - measurable

Only trouble: $Cov(X,Y) = 0 \neq Gv(X|_{|X| \leq M}, Y|_{|Y| \leq M}) = 0$. Solution: trade up. Peplace the weak uncorrelated assumption with a stronger (and natural) independence assumption.

Tail Equivalence

common probability space are called

tail equivalent if

 $\sum_{n=1}^{\infty} \mathbb{P}(\chi_n \neq \chi'_n) < \infty$

By the Borel-Cantelli Lemma (I), setting An= {Xn = Xn = Xn, f, we have P(Anio) = 0.

IL I nullset Ns.t. VWEN,

Thus, in order to prove the SLLN, it suffices

to prove:

If {Xn}nz, is an iid sequence of L' random Varightes with E[Xn]=x, and

Advantages:

Disadvantages: